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Bifurcation Analysis of a Semiconductor Laser with Filtered Optical Feedback∗

Hartmut Erzgräber†, Bernd Krauskopf‡, and Daan Lenstra§

Abstract. We study the dynamics and bifurcations of a semiconductor laser with delayed filtered optical
feedback, where a part of the output of the laser reenters after spectral filtering. This type of
coherent optical feedback is more challenging than the case of conventional optical feedback from
a simple mirror, but it provides additional control over the output of the semiconductor laser by
means of choosing the filter detuning and the filter width. This laser system can be modeled by a
system of delay differential equations with a single fixed delay, which is due to the travel time of the
light outside the laser. In this paper we present a bifurcation analysis of the filtered feedback laser.
We first consider the basic continuous wave states, known as the external filtered modes (EFMs),
and determine their stability regions in the parameter plane of feedback strength versus feedback
phase. The EFMs are born in saddle-node bifurcations and become unstable in Hopf bifurcations.
We show that for small filter detuning there is a single region of stable EFMs, which splits up into
two separate regions when the filter is detuned. We then concentrate on the periodic orbits that
emanate from Hopf bifurcations. Depending on the feedback strength and the feedback phase, two
types of oscillations can be found. First, there are undamped relaxation oscillations, which are
typical for semiconductor laser systems. Second, there are oscillations with a period related to the
delay time, which have the remarkable property that the laser frequency oscillates while the laser
intensity is almost constant. These frequency oscillations are only possible due to the interaction
of the laser with the filter. We determine the stability regions in the parameter plane of feedback
strength versus feedback phase of the different types of oscillations. In particular, we find that stable
frequency oscillations are dominant for nonzero values of the filter detuning.
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1. Introduction. Semiconductor lasers are very efficient sources of coherent light that are
used in countless technical applications—most notably in optical data storage and optical
communication systems. A single-mode semiconductor laser on its own is mathematically a
damped nonlinear oscillator, where an important nonlinearity is a strong coupling between
the light intensity and the output frequency. Furthermore, due to the high efficiency of the
semiconductor material, the reflectivity of the mirrors of semiconductor lasers is very low (only
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about 30%). Therefore, this type of laser is very susceptible to external influences: external
light can enter easily and disturb the delicate balance inside the laser; see, for example, [21, 23]
as entry points to the extensive literature on semiconductor laser dynamics.

From a dynamical systems point of view, semiconductor laser systems are very attractive
because they show an intriguing variety of complicated dynamics. Furthermore, it is known
that their description, by relatively simple mathematical models, is in very good agreement
with experimental measurements [7, 17, 34].

In applications it is impossible to completely isolate a laser from external light. Therefore,
one has to find ways to minimize or control the effects of external optical perturbations.
Furthermore, one often wants to control the output characteristics of the laser, for example,
to ensure constant intensity output at a desired frequency [20]. On the other hand, there is
the possibility of making use of chaotic dynamics of semiconductor lasers, for example, as a
chaotic carrier wave for secure communication or to produce highly efficient incoherent light
sources.

Different schemes have been proposed for controlling the dynamics of semiconductor lasers,
including optical injection of light from a second laser [34] and different types of optical feed-
back [21]. The simplest optical feedback scheme is conventional optical feedback (COF), where
the laser receives feedback from a normal mirror. However, other types of feedback are also
possible, including optical feedback from two different mirrors [30], incoherent feedback [8],
phase-conjugate feedback (PCF) [1, 11], and optoelectronic feedback [27].

In this paper we consider a semiconductor laser subject to filtered optical feedback (FOF),
where the reflected light is spectrally filtered before it reenters the laser. This coherent optical
feedback system, which is known as the FOF laser, has recently been the subject of a number
of experimental and theoretical studies [5, 6, 9, 10, 12, 18, 19, 29, 33, 36, 37]. As in any optical
feedback system, important parameters are the delay time and the feedback rate. Moreover,
for coherent feedback, there is also a feedback phase that controls the phase of the incident
light. The interest in the FOF laser is due to the fact that filtering of the reflected light allows
additional control over the behavior of the laser by means of choosing the filter detuning (the
difference between the central filter frequency and the free-running laser frequency) and the
filter width.

A particular motivation for the bifurcation analysis performed here was the discovery by
Fischer et al. [10] of a new type of oscillations. These, the so-called frequency oscillations
(FOs), are characterized by oscillations of the optical frequency of the laser while its intensity
remains practically constant. Mathematically, this means that the dynamics of the laser takes
place in a very small neighborhood of a cylinder in phase space. The existence of FOs is
remarkable for several reasons. First, pure FOs are “unusual” for semiconductor lasers due to
the strong amplitude-phase coupling in these lasers. Second, the period of the FOs is on the
order of the delay time of the FOF system, while one would normally expect the undamping of
the characteristic relaxation oscillations (ROs) to be the first instability to be encountered in
semiconductor lasers. Note that ROs are a well-known feature of laser dynamics. Specifically,
they are a periodic exchange of energy between the optical field (the number of photons)
and the population inversion (the number of electron-hole pairs) of the laser. They have a
characteristic frequency that depends on the laser and its operating conditions and is on the
order of GHz [35].
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Figure 1. FOF laser set-up with a Fabry–Pérot filter in a loop with optical isolators (ISO).

We present here a detailed bifurcation study, where we identify the stability regions of
the basic solutions of the FOF laser, the external filtered modes (EFMs), and the different
types of bifurcating oscillations, ROs and FOs. Laser systems involving optical feedback,
such as the FOF laser considered here, are quite challenging to analyze because they need
to be modeled by delay differential equations (DDEs), which feature an infinite-dimensional
phase space. In this work we use numerical continuation software for DDEs, namely the
packages DDE-BIFTOOL [4] and PDDE-CONT [32], to find and follow EFMs and periodic
orbits (corresponding to FOs and ROs) and to determine their stability and bifurcations. We
present this information in the plane of feedback strength versus feedback phase, for different
values of the filter detuning. This amounts to a study of a physically relevant part of a
three-dimensional parameter space.

We finish this introduction with a brief review of the literature on the FOF laser. Exper-
imental studies in comparison with results from numerical integration of the governing rate
equations can be found in [9, 36, 37]. As was mentioned, FOs were first found in an exper-
iment reported in [10]. A characterization of the FOs in comparison with a measurement is
presented in our short paper [6], which also contains a single stability diagram. (Here we go
much further and study how the bifurcation diagrams depend on the filter detuning, which is
shown to have a large influence on the stability regions of EFMs, ROs, and FOs.) The connec-
tion between FOF and optical injection is the subject of [5, 18], while [19] considers different
limits of the FOF laser equations. A reduced model for weak FOF is derived, analyzed, and
compared with the full model in [29], and Hopf bifurcation curves giving rise to ROs and FOs
are identified. All of these papers consider the case of a filter with a single maximum in its
reflectivity (as a function of the frequency). A filter with a minimum at its center frequency
is the subject of [33], where continuous wave solutions and bifurcating periodic orbits are
determined in a rate equation model.

This paper is organized as follows. In section 2 we present details of the FOF laser and,
in particular, the governing DDE model. Section 3 presents the stability of the EFMs, which
includes a detailed analysis of how the stability region splits into two parts when the filter is
detuned. In section 4 we characterize ROs and FOs and determine their stability regions in
the plane of feedback strength versus feedback for different values of the detuning. Finally,
we summarize and point to future work in section 6.

2. The FOF laser system. There are a number of ways to set up a frequency selective
element in optics [16], including Michealson interferometers, optical gratings, or Fabry–Pérot
cavities. Figure 1 shows a looped set-up that has been used in experiments [9]. A fraction of
the laser’s emission travels through a Fabry–Pérot filter before the light is fed back into the
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laser. Optical isolators ensure that there are no unwanted reflections.
The FOF laser can be modeled by rate equations for the complex-valued optical field E of

the laser, the real-valued population inversion N of the laser, and the complex-valued optical
field F of the filter. In dimensionless form these equations can be written as

dE

dt
= (1 + iα)N(t)E(t) + κF (t),(2.1)

T
dN

dt
= P −N(t) − (1 + 2N(t))|E(t)|2,(2.2)

dF

dt
= ΛE(t− τ)e−iCp + (iΔ − Λ)F (t).(2.3)

Here the material properties of the laser are given by the linewidth enhancement factor α and
the electron life-time T , while P is the pump rate.

The laser is coupled to the filter in (2.1) via the coupling term κF (t), where κ is the
feedback rate. Equation (2.3) for the complex envelope F of the filter field is derived by
assuming a single Lorentzian approximation for the Fabry–Pérot filter; see, for example, [12,
28] for details. Here τ is the delay time that arises from the finite propagation time of the
light in the external feedback loop. The feedback phase Cp in (2.3) measures the exact phase
relationship between the laser and the filter fields, whereas Δ is the detuning between the
filter center frequency ΩF and the solitary frequency Ω0 of the laser, that is,

Cp = Ω0τ, Δ = ΩF − Ω0.(2.4)

Finally, the parameter Λ is the filter width (half-width at half-maximum).
The parameters κ and Cp are our main bifurcation parameters; that is, we consider the

bifurcation diagram in the (κ,Cp)-plane. Furthermore, we study how the bifurcation diagram
changes with the filter detuning Δ. Throughout this paper, we fix the other parameters at
physically realistic values. First of all, we consider α = 5.0 and T = 100, which are very typical
values for describing the material properties of the laser. Furthermore, we set P = 3.5, which
means that the laser is pumped well above threshold where it is quite robust; by contrast, a
laser pumped close to its laser threshold is very sensitive to even small changes of the pump
rate. We fix the delay time at τ = 500, so that there are a moderate number of external
filtered modes. Finally, we fix the filter width at Λ = 0.007, which is well within the range
where frequency oscillations can be found; see also the discussion in section 6.

Mathematically, (2.1)–(2.3) are a system of DDEs with a single fixed delay τ . As such,
they have as phase-space the infinite-dimensional space of continuous functions over the delay
interval [−τ, 0] with values in (five-dimensional) (E,N, F )-space. This infinite-dimensionality
of the system makes its analysis quite challenging. Nevertheless, stability and bifurcation
theory for DDEs with fixed delays is well developed [2, 15]. Furthermore, numerical bifurcation
tools are now becoming available that allow one to find and follow equilibria and periodic
solutions and some of their bifurcations; see the review [22].

As is common for optical feedback systems (with the exception of phase conjugation) [25],
(2.1)–(2.3) have an S1-symmetry, given by any rotation of both E and F :

(E,N, F ) → (Eeib, N, Feib).(2.5)
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In other words, solutions are not isolated, which must be taken into account in the numerical
continuation; see [14, 22]. Furthermore, there is the trivial 2π-translational symmetry

(E,N, F,Cp) → (E,N, F,Cp + 2π)(2.6)

in the feedback phase Cp. We already remark that it is convenient to represent bifurcation
diagrams on the covering space R of Cp, that is, over several 2π-intervals.

3. External filtered modes. The external filtered modes are the basic solutions of (2.1)–
(2.3) that correspond to a constant-intensity output of the laser. They are conceptually the
same as the external cavity modes of the COF laser [12, 31]. Mathematically, the EFMs are
group orbits of the S1-symmetry (2.5) of the form

(E(t), N(t), F (t)) = (Ese
iωst, Ns, Fse

iωst+iφ).(3.1)

Here ωs is a fixed frequency, Es ≥ 0 and Fs ≥ 0 are fixed (real) values of the field amplitude
of the laser field and the filtered field, Ns is a fixed level of inversion, and φ is a fixed phase
shift between the laser field and the filtered field. In other words, the system outputs light
with frequency ωs and constant intensity Is = E2

s .
An analytical study of the EFMs and their dependence on the filter detuning Δ and filter

width Λ has been performed in [12]. Depending on the values of these parameters, the ECMs lie
on one or two closed curves in the (ωs, Ns)-projection, which are known as EFM-components.
The number of EFM-components can be derived from a fourth-degree polynomial. We remark
that stability properties of EFMs were not considered in [12].

In this paper we perform a bifurcation analysis of EFMs; determine how their stability
depends on parameters; find stability boundaries, in particular, Hopf bifurcations; and study
the stability of bifurcating periodic orbits. To this end, we use numerical continuation, namely
the software package DDE-BIFTOOL [4], to analyze the full DDE (2.1)–(2.3). Some stability
curves of periodic orbits are computed with the package PDDE-CONT [32].

Figure 2(a) shows EFMs on a single EFM-component in the (ωs, Ns)-projection (for
Cp = π). This projection is popular in the laser physics literature, even though neither ωs nor
Ns is a parameter of the system. As Cp is decreased, the EFMs trace out the closed curve—the
EFM-component—as is indicated by the arrows. The EFM-component has a “bulge” around
the center frequency of the filter, which is detuned slightly in the negative direction with re-
spect to the solitary laser frequency. EFMs are born in pairs in saddle-node (+) bifurcations
in the low-inversion region, move along the EFM-component, and then disappear in a second
saddle-node bifurcation in the high-inversion region. When Cp is decreased by 2π, each EFM
has moved to the position of its right neighbor, and the initial picture is recovered; see also
the accompanying animation (65665 01.gif [233KB]).

Figure 2 also shows the relevant stability information of the EFMs. First of all, EFMs
are stable along the green parts and unstable along the red parts of the EFM-component
in Figure 2(a). The two stability regions are bounded by Hopf bifurcations (∗), which may
lead either to stable relaxation oscillations or frequency oscillations, as will be discussed in
section 4. However, there are additional Hopf bifurcations of already unstable EFMs. They
are plotted in Figure 2(b) where the EFM-component is shown in terms of its two constituent
branches (red and blue curves) that meet at the two saddle-node bifurcations.

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/65665_01.gif
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Figure 2. EFM-component and real parts of the corresponding twelve largest eigenvalues for a small negative
detuning of Δ = −0.007. Panel (a) shows the EFM-component with two green regions of stable EFMs, which
are bounded by Hopf bifurcations (∗). The circles (◦) are individual EFMs for Cp = π. The EFMs trace out
the EFM-component as Cp is decreased, which is indicated by the arrows; see also the accompanying animation
(65665 01.gif [233KB]). Panel (b) shows the same EFM-component split up into a red branch and a blue branch
that meet at saddle-node bifurcations (+); also shown are all Hopf bifurcations (∗) (including those of unstable
EFMs). Panels (c) and (d) show the real parts of the twelve largest eigenvalues of the EFMs along the two
branches; the stable regions are highlighted by the green shading, and the Hopf bifurcations appear as crossings
of the zero axis.

We now give an impression of how the stability information that is encoded in the bifur-
cation diagrams in this paper is generated. Recall that an equilibrium of a DDE with a finite
number of fixed delays has an infinite but discrete spectrum. What is more, there are only
finitely many eigenvalues that have a real part larger than a given fixed real number, while the
limiting behavior of the infinitely many eigenvalues with negative real part is also known; see,
for example, [2, 15, 22] for details. DDE-BIFTOOL computes accurately all eigenvalues of
the dominant part of the spectrum (with real part above a user-specified value) by combining
a heuristic scheme with Newton corrections [4]. In the specific case of the EFM-component
in Figure 2, panels (c) and (d) show the real parts of the twelve largest eigenvalues of the
EFMs along the red and the blue branch of the EFM-component. (Since there are many pairs
of complex conjugate eigenvalues there are fewer than twelve curves.) Notice that all EFMs
along the red branch are unstable due to the single (real) positive eigenvalue that emerges
from the saddle-node bifurcations. As the enlargement in Figure 2(d) shows, the regions of
stability on the blue branch can indeed be identified by the fact that all blue curves of eigen-

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/65665_01.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/65665_01.gif
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values are below the zero axis. The points where curves cross the zero axis are exactly the
Hopf bifurcations in panel (b).

We finally remark that each EFM has a zero eigenvalue, which is due to the S1-symmetry
(2.5) of the system; see also [14, 22]. This trivial eigenvalue is computed by DDE-BIFTOOL
as part of the spectrum. In fact, the accuracy of the stability information can be checked by
monitoring the error of the trivial eigenvalue zero. In the continuation the number of calculated
eigenvalues is influenced by the user who sets the boundary for the real part. Throughout the
paper, we calculate all eigenvalues of EFMs with a real part above −0.1 (compare the scale
of Figure 2(d)). These are many more than the twelve that are shown, but their real parts
remain negative throughout the EFM component.

Figure 2(a) already indicates that there are values of Cp for which more than one EFM is
stable. To bring out this point better, Figure 3 shows the EFMs in the (κ,Ns)-projection for
six different values of the feedback phase Cp. In other words, we now plot actual branches of
EFMs as a function of the parameter κ. For small feedback rates close to zero, only one EFM
exists, which is actually (the continuation of) the stable solitary laser mode. As κ is increased,
new EFMs are born in pairs in saddle-node bifurcations. One of these EFMs may be stable
(green parts of the curve). As the feedback rate κ is increased further, stable EFMs destabilize
in Hopf bifurcations. The different panels of Figure 3 show the EFM structure for six different
values of Cp over one cycle of 2π. As a function of Cp the branches of EFMs move until the
same situation is regained after Cp has been changed over 2π. During this cyclic process, the
saddle-node bifurcations trace out the light blue curve, and the Hopf bifurcations the light
red curves, respectively; see also the accompanying animation (65665 02.gif [304KB]). Note
that tracing out all EFM branches over an interval of 2π in Cp is equivalent to tracing out a
single EFM branch over several intervals of 2π in the covering space.

3.1. Stability regions of the external filtered modes. The stability information of EFMs
for Δ = −0.007 is presented in Figure 4 as a two-parameter bifurcation diagram in the (κ,Cp)-
plane. In panel (a) the bifurcation diagram is shown in the covering space of Cp over several
cycles of 2π. The green region is the stability region of EFMs, where all eigenvalues have neg-
ative real part. Its boundary is formed by saddle-node bifurcations (blue curves) and by Hopf
bifurcations (red curves), where a real eigenvalue or a complex pair of eigenvalues, respec-
tively, cross the imaginary axis. At codimension-two Bogdanov–Takens (BT) and saddle-node
Hopf (SH) bifurcation points the nature of the stability boundary changes from saddle-node
to Hopf bifurcation. At the BT point, characterized by a double zero eigenvalue of the EFM,
the Hopf curve ends and the frequency of the associated periodic orbit goes to zero. On the
other hand, at the SH point, characterized by a real zero eigenvalue and a pair of purely
imaginary complex conjugate eigenvalues of the EFM, the saddle-node and Hopf curves are
tangent and change from supercritical to subcritical; the frequency of the associated periodic
orbits is finite. We refer to [13, 26] for background reading on bifurcation theory. The stability
boundary is formed to the right by a total of four different Hopf bifurcation curves, which
intersect at double-Hopf bifurcation points. A Hopf bifurcation curve that does not bound
the stability region corresponds to a pair of purely imaginary complex conjugate eigenvalues
of an already unstable EFM.

The bifurcation diagram shown in Figure 4(a) is only one of infinitely many copies under
the 2π-translation symmetry of Cp. To reveal the considerable degree of multistability of

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/65665_02.gif
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Figure 3. The EFMs in the (κ,Ns)-projection for six different values of Cp, as indicated in the panels, and
for a small negative detuning of Δ = −0.007; same conventions for stability and bifurcations as in Figure 2.
In addition, curves of saddle-node bifurcations (light blue) and Hopf bifurcations (light red) are plotted. As
Cp is changed each bifurcation follows its respective curve; see also the accompanying animation (65665 02.gif
[304KB]).

EFMs that was already apparent from Figure 3, we show in Figure 4(b) the stability regions
of all EFMs over a fundamental 2π-interval of Cp. (Note that the top and bottom of panel (b)
can be glued together to obtain a bifurcation diagram on the half-cylinder S1 × R

+.) While
panel (b) clearly shows the multistability of the system, a representation of the bifurcation
diagram in the covering space as in panel (a) is more convenient for distinguishing bifurcation
curves that make up the stability boundary.

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/65665_02.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/65665_02.gif
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3.2. Dependence of EFM stability on the detuning. We now consider what effect the
influence of the detuning Δ has on the stability of the EFMs. We start with the one-parameter
bifurcation diagram in Figure 5, where the Ns- and ωs-values of the EFMs are shown as
functions of Δ for fixed κ = 0.02. The EFM originating from the solitary laser solution exists
for all values of Δ and forms a single branch. For large positive and negative detunings (when
there is effectively no feedback any more) it approaches Ns = 0 and ωs = 0, respectively.
Around zero detuning additional EFMs exist on isolas (closed curves) that are bounded by
saddle-node bifurcations. For each fixed Δ there are finitely many EFMs that lie either on a
single EFM component (as in Figure 2) or on two separate EFM-components; cf. [12].
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in Figure 4.

We now discuss global aspects that a change of the detuning Δ has on EFM stability
regions. Representative bifurcation diagrams in the (κ,Cp) are shown in Figures 6 and 7;
see also the accompanying animation (65665 03.gif [617KB]). Specific details of transitions
through codimension-three points are discussed in section 3.3.

Figure 6 shows bifurcation diagrams in the (κ,Cp)-plane for six different values of positive
detuning from Δ = 0 to Δ = 0.0735. In the individual panels only those Hopf bifurcation
curves are shown that form part of the EFM stability boundary and those that become

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/65665_03.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/65665_03.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/65665_03.gif
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Figure 7. Two-parameter bifurcation diagram in the (κ,Cp)-plane for decreasing detuning Δ, as indicated
in the panels; see also the accompanying animation (65665 03.gif [617KB]). Curves and regions are colored as
in Figure 4.

relevant as the detuning changes. For Δ = 0 in panel (a) the EFM stability region is almost
symmetrical, which indicates only a weak influence (on the EFM structure) of the phase-
amplitude coupling. Note that the boundary changes from a saddle-node bifurcation curve
to a Hopf bifurcation curve at two saddle-node Hopf points. With increasing Δ the overall
shape of the stability region changes and becomes less symmetrical. Already for Δ = 0.007
in panel (b) the Hopf curve forming the lower boundary of the EFM stability region ends in
a BT point, as was discussed above. The nature of this change from an SH to a BT point is

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/65665_03.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/65665_03.gif
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discussed in more detail in section 3.3.
Increasing Δ, the stability region deforms further until, at Δ ≈ 0.021, it splits into two

parts; see Figure 6(c). This transition is due to a transition through a codimension-three
degenerate SH bifurcation, as is discussed in more detail in section 3.3. For even higher values
of Δ the EFM stability region consists of two parts; see panels (d)–(f). It is known that
there is a boundary curve in the (Λ,Δ)-plane, inside of which one finds two distinct EFM-
components; this curve scales linearly with the feedback rate κ [12]. The two separate EFM
stability regions have different physical meaning: one corresponds to operation of the laser
around its solitary frequency, and the other to operation around the filter frequency. Note
that, irrespective of their stability, EFMs exist in the whole area bounded by the saddle-node
curves.

However, for small κ stable EFMs are only possible around the solitary laser frequency
(around Cp = −2π). For higher values of κ EFMs around the center frequency of the filter
may also be stable. These form an “island” of stable EFMs. Further increasing Δ separates
the two stability regions. Specifically, the island of EFMs located around the center frequency
of the filter moves down in the (κ,Cp)-plane and simultaneously becomes smaller in size; see
panels (d)–(f). Physically, the filter center is on the blue side of the laser; that is, it has a
higher frequency than the laser. However, feedback causes a red-shift of the instantaneous
laser frequency. Eventually, when Δ is too large the laser is unable to support EFMs located
around the center frequency of the filter. Mathematically, this means that the island actually
shrinks down to a point and disappears. On the other hand, the stability region around the
solitary laser frequency extends with increasing Δ to higher feedback rates κ, because the
system now operates at the tail of the filter where the effective feedback rate is smaller. As a
consequence, instabilities, such as the Hopf bifurcations bounding the stability region to the
right, arise only for quite high levels of feedback κ.

We find a similar global transition in Figure 7, where we decrease the detuning Δ from
zero. In the individual panels of Figure 7 the detuning has the same modulus as in the
respective panels of Figure 6 (only the sign has changed). This allows one to study the
difference between positive and negative detuning. The effect of decreasing the detuning is
qualitatively the same. In particular, the EFM region splits into two separate regions where
the “island” located around the center frequency of the filter is now at the top of the figure.
Furthermore, the region of stable EFMs centered around the solitary laser frequency extends
to higher values of κ with decreasing Δ. However, there are quite significant quantitative
differences between Figures 6 and 7. In particular, the separate island of stable EFMs around
the center frequency of the filter is notably larger for negative detunings. This is due to the
filter being on the red side of the laser. In combination with the red-shift of the solitary laser
frequency caused by the feedback, this leads to a large region of stability of these EFMs.

3.3. Transitions through codimension-three bifurcations. The boundary of the stable
EFM regions is formed by either saddle-node bifurcation curves or by Hopf bifurcation curves.
The switch-over points from one type of boundary to the other are codimension-two bifurcation
points, namely either a BT bifurcation or an SH point. As was already mentioned in the
previous section, we find that the BT point appears as the “switch-over” point only for
sufficiently large Δ. The transition from an SH point to a BT switch-over point involves
codimension-three bifurcations, as is shown in Figure 8. Panel (a) shows a situation as in
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Figure 8. Enlarged views of bifurcation diagrams in the (κ,Cp)-plane near the creation of two BT points.
The insets of each panel show the frequency of the periodic orbits along branches of Hopf bifurcations, which go
to zero at the BT points.

Figure 6(a), where the switch-over from saddle-node to Hopf bifurcation is due to an SH
point. Notice a second Hopf bifurcation curve that passes close to the saddle-node curve.
The inset shows the frequency of the periodic orbit along this curve. As Δ is increased, the
second Hopf curve becomes tangent to the saddle-node curve at a degenerate BT point [3],
after which it splits up and ends at two newly created BT points. That these points are
indeed BT points is evidenced by the inset, which shows that the frequency of the respective
periodic orbits goes to zero at the BT points, as is demanded by theory. As Δ is increased
further, one BT point moves to the right and out of the region of consideration, while the other
BT point moves to the left. The latter eventually passes through the SH point at another
codimension-three bifurcation, namely a Bogdanov–Takens–Hopf bifurcation, where there is
a semisimple double eigenvalue and a pair of complex eigenvalues with zero real part. To our
knowledge, this bifurcation with a center manifold of dimension four has not been described
in the literature. In the present situation the BT point “moves through” the SH point, so
that it forms the switch-over point from now on; see Figure 6(c).

The second transition involving codimension-three bifurcations that we discuss here in
detail concerns the mechanism in which the single region of EFM stability splits up into two
separate regions. Enlarged views near this splitting are shown in Figure 9. In panel (a) there is
still a narrow channel connecting the two parts of the EFM stability region. As Δ is increased,
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curves involved in a singularity transition.

a saddle-node curve and a Hopf curve become tangent at a degenerate SH point DSH [24];
see panel (b). When Δ is increased further, two codimension-two SH points are created, each
of which is now a switch-over point; see panel (c). This creates two separate EFM stability
regions, one around the solitary laser frequency and one around the center frequency of the
filter. Physically this corresponds to a level of detuning that is so large that the system cannot
support “mixed” EFMs with frequencies in between the solitary laser frequency and the center
frequency of the filter any longer.
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When Δ is increased even further, we find a transition through a saddle in the surface of
Hopf bifurcations in (κ,Cp,Δ)-space. This manifests itself as a change in how four branches
of Hopf bifurcations connect; see the transition shown in Figure 9(d) and (e). Specifically,
two Hopf curves approach each other, connect in a different way, and then separate again. As
a result, the two SH points now lie on two different (unconnected) Hopf bifurcation curves.
This “completes” the splitting of the EFM stability islands that was discussed in the previous
section.

4. Different types of oscillations. In laser systems with delayed feedback one can identity
different characteristic time scales. From the physical point of view, one expects these time
scales to show up as frequency components in the dynamics. In the FOF laser at least two
time scales can be identified, one related to the solitary laser and a second related to the delay
time.

A typical type of oscillation that one expects in any laser system are the ROs—a periodic
exchange of energy between the optical field and the population inversion. In a solitary laser
they are damped but can be excited by a perturbation, after which the laser relaxes down
to constant output; hence, the name relaxation oscillation. ROs are fast oscillations. In the
solitary laser their frequency is given by ωRO =

√
2P/T , where P is the pump rate and T the

photon life-time.
Since we are dealing with a laser with delayed optical feedback, one also expects to find

oscillations with a frequency of ωFO ≈ 2π/τ . Recall that τ is the delay time, that is, the time
it takes for one external roundtrip of the light. This type of external roundtrip oscillation
has been found experimentally in the FOF laser [10]. Surprisingly, they have the feature
that oscillations occur only in the laser frequency, while the laser intensity remains practically
constant. FOs are “untypical” for semiconductor lasers, which are characterized by a strong
coupling between amplitude and phase of the electric field (as expressed by large values of
the parameter α, typically well above 1). In other words, one would expect any FO to be
accompanied by intensity oscillations of a similar amplitude.

In this section we perform a detailed bifurcation analysis of the periodic orbits that are
born when the EFMs become unstable in Hopf bifurcations. Similar to the case for EFMs,
the Floquet spectrum of a periodic orbit of a DDE with a finite number of fixed delays is
discrete, with zero as its only accumulation point [2, 15, 22]. DDE-BIFTOOL uses this fact
and accurately calculates the finitely many Floquet multipliers that are larger than a user-
specified value. This allows us to study which type of oscillations, ROs and FOs, appear
and where they are stable. In particular, we are able to show that FOs are stable in large,
experimentally accessible regions of the (κ,Cp)-plane. In fact, they are the dominant type of
oscillations for moderate levels of detuning Δ.

Figure 10(a) shows the bifurcation diagram in the (κ,Cp)-plane for Δ = 0. As expected,
the Hopf bifurcations bounding the EFM stability region give rise to oscillations, which are
stable in the colored regions, where all of their Floquet multipliers lie within the unit circle
of the complex plane. There is a region (orange) of stable ROs, which can be accessed simply
by following the solitary laser solution (around Cp = 0) towards higher levels of feedback
strength κ. The region of stable ROs is bounded to the right by torus bifurcation curves,
where DDE-BIFTOOL detects a complex conjugate pair of Floquet multiplier on the unit
circle. Furthermore, there are two regions (cyan and purple) of stable FOs in Figure 10(a).
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Figure 10. Bifurcation diagram and examples of time series for Δ = 0. Panel (a) shows the two-parameter
bifurcation diagram in the (κ,Cp)-plane with different stability regions, namely, of EFMs (green), of ROs
(orange), and of FOs (cyan and purple); boundaries are formed by saddle-node (S), Hopf (H), saddle-node of
limit cycles (SL), and torus (T) bifurcations; shown also are 1:1-resonance and degenerate Hopf (DH) points.
The black dots labeled (b), (c), and (d) indicate the parameter values of the time series in panels (b)–(d),
which show the laser intensity IL, the laser frequency ωL (in units of 109), the filter intensity IF , and the filter
frequency ωF (in units of 109). Case (b) shows ROs, and (c) and (d) show two examples of FOs.

We note that the two regions of FOs are almost mirror images of each other under reflection
around the central frequency of the filter. This indicates that the amplitude-phase coupling
(the parameter α) has only a small influence; see also [29]. However, note that the stability
region of ROs is actually quite asymmetrical in Figure 10(a). Another important feature is
that stable FOs occur for much lower levels of κ than ROs. The FO stability regions are
bounded to the right by a torus bifurcation curve, or by a curve of saddle-node of limit cycle
bifurcations. The latter is detected by DDE-BIFTOOL as a real Floquet multiplier crossing
the unit circle at 1. The torus curves T emerge from double Hopf points and meet the SL
curves at 1:1 resonance points.

The stability regions of the different oscillations in Figure 10(a) have been determined
by computing many one-parameter cross sections for fixed Cp and continuing with DDE-
BIFTOOL the respective periodic solutions and their Floquet multipliers in κ; see also sec-
tion 5. In fact, the horizontal colored lines in Figure 10 are actual branches of stable periodic
orbits. The codimension-one bifurcation curves of periodic orbits, T and SL, were found
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as bifurcation points on the one-parameter branches and continued directly with PDDE-
CONT [32].

Figure 10 also shows examples of oscillations in the three different stability regions. In each
case we show time series of the laser intensity IL, the laser frequency ωL, the filter intensity IF ,
and the filter frequency ωF . Panel (b) shows a typical example of ROs, where both the laser
intensity IL and the laser frequency ωL oscillate. For the (typical) laser parameters considered
here the ROs have a frequency of 4.21 GHz. Note that ROs hardly show any dynamics of the
filter—it remains more or less passive.

Figure 10 (c) and (d) are examples of FOs, which are clearly external roundtrip oscillations
with a frequency on the order of 1/τ ; that is, they are much slower than ROs (note the different
scale on the time axis). Furthermore, the laser intensity is almost constant for FOs (certainly
compared to ROs). However, we find dynamics in the filter field—in both the filter intensity
IF and the filter frequency ωF . In other words, the filter effectively compensates for the
intensity dynamics that one would normally expect in a semiconductor laser. The difference
between the FOs shown in Figure 10(c) and (d) is in the phase relationship between the laser
frequency ωL and the feedback intensity IF . For the FOs shown in panel (c), from the upper
(purple) FO stability region of panel (a), ωL and IF are almost in phase. This is in accordance
with the fact that they oscillate around the left flank of the filter, where an increase of the
frequency ωL results in increased transmission of the intensity IF . For the FOs shown in
panel (d), from the lower (cyan) FO region of Figure 10(a), on the other hand, ωL and IF are
almost in antiphase. This time the oscillations are around the right flank of the filter, so that
IF decreases as ωL increases.

4.1. Dependence of RO and FO stability on the detuning. The strong influence of the
detuning Δ on the EFM stability regions that was discussed in section 3.2 is mirrored by a
strong influence on the stability regions of ROs and FOs.

Figure 11 shows the bifurcation diagram in the (κ,Cp)-plane for three positive values
of Δ. As the detuning is increased, the RO stability region (orange) becomes smaller and
moves towards lower values of Cp, but overall does not change very much. Notice that ROs
appear only when EFMs that are located around the central frequency of the filter become
unstable. The influence on the FO stability regions of changing Δ is much more dramatic. The
lower (cyan) FO stability region decreases significantly in size and then disappears entirely;
see Figure 11(b) and (c). On the other hand, the upper (purple) FO stability region grows
substantially in size; see panel (b). For larger values of Δ this FO stability region occupies a
substantial area between the two separate EFM stability regions; see panel (c). It is bounded
in the “EFM stability gap” by a curve SL of saddle-node bifurcations of limit cycles on the
left. Its right boundary also becomes much more complicated. For sufficiently large Δ we
find that FOs may become unstable in period-doubling bifurcations, so that we find regions
of stable period-doubled FOs.

Throughout the whole region the approximate in-phase relationship between ωL and IF
is preserved. This is because the stable FO region never extends to the other side of the
filter flank. However, in Figure 11(b), new oscillations become stable and coexist with the
upper stable FO region. There is a small region around (κ,Cp) = (0.01, 1) where faster FOs
are stable; they feature a period TFO ≈ τ/2. This region becomes larger for even larger
Δ; see Figure 11(c). Initially, for Δ = 0.014 in Figure 11(b), these fast FOs are created in
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Figure 11. Two-parameter bifurcation diagram in the (κ,Cp)-plane for increasing detuning Δ as indicated
in the panels; notation is as in Figure 10 with the addition of period-doubling (P) bifurcations.

supercritical Hopf bifurcations of EFMs. They destabilize in torus bifurcations T as Cp is
decreased and in subcritical period-doubling bifurcations (P) as κ is increased. For larger
detuning, Δ = 0.0315 in Figure 11(c), there are already two regions of fast FOs. The upper
one features a period of TFO ≈ τ/4 and undergoes a torus bifurcation for increasing κ. The
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Figure 12. Two-parameter bifurcation diagram in the (κ,Cp)-plane for decreasing detuning Δ as indicated
in the panels; notation is as in Figure 10 with the addition of period-doubling (P) bifurcations.

lower one features a period of TFO ≈ τ/2, undergoes a subcritical period-doubling bifurcation
and connects to the large FO region. This will be discussed in more detail in section 5.

Figure 12 shows the bifurcation diagram in the (κ,Cp)-plane for three different values of
negative detuning. Again we find a large region of stable ROs around the filter center. Similar
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to Figure 11(a), there are still two regions of stable FOs; in the upper (purple) region there is
an in-phase relationship between ωL and IF (left flank of the filter profile), while in the lower
(cyan) region there is an antiphase relationship between ωL and IF (right flank of the filter).
However, when Δ is decreased, the (purple) region of stable in-phase FOs increases in size,
whereas the (cyan) region of stable antiphase FOs becomes smaller and then disappears; see
Figure 12(b) and (c). As a result, the regions of stable antiphase FOs extend over a large area
in the (κ,Cp)-plane, between the regions of stable EFMs. As is the case for positive Δ, this
large FO stability region is characterized by the appearance of period-doubled solutions. In
terms of the EFM and FO stability regions, the panels of Figure 12 for negative Δ are almost
reflected images of those in Figure 11 positive Δ. This again highlights the weak influence of
the amplitude-phase coupling parameter α on these dynamics.

5. Beyond stable frequency oscillations. Evidence of possible period-doublings of FOs
has been found experimentally [6], and our bifurcation analysis shows that regions of stable
period-doubled FOs do exist for sufficiently large detuning Δ. We now consider this transition
of FOs in more detail. Figure 13(a1) shows a one-parameter bifurcation diagram, where we
plot branches of EFMs and FOs as functions of κ for fixed (Δ, Cp) = (0.0315,−2.26π). Figure
13(a2) is an enlarged view around a period-doubling cascade of FOs. The appearance of
stable period-doubled FOs is actually not so straightforward. A stable EFM undergoes a Hopf
bifurcation H, from which a branch of FOs emerges with a period of around τ/2. The branch
of periodic orbits then undergoes a subcritical period-doubling bifurcation P. (Note that,
after further bifurcations, this branch connects to a second Hopf bifurcation on a different
EFM branch.) The initially unstable period-doubled periodic orbit stabilizes in a saddle-
node of limit cycle bifurcation SL. The period of these stable FOs is now approximately τ ,
and this part of the branch lies in the (purple) FO stability region in Figure 11(c). This
branch destabilizes in another period-doubling bifurcation P, which is the first in a cascade
of supercritical period-doublings.

Figure 13(b1)–(b4) shows time series and Figure 13(b5) the corresponding trajectory in
the (IL, N)-plane for the point on the main stable FO branch; labeled (b) in panel (a2). As
is typical for FOs, the laser intensity IL is almost constant. Note the small scale of the x-axis
in Figure 13(b5). The inversion N of the laser is directly related to the laser frequency ωL.
Figures 13(c1)–(c4) are time series, and Figure 13(c5) is a trajectory in the (IL, N)-plane for
a point on the stable period-doubled FO branch; labeled (c) in panel (a2). The time series
looks quite similar to those in Figure 13(b) and, in particular, the intensity IL is still virtually
constant. However, as is most prominent in the frequency dynamics of the laser, it can be seen
that any two consecutive dips of ωL are no longer identical. Indeed the period of oscillations
is now about twice what it was before in panels (b). Also the phase portrait in Figure 13(c5)
shows that the periodic orbit has period-doubled.

We now discuss another way in which FOs can become unstable. This is related to the
question of whether it is possible to have a “mixing” of features of FOs and of ROs. One
would expect to find such mixed types of oscillation near the double-Hopf points, that is,
where the boundaries of the stability regions of FOs and ROs come together. Figure 14
shows an example of a stable FO (an external roundtrip oscillation of period about τ) that
shows small oscillations with the typical and much faster RO frequency. Panel (a) is a one-
parameter bifurcation diagram, where we plot branches of EFMs and FOs as a function
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Figure 13. Panel (a1) shows a one-parameter bifurcation diagram in the parameter κ for fixed (Δ, Cp) =
(0.0315,−2.26π). As is clear from the enlargement in panel (a2), there is a region of stable period-doubled FOs
after the first period-doubling bifurcations (P) of a period-doubling cascade. Labels (b) and (c) indicate points
on the FO branch for which time series and phase portraits are shown in panels (b) and (c).

of κ for fixed (Δ, Cp) = (0.0315,−4π). The inset shows the period of the periodic orbit
along the FO branch. Starting from a Hopf bifurcation H, of an unstable EFM around
(κ, ||N ||) ≈ (0.009, 0.0041), a branch of unstable FO emerges. After undergoing several saddle-
node of limit cycle bifurcations, SL, it eventually becomes stable. The stable part of the FO
branch is almost horizontal until, for a higher feedback rate around κ = 0.0225, the norm
||N || increases dramatically. This is a smooth transition and not a bifurcation, even though it
looks very sudden in this projection. (Note that the FO period does not show such a sudden
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Figure 14. Mixed FO/RO dynamics for (Δ, Cp) = (0.0315,−4π). Panel (a) shows a one-parameter
bifurcation diagram in the parameter κ. The inset shows the period TFO along the branch of FOs, which are
stable between a saddle-node of limit cycle (SL) and a torus (T) bifurcation. Panel (b) shows time series of
the stable periodic orbit for κ = 0.0226 (black dot in panel (a) near the end of the FO stability region). Along
the blue part there is a build-up and along the red part a decay of fast oscillations, and the black part is a
global excursion; for comparison an unstable RO (that appears for slightly higher κ) is shown as the gray time
series in panels (b). Panel (c) shows the trajectory in the (F,N)-space and its projection on the F -plane; the
dashed line in panel (c) indicates the unstable EFM. Panel (d) shows the projection on the (IL, N)-plane. The
diamond is the unstable EFM, and the gray circle is the trajectory of the unstable ROs.

change.)

To explain the increase of the norm ||N || we note a Hopf bifurcation on the lower part of
the EFM branch in Figure 14(a), which gives rise to unstable ROs. The corresponding EFM
of saddle type is, therefore, characterized by leading complex conjugate unstable eigenvalues
whose imaginary parts are close to the RO frequency. The idea is that, when it comes near
this EFM, the FO “picks up” the additional RO frequency. Consequently, these oscillations of
increasing amplitude make a substantial and increasing contribution to the norm ||N || along
the FO branch, which leads to its increase.

To illustrate this further, Figure 14(b) shows time series of the FOs for parameter values
identified by the black dot close to the torus bifurcation T in panel (a). Note again that the
power is still almost constant, but additional fast oscillations are clearly seen in the frequency
ωL of the laser. That these are indeed on the scale of the ROs is demonstrated by the gray



LASER WITH FILTERED OPTICAL FEEDBACK 23

.

.

−4 −2 0 2 4
30

60

90

0 2 4
30

60

90

0 2 4
30

60

90

E

[dBm]

(a)

[GHz]

IL

[dBm]

(b)

[GHz]

IF

[dBm]

(c)

[GHz]

Figure 15. Spectra of the time series from Figure 14. Panel (a) shows the spectrum of the laser field E,
panel (b) the spectrum of the laser intensity IL, and panel (c) the spectrum of the feedback intensity IF . Notice
that the relaxation oscillation component of the signal appears in the laser intensity but not in the feedback
intensity.

time series in panels (b). These are for parameter values identified by the black dot on the
RO curve in panel (a). Moreover, the FO time series are split up into blue, red, and black
parts to highlight different sections of the trajectory. During the blue interval a fast oscillation
is building up, which decays again during the red interval. The build-up rate is noticeably
slower than the decay rate. During the black interval the trajectory makes a large excursion
in phase-space.

The FO periodic orbit is shown in Figure 14(c) in the (F,N)-space and in the projection
onto the F -plane, and in Figure 14(d) in the projection onto the (IL, N)-plane. The dotted
circle in panel (c) indicates the position of the unstable EFM. (We remark that we fixed
the phase of the periodic orbit, but still show the entire S1 group orbit of the EFM for
convenience.) Panel (c) shows that the change from build-up to decay of fast oscillations
occurs when the trajectory is closest to the dotted circle representing the saddle EFM. This
can be seen even better in the (IL, N)-projection of Figure 14(d). Now the EFM is indicated
by a diamond, and the orbit of the nearby unstable RO is shown in gray. The arrow indicates
the direction along the periodic orbit.

A possible interpretation of the overall FO dynamics is the following. During the blue
build-up of oscillations the trajectory also comes closer to the saddle EFM. After its closest
approach to the EFM the trajectory leaves again, but with a faster rate. This indicates that
this motion is along certain directions on the stable and unstable manifolds of the EFM that
are characterized by complex conjugate eigenvalues. The frequency of the oscillations remains
practically constant and of the order of the ROs, which is arguably because the EFM is close
to a Hopf bifurcation of an unstable RO. The black part of the trajectory is a large excursion
in phase space that leads to a reinjection into the vicinity of the EFM. It seems that the
FO periodic orbit is close to a heteroclinic connection with the EFM, but such details of the
dynamics are beyond the scope of this paper.

Figure 14 is a clear example of mixed FO/RO dynamics in the FOF laser system. To
make the connection with the possible detection of this type of dynamics in an experiment,
Figure 15 shows the relevant spectra of the dynamics as determined by Fourier transform from
the numerical data. Figure 15(a) shows the optical spectrum of the laser field, which is the
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Fourier transform of the complex-valued electrical field E. The sharp equidistant peaks are
due to the FO frequency of about 161.4 MHz (and its higher harmonics). Peaks are noticeably
enhanced around ±4.2 GHz, which is due to the RO component of the signal.

To distinguish between the actual FO and RO dynamics it is best to consider the spectra
of the laser intensity IL and the filter intensity IF as shown in Figure 15(b) and (c). These
spectra are known as relative intensity noise (RIN) spectra, and they can be obtained ex-
perimentally by recording the light with a fast photo-diode and analyzing the signal with a
spectrum analyzer. Notice that the RIN spectrum of IF contains only the FO frequency and
its harmonics and no RO component. The RIN spectrum of IL, on the other hand, clearly
shows the RO component at about 4 GHz. Notice also that the FO component in the laser
field is weaker than that of the filter field by about 40 dBm. Overall, the example in Figure 15
shows that it should be possible to distinguish the dynamics presented here in terms of its
FO and RO contents by means of recording RIN spectra of the laser intensity and the filter
intensity.

6. Summary and outlook. We have investigated the bifurcation structure of a semicon-
ductor laser with filtered optical feedback (FOF) as a function of three main parameters,
namely the feedback rate κ, the feedback phase Cp, and the detuning Δ between the soli-
tary laser frequency and the center frequency of the filter. The emphasis here was on stable
external filtered modes and bifurcating stable oscillations, which can be either relaxation os-
cillations or frequency oscillations. This stability information was presented in two-parameter
bifurcation diagrams in the (κ,Cp)-plane for different, representative values of Δ. Depending
on the value of Δ, we found a single or two separate large regions of stable EFMs. Similarly,
the detuning has a strong influence of the stability regions of ROs and FOs. Our results show
clearly that the feedback phase Cp is a key parameter in the FOF laser. In other words, both
the magnitude and the phase of the feedback must be considered to reveal a comprehensive
picture of the dynamics.

Our theoretical study produced specific results concerning the two types of oscillations,
which can be checked experimentally. Specifically, we expect that the regions of FOs presented
here are large enough to be detected experimentally. Importantly, FOs can be found already
for quite low values of κ. We demonstrated that even quite complicated dynamics, such as
mixed FO/RO oscillations, show up clearly in the spectra of the laser and filter intensities.
Therefore, we expect that careful sweeps in the feedback strength κ for fixed values of the
feedback phase Cp are a means of detecting the regions of stability in the (κ,Cp)-plane as
reported here. For Δ close to zero we predict two separate regions of stable FOs, namely, in-
phase and antiphase dynamics between laser and filter, which occur at the two opposite flanks
of the filter profile. For larger detunings Δ, on the other hand, there is only a single region
of stable FOs, which is located in between the two separate EFM stability regions. Hence,
determining experimentally the stability of FOs in the (κ,Cp)-plane for different values of Δ is
a means of confirming the predicted dependence on the filter detuning. In fact, the bifurcation
diagrams in Figures 11 and 12 form the basis for ongoing measurements of the FOF laser.

Our results were obtained for physically representative values of the parameters of a semi-
conductor laser with filtered optical feedback. The electron life-time T is effectively a constant
for the class of semiconductor lasers, while the linewidth enhancement factor α may differ (in
about the range [1 . . . 10]) between semiconductor lasers. The results presented here are for
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semiconductor lasers with a moderately large α as used in recent experiments; the exact value
of α ≈ 5 should not play a significant role. Similarly, the pump rate P is not expected to
have much influence as long as it stays well above the laser threshold, and moderate changes
of the delay time τ chiefly change the number of EFMs. More interesting is the dependence
of the FOF laser dynamics on the filter characteristic. We already considered the role of the
filter detuning Δ. The filter width Λ is also important for the existence of FOs, because they
depend on an interaction with the flanks of the filter profile. If the filter is too narrow, then
the flank is too steep for FOs to develop; in fact, in the limit of an Λ → 0 the FOF laser
effectively becomes a laser with optical injection [5, 12, 18]. On the other hand, when the filter
is too wide, then the effect of filtering is lost and the laser acts as a laser with conventional
optical feedback [12, 19]. However, there appears to be quite a range of intermediate values
of Λ where FOs do occur stably, and the fixed value Λ = 0.007 chosen here is representative
in this respect. A study of how the stability regions of FOs are bounded for very small and
very large Λ is a topic of ongoing theoretical and experimental research.

Another immediate question that arises when linking a theoretical bifurcation study with
experiments is that of the influence of noise. The work reported in [36] shows that the FOF
laser system may be very sensitive to noise. However, our study shows that the stability
regions of EFMs and different types of oscillations are actually quite large. Furthermore, we
consider the case of a laser that is pumped well above threshold, in which case the spontaneous
emission noise of the laser is (relatively) small. We therefore expect that the stability regions
reported here are sufficiently robust to noise. This is confirmed by the fact that EFMs, ROs,
and FOs have been measured experimentally in the FOF laser (even though their stability
regions have not been mapped out) [9, 10, 6]. On the other hand, the dynamics beyond stable
ROs and FOs may be very complicated, and we expect noise to play a more significant role
in this regime of the FOF laser.

We presented the bifurcation diagrams in the covering space of Cp. This is very convenient
because, as one would do in an experiment, one can follow a particular solution, for example,
the solitary laser solution for κ = 0, to the different stability boundaries. However, it does not
convey the strong multistability of the FOF laser. We finish by giving an idea of the overall
complexity of the FOF laser system in Figure 16, where all stability regions of EFMs, ROs,
and FOs are shown on a fundamental 2π-interval of Cp. Effectively, every dynamical state can
coexist with any other one in some region of the (κ,Cp)-plane. Figure 16 also demonstrates the
advantage of bifurcation analysis of DDEs with numerical continuation tools over numerical
simulation. By tracking individual solutions in the relevant parameters we were able to detect
multistability reliably.

Laser systems with delay have been a class of motivating testbed examples for the recent
development of computational tools for DDEs [22]. The bifurcation study presented here
is much in this spirit in that it demonstrates the state-of-the-art of numerical continuation
techniques for DDEs arising in applications. We hope that numerical methods of bifurcation
analysis will find use in other areas of application where delays are important, such as control
theory, ecological systems, and network dynamics, to name just a few.
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An Efficient Method for Studying Weak Resonant Double Hopf Bifurcation in
Nonlinear Systems with Delayed Feedbacks∗

Jian Xu†, Kwok-Wai Chung‡, and Chuen-Lit Chan‡

Abstract. An efficient method, called the perturbation-incremental scheme (PIS), is proposed to study, both
qualitatively and quantitatively, the delay-induced weak or high-order resonant double Hopf bifur-
cation and the dynamics arising from the bifurcation of nonlinear systems with delayed feedback.
The scheme is described in two steps, namely, the perturbation and the incremental steps, when
the time delay and the feedback gain are taken as the bifurcation parameters. As for applications,
the method is employed to investigate the delay-induced weak resonant double Hopf bifurcation and
dynamics in the van der Pol–Duffing and the Stuart–Landau systems with delayed feedback. For
bifurcation parameters close to a double Hopf point, all solutions arising from the resonant bifurca-
tion are classified qualitatively and expressed approximately in a closed form by the perturbation
step of the PIS. Although the analytical expression may not be accurate enough for bifurcation
parameters away from the double Hopf point, it is used as an initial guess for the incremental step
which updates the approximate expression iteratively and performs parametric continuation. The
analytical predictions on the two systems show that the delayed feedback can, on the one hand,
drive a periodic solution into an amplitude death island where the motion vanishes and, on the
other hand, create complex dynamics such as quasi-periodic and coexisting motions. The approxi-
mate expression of periodic solutions with parameter varying far away from the double Hopf point
can be calculated to any desired accuracy by the incremental step. The validity of the results is
shown by their consistency with numerical simulations. We show that as an analytical tool the PIS
is simple but efficient.

Key words. delay differential system, double Hopf bifurcation, delayed feedback control, nonlinear dynamics
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1. Introduction. Time delay is ubiquitous in many physical systems. In particular, delay
differential equations (DDEs) are used to model various phenomena, such as neural [1, 2],
ecological [3], biological [4], mechanical [5, 6, 7, 8], controlling chaos [9], secure communication
via chaotic synchronization [10, 11], and other natural systems due to finite propagation speeds
of signals, finite reaction times, and finite processing times [12]. This research shows that the
time delay in various systems has not only a quantitative but also a qualitative effect on
dynamics even for a small time delay [13]. Therefore, the investigation of the mechanism of
how the delay induces various dynamics of a system becomes important.
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The qualitative and quantitative theories for DDEs have been well developed recently.
Many methods and techniques of geometric theory of dynamical systems on ordinary differ-
ential equations (ODEs) have been extended to investigate DDEs, such as stability analysis,
bifurcation theory, and perturbation techniques. In stability analysis, Kalas and Baráková [14]
set up a theoretical base for the stability and asymptotic behavior of a two-dimensional DDE.
Using a suitable Lyapunov–Krasovskii functional, they transformed a real two-dimensional
system into a single equation with complex coefficients and proved the stability and asymp-
totic behavior of the system under consideration. Gopalsamy and Leung [15] used the per-
turbation method to study the stability of periodic solutions in DDEs. On the aspect of the
bifurcation theory of DDEs, the center manifold of a flow is usually adopted to reduce DDEs
to finite-dimensional systems. Redmond, LeBlanc, and Longtin [16] completely studied the bi-
furcations of the trivial equilibrium and computed the normal form coefficients of the reduced
vector field on the center manifold. The analysis reveals a Hopf bifurcation curve terminating
on a pitchfork bifurcation line at a codimension-2 Takens–Bogdanov point in the parameter
space. Campbell and LeBlanc [17] used center manifold analysis to investigate a 1:2 resonant
double Hopf bifurcation in a DDE. It is possible to find period doubling bifurcations near such
a point for a system without the time delay [18]. Correspondingly, the perturbation method
is also extended to determine the analytical solutions of DDEs arising from bifurcations. In-
stead of center manifold reduction (CMR), Das and Chatterjee [19] employed the method
of multiple scales (MMS) to obtain analytical solutions close to Hopf bifurcation points for
DDEs. In applications, the main steps of the analysis are schemed as follows [20]:

a. consider an equilibrium at a critical parameter;
b. solve the eigenvalue problem for this equilibrium to find its linear stability;
c. localize the critical point in parameter space where bifurcation occurs;
d. calculate the eigenvalues and eigenfunctions at the bifurcation point and reduce DDEs

on the center manifold;
e. compute the appropriate normal form coefficients.

Some of the literature mentioned above deals with controlled systems with delayed feed-
backs. In our previous research [21, 22], it was found that controlled systems with delayed
feedbacks may undergo a double Hopf bifurcation with the time delay and feedback gain vary-
ing. However, the mechanism has not been explained in detail. Such a phenomenon has also
been observed by Reddy, Sen, and Johnston [12] and Campbell et al. [20]. Recently, Buono
and Bélair [23] employed the methods developed by Faria and Magalhães [24] to investigate
the normal form and universal unfolding of a vector field at nonresonant double Hopf bifurca-
tion points for particular classes of retarded functional differential equations (RFDEs). They
represented restrictions on the possible flows on a center manifold for certain singularities.
Buono and LeBlanc [25] extended Arnold’s theory on universal unfolding of matrices to the
case of parameter-dependent linear RFDEs. In studying delay systems governed by DDEs,
many authors recommend a CMR as the first step due to the fact that DDEs and RFDEs are
infinite-dimensional. However, the CMR has its disadvantages. On the one hand, computa-
tion of the CMR with normal form is very tedious for a codimension-2 bifurcation. On the
other hand, the CMR is invalid for values of the bifurcation parameters far away from the
bifurcation point. This constitutes the motivation of the present paper.

Our goal is to propose a simple but efficient method which not only inherits the advan-
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tages of the CMR and MMS, but also overcomes the disadvantages of them, to explain the
mechanism of the delay-induced double Hopf bifurcation. To this end, this paper is focused
on controlled systems with delayed feedbacks governed by a type of two-dimensional DDE
and proposes a method called the perturbation-incremental scheme (PIS). The scheme is de-
scribed in two steps, namely, the perturbation and the incremental steps, when the time delay
and the feedback gain are taken as the bifurcation parameters. The perturbation step of the
PIS provides not only accurate qualitative prediction and classification but also an analytical
expression with high accuracy for both periodic and quasi-periodic motions when bifurcation
parameters are closed to the weak resonant point. For those values of bifurcation parameters
far away from the resonant point, the analytical expression may not be accurate enough, but
it can be considered as an initial guess in the incremental step. Thus this overcomes the
disadvantage of the incremental harmonic balance (IHB) method. From the incremental step,
the approximate analytical expression is updated iteratively and can reach any desired accu-
racy. Parametric continuation can also be performed by using the PIS. As for applications of
the method, the delay-induced weak resonant double Hopf bifurcation and dynamics in the
van der Pol–Duffing and the Stuart–Landau systems with delayed feedback are investigated.
The analytical predictions show that the delayed feedback can lead not only to the vanishing
of periodic motion in an “amplitude death island” but also to more complex dynamics such
as quasi-periodic and coexisting motions. The validity of the results is shown by their consis-
tency with numerical simulations. As an analytical tool, the PIS is simple but efficient. The
approximate expression obtained from the PIS can achieve any required accuracy which is not
possible by the CMR and other perturbation methods.

It should be noted that this work is also an extension of our previous studies [22, 26, 27, 28].
The paper is organized as follows. In section 2, we discuss in detail the corresponding

linearized systems when two pairs of purely imaginary eigenvalues occur at a critical value
of time delay, giving rise to weak resonant double Hopf bifurcations. In section 3, a new
method, called the perturbation-incremental scheme (PIS), is proposed in two steps to inves-
tigate harmonic solutions derived from weak resonant double Hopf bifurcation. As illustrative
examples, the van der Pol–Duffing and the Stuart–Landau systems are considered in sections
4 and 5, where the analytical and numerical results are compared. Finally, we close the paper
with a summary of our results.

2. Weak resonant double Hopf bifurcation. We consider two first-order DDEs with
linear delayed feedback and nonlinearities in the general form

Ż(t) = C Z(t) + DZ(t− τ) + ε F (Z(t) , Z(t− τ) ),(2.1)

where Z(t) = {x(t), y(t)}T ∈ R2, C and D are 2 × 2 real constant matrices such that C =[
c11 c12
c21 c22

]
and D =

[
d11 d12
d21 d22

]
, F is a nonlinear function in its variable with F (0, 0) = 0, ε is a

parameter representing strength of nonlinearities, and τ is the time delay.
Now we derive some formulae relating to resonant double Hopf bifurcation points. It can

be seen from (2.1) that Z = 0 is always an equilibrium point or trivial solution of the system.
To determine the stability of the trivial solution for τ �= 0, we linearize system (2.1) around
Z = 0 to obtain the characteristic equation

det(λ I − C −D e−λ τ ) = 0,(2.2)
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where I is the identity matrix and the perturbation is assumed to have a time dependence
proportional to eλ τ . The characteristic equation (2.2) can be rewritten in the form

λ2 − λ
(
c1 + d1 e

−λ τ
)

+ cd e
−λ τ + c2 + det(D) e−2λτ = 0,(2.3)

where

c1 = c11 + c22,

d1 = d11 + d22,

c2 = c11 c22 − c12 c21,

cd = c22 d11 − c21 d12 − c12 d21 + c11 d22.

(2.4)

The roots of the characteristic equation (2.3) are commonly called the eigenvalues of
the equilibrium point of system (2.1). The stability of the trivial equilibrium point will
change when the system under consideration has zero or a pair of imaginary eigenvalues.
The former occurs if λ = 0 in (2.3) or cd + c2 + det(D) = 0, which can lead to the static
bifurcation of the equilibrium points such that the number of equilibrium points changes
when the bifurcation parameters vary. The latter deals with the Hopf bifurcation such that
the dynamical behavior of the system changes from a static stable state to a periodic motion
or vice versa. The dynamics become quite complicated when the system has two pairs of pure
imaginary eigenvalues at a critical value of time delay. We will concentrate on such cases. For
this, we let cd + c2 + det(D) �= 0. Thus, λ = 0 is not a root of the characteristic equation
(2.3) in the present paper. Such an assumption can be realized in engineering as long as one
chooses a suitable feedback controller.

It is easy to find explicit expressions for the critical stability boundaries of the following
two cases:

a. det(D) = 0, cd + c2 �= 0;
b. det(D) �= 0, c11 = c22, c12 = −c21, d11 = d22, d12 = d21 = 0, c11 > 0, c12 > 0, d11 �= 0.
For the case with det(D) = 0 but cd + c2 �= 0, substituting λ = a + iω into (2.3) and

equating the real and imaginary parts to zero yield

a2 − ω2 − a c1 + c2 − e−a τ ω sin(τ ω) d1 + e−a τ cos(τ ω) ( cd − a d1) = 0,

2 aω − ω c1 − e−a τ ω cos(τ ω) d1 + e−a τ sin(τ ω) ( a d1 − cd) = 0.
(2.5)

One can derive the explicit expressions for the critical stability boundaries by setting a = 0
in (2.5) and obtain

−ω2 + c2 + cd cos(τ ω) − ω d1 sin(τ ω) = 0,

−ω c1 − cd sin(τ ω) − ω d1 cos(τ ω) = 0.
(2.6)

Eliminating τ from (2.6), we have

ω± =

√

d1
2 − c12 + 2 c2 ±

√(
d1

2 − c12 + 2 c2
)2 − 4 (c22 − cd2)

√
2

(2.7)
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when the following conditions hold:

c22 − c2d > 0,
(
d1

2 − c1
2 + 2 c2

)2
> 4
(
c2

2 − cd
2
)
.

(2.8)

Then, two families of surfaces, denoted by τ− and τ+ in terms of cd and d1 corresponding to
ω− and ω+, respectively, can be derived from (2.5) and be given by

cos(ω−τ−) =
ω2− cd − c2 cd − ω2− c1 d1

cd2 + ω2− d1
2 ,

cos(ω+τ+) =
ω2

+ cd − c2 cd − ω2
+ c1 d1

cd2 + ω2
+ d1

2 .

(2.9)

It should be noted that ω− < ω+. Thus, a possible double Hopf bifurcation point occurs when
two such families of surfaces intersect each other where

τ− = τ+.(2.10)

Equation (2.10) not only determines the linearized system around the trivial equilibrium which
has two pairs of pure imaginary eigenvalues ±iω− and ±iω+, but also gives a relation between
ω− and ω+. If

ω− : ω+ = k1 : k2,(2.11)

then a possible double Hopf bifurcation point appears with frequencies in the ratio k1 : k2.
If k1, k2 ∈ Z+, k1 < k2, k �= 1, and k2 �= 1, then such a point is called the k1 : k2 weak or
no low-order resonant double Hopf bifurcation point. Equations (2.10) and (2.11) form the
necessary conditions for the occurrence of a resonant double Hopf bifurcation point. Equation
(2.11) yields

d1
2 = c1

2 − 2 c2 +
k1

2 + k2
2

k1 k2

√
c22 − cd2(2.12)

if conditions (2.8) are satisfied. Substituting (2.12) into (2.7), one can obtain the frequencies
in the simple expressions given by

ω− =

√
k1

k2

√
c22 − cd2, ω+ =

√
k2

k1

√
c22 − cd2.(2.13)

The other parameters can be determined by (2.10) or the equation

arccos

(
−(c2 cd k2)+

√
c22−cd2 (cd−c1 d1) k1

cd2 k2+
√

c22−cd2 d1
2 k1

)

= k1
k2

arccos

(
−(c2 cd k1)+

√
c22−cd2 (cd−c1 d1) k2

cd2 k1+
√

c22−cd2 d1
2 k2

)
,

(2.14)
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where d1 is given in (2.12). The corresponding value of the time delay at the resonant double
Hopf bifurcation point is given by

τc = τ− = τ+

=

√
k1

k2

√
c22 − cd2

arccos

(
− (c2 cd k1) +

√
c22 − cd2 (cd − c1 d1) k2

cd2 k1 +
√

c22 − cd2 d1
2 k2

)

.
(2.15)

For the case with det(D) �= 0 and c11 = c22, c12 = −c21, d11 = d22, d12 = d21 = 0, c11 > 0,
c12 > 0, d11 < 0, the characteristic equation (2.2) becomes

λ = c11 ± ic12 + d11e
−λτ .(2.16)

By substituting λ = a + iω in (2.16), we get

ω = ω± = c12 ±
√

d2
11 e

−2aτ − (a− c11)2,

a = c11 − ω−c21
tan(ωτ) ,

(2.17)

where we consider only one set of curves by choosing ω = c12 ±
√·. The other set of curves

arising due to ω = −c12 ± √· is implicit in the above since the eigenvalues always occur in
complex conjugate pairs. It follows from (2.17) that ω is real only when d2

11 ≥ (a− c11)
2 e2aτ .

To obtain the critical boundary, set a = 0. This gives

ω− = c12 −
√

d11
2 − c112,

ω+ = c12 +
√

d11
2 − c211,

(2.18)

and

τ−[j] = 1
ω−

(
2jπ − cos−1(−c11/d11)

)
,

τ+[j] = 1
ω+

(
2jπ + cos−1(−c11/d11)

)
,

(2.19)

where j = 1, 2, . . . . The necessary conditions for the k1 : k2 occurrence of the resonant double
Hopf bifurcation can be obtained by setting τ−[j] = τ+[j] and ω−

ω+
= k1

k2
. This yields

(d11)c = − c11
cos(2jπ(k2 − k1)/(k1 + k2))

, τc =
4jk1π

(k1 + k2)ω−
.(2.20)

Finally, it should be noted that the parameters d1 and cd cannot be solved in a closed
form from (2.15) due to the trigonometric function. However, the values can be obtained
numerically. Such parameters denoted by (·)c are called the critical values at the resonant
double Hopf bifurcation point with frequencies in the ratio k1 : k2. Thus, for given physical
parameters τ and D in (2.1), one can obtain

ε τε = τ − τc, εDε = D −Dc,(2.21)
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such that (2.1) can be rewritten as

Ż = C Z + Dc Zτc + F̃ (Z,Zτc , Zτc+ετε , ε),(2.22)

where Z = Z(t), Zτ = Z(t− τ), τc is given by (2.15), and

F̃ (·) = Dc [Zτc+ετε − Zτc ] + ε [DεZτc+ετε + F (Z,Zτc+ετε )] .(2.23)

Clearly, F̃ = 0 for ε = 0 and the resonant double Hopf bifurcation point may occur in the
system when ε = 0.

3. Perturbation-incremental scheme. Various harmonic solutions with distinct topolog-
ical structures can occur in a system due to nonresonant and high-order double Hopf bifurca-
tion [32]. When the time delay is absent, the perturbation method [5] can be applied directly
to (2.22) for small ε, and the IHB method [7] to the system for large ε. The key problem of
IHB is to find an initial value and in general it is quite difficult. The perturbation-incremental
method proposed in [26, 27] can efficiently overcome this disadvantage of the IHB method.
However, the above methods must be re-examined and extended to investigate the system
with time delay.

In this section, we propose a new method, called the perturbation-incremental scheme
(PIS), to investigate harmonic solutions derived from the weak resonant double Hopf bifur-
cation of (2.1). Our goal is to obtain the harmonic solutions with any desired accuracy and
consider the continuation of these solutions when the time delay and feedback gain in (2.1)
are taken as bifurcation parameters. The scheme is described in two steps, namely, the per-
turbation step (noted as step one) for bifurcation parameters close to the weak resonant point
and the incremental step (noted as step two) for those far away from the bifurcation point.

3.1. Perturbation step of PIS. It can be seen from the previous section that a double
Hopf bifurcation with k1:k2 weak resonance occurs in (2.1) at τ = τc and D = Dc. If τ and
D are considered as two bifurcation parameters, then (Dc, τc) is a double Hopf bifurcation
point with weak resonance. In this subsection, we derive the analytic expression of harmonic
solutions arising from the weak resonant double Hopf bifurcation in (2.1) or (2.22) when τ
and D are close to τc and Dc, respectively.

For ε = 0, it can be seen from (2.21) and (2.23) that τ = τc, D = Dc, and F̃ (·) = 0. Thus,
the solution of (2.22) may be supposed as

Z0(t) =

2∑

i=1

[{
aki
cki

}
cos(ki φ) +

{
bki
dki

}
sin(ki φ)

]
,(3.1)

which results in

Z0(t− τc) =

2∑

i=1

[{
aki
cki

}
cos(ki φ− kiωτc) +

{
bki
dki

}
sin(ki φ− kiωτc)

]
,(3.2)

where τc is given by (2.15), φ = ωt, and ω = ω−
k1

= ω+

k2
is determined by (2.13). Substituting

(3.1) and (3.2) into (2.22) for ε = 0 and using the harmonic balance, one obtains that

Mki

{
bki
dki

}
= Nki

{
aki
cki

}
(3.3)
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and

−Mki

{
aki
cki

}
= Nki

{
bki
dki

}
,(3.4)

where Mki = kiωI +Dc sin(kiωτ), Nki = C +Dc cos(kiωτ), and I is the 2× 2 identity matrix.

The equations (3.3) and (3.4) are in fact identical. Let
{ ãki

b̃ki

}
=

Nki
det(Nki

)

{ aki
bki

}
and note that

det(Nki) = det(Mki). It follows from (3.3) that the harmonic solution of (2.22) for ε = 0 is
given by

Z0(t) =

2∑

i=1

[
Ñki cos(ki φ) + M̃ki sin(ki φ)

]{ãki
b̃ki

}
(3.5)

with Ñki = N−1
ki

det(Nki) and M̃ki = M−1
ki

det(Mki) for i = 1, 2.
Based on the expression in (3.5), we now consider the solution of (2.22) for small ε. The

harmonic solution of (2.22) can be considered to be a perturbation to that of (3.5), given by

Z(t) =
2∑

i=1

[
Ñki cos(ki ωt + εσit) + M̃ki sin(ki ωt + εσit)

]{aki(ε)
bki(ε)

}
,(3.6)

where aki(0) = ãki , bki(0) = b̃ki , and σ1 and σ2 are detuning parameters. The following

theorem provides a new method to determine
{ aki (ε)

bki (ε)

}
in (3.6).

Theorem. If W (t) is a periodic solution of the equation

Ẇ (t) = −CT W (t) −Dc
T W (t + τc),(3.7)

and W (t) = W (t + 2π/ω), then

∫ 0
−τc

[
Dc

T W (t + τc)
]T

[Z(t) − Z(t + 2π/ω)] dt

− [W (0)]T [Z(2π/ω) − Z(0)] +
∫ 2π/ω
0 [W (t)]T F̃ (Z,Zτc , Zτc+ετε , ε) dt = 0.

(3.8)

Proof. Multiplying both sides of (2.22) by [W (t)]T and integrating with respect to t from
zero to 2π/ω, one has

∫ 2π/ω
0 [W (t)]T Ż(t)dt

=
∫ 2π/ω
0 [W (t)]T

[
C Z(t) + Dc Z(t− τc) + F̃ (Z,Zτc , Zτc+ετε , ε)

]
dt,

(3.9)

where 2π/ω is a period of W (t) in t. The equation (3.9) yields

∫ 2π/ω
0

[
Ẇ (t) + CT W (t) + Dc

T W (t + τc)
]T

Z(t) dt

+
∫ 0
−τc

[
Dc

T W (t + τc)
]T

[Z(t) − Z(t + 2π/ω)] dt

− [W (0)]T [Z(2π/ω) − Z(0)] +
∫ 2π/ω
0 [W (t)]T F̃ (Z,Zτc , Zτc+ετε , ε) dt = 0.

(3.10)
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The theorem follows from (3.7).

To apply the theorem to determine
{ aki (ε)

bki (ε)

}
, one must obtain the expression of W (t) in

(3.10).
It is easily seen that the periodic solution of (3.7) can been written as

W (t) =

2∑

i=1

[
(−Ñki)

T cos(ki φ) + (M̃ki)
T sin(ki φ)

]{pki
qki

}
,(3.11)

where pki and qki are independent constants. Substituting (3.6) and (3.11) into (3.8), neglect-
ing two order terms in power ε, and noting the independence of pki and qki yield four algebraic
equations in aki(ε), bki(ε), σ1, and σ2. For ε �= 0, aki(ε) and bki(ε) are dependent. Therefore,
we change this four algebraic equations in polar form by setting

aki(ε) =
− rki(ε) (c12 sin(θi) + d12 sin(kiωτc + θi))

c12 (kiω + d22 sin(kiωτc)) + d12 (kiω cos(kiωτc) − c22 sin(kiωτc))
,

bki(ε) =
− rki(ε) (c22 sin(θi) + d22 sin(kiωτc + θi) + kiω cos(θi))

c12 (kiω + d22 sin(kiωτc)) + d12 (kiω cos(kiωτc) − c22 sin(kiωτc))
,

(3.12)

where i = 1, 2 and (rk1 , rk2 , θ1, θ2) is a polar coordinate system. Using the fact that cos2(θi)+
sin2(θi) = 1 (i = 1, 2), one can solve rk1(ε), rk2(ε), σ1, and σ2 from these four algebraic
equations. Thus, when the time delay and feedback gain is very close to the double Hopf bi-
furcation point (i.e., ετc and εDε are very small), the approximate solution in O(ε) is expressed
as

Z(t) =

{
rk1 cos((k1ω + εσ1)t + θ1) + rk2 cos((k2ω + εσ2)t + θ2)

(·)
}
,(3.13)

in terms of (3.6) and (3.12), where (·) is a complicated expression. Furthermore, when θ1 and
θ2 are determined from the initial conditions, aki(ε) and bki(ε) in (3.6) can be obtained from
(3.12), denoted as a∗ki(ε) and b∗ki(ε). Thus, (3.6) becomes

Z(t) =

2∑

i=1

[
Ñki cos(ki ωt + εσit) + M̃ki sin(ki ωt + εσit)

]{a∗ki(ε)
b∗ki(ε)

}
.(3.14)

Up to now, an approximate solution is obtained from the perturbation step of the PIS.
It should be noted that the solution (3.6) is a perturbation to (3.5) in an ε-order magnitude.

Besides, the four algebraic equations are obtained in O(ε). Therefore, the solution of these four
algebraic equations is accurate for small ε. However, the case for large ε should be investigated
further.

A large ε perturbation yields one of the following cases:
(a) both ετε and εDε are small but the nonlinearity in (2.1) is strong;
(b) εDε is small but ετε is large and the nonlinearity in (2.1) is strong;
(c) ετε is small but εDε is large and the nonlinearity in (2.1) is strong;
(d) both ετε and εDε are large and the nonlinearity in (2.1) is strong.
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As one will see in sections 4 and 5, the perturbation step of the PIS is still valid for case (a)
but invalid for cases (b), (c), and (d). It implies that the approximate solution given in (3.14)
is accurate enough to represent the motions near a double Hopf bifurcation point with weak
resonance as long as the time delay and feedback gain are close to the point even for very
large ε. Thus, the second step of the PIS is required for cases (b), (c), and (d) for which
the perturbation step is invalid. For these three cases, the values of (τ,D) are far away from
(τc, Dc).

3.2. Incremental step of the PIS. In this subsection, the incremental step of the PIS
is proposed in detail for case (b) since we focus on effects of the time delay on (2.1) in the
present paper. It is an extension of our previous work in [26, 27].

Similar to the formulation in [26, 27], a time transformation is first introduced as

dφ

dt
= Φ(φ), Φ(φ + 2π) = Φ(φ),(3.15)

where φ is the new time. Thus, Φ(φ) can be approximately expanded in a truncated Fourier
series about φ as

Φ(φ) =

m∑

j=0

(pj cos j φ + qj sin j φ).(3.16)

In the φ domain, (2.1) or (2.22) is rewritten as

ΦZ ′ = C Z + DZτ + ε F (Z ,Zτ ),(3.17)

where prime denotes differentiation with respect to φ, D = Dc + εDε, τ = τc + ετε.
If φ1 corresponds to t− τ , it follows from (3.15) that

dt =
dφ

Φ(φ)
=

dφ1

Φ(φ1)

=⇒ Φ(φ)
dφ1

dφ
= Φ(φ1).

(3.18)

We note that φ1 − φ is a periodic function in φ with period 2π. Similarly, φ1 − φ can also be
expanded in a truncated Fourier series about φ as

φ1 = φ +

m∑

j=0

(rj cos jφ + sj sin jφ).(3.19)

The integration constant of (3.18) provides information about the delay τ . Since φ1 is the
new time corresponding to t− τ , it follows from (3.18) that

∫ t

t−τ
dt1 =

∫ φ

φ1

dθ

Φ(θ)

=⇒ τ =

∫ φ

φ1

dθ

Φ(θ)
.

(3.20)
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To consider the continuation with the delay τ as the bifurcation parameter, ε and D are
kept fixed such that D is close to Dc. If (3.17) possesses a periodic solution at τ = τ0 =
τc + ετε and the expression (3.14) provides a sufficiently accurate representation, where either
{ a∗k1

(ε)

b∗k1
(ε)

}
= 0 or

{ a∗k2
(ε)

b∗k2
(ε)

}
= 0, then a periodic solution at τ = τ0 + Δτ can be expressed in a

truncated Fourier series as

Z =

m∑

j=0

(aj cos j φ + bj sin j φ),(3.21)

where aj , bj ∈ R2, m ≥ k2 > k1. Correspondingly, one has

Zτ =

m∑

j=0

(aj cos jφ1 + bj sin jφ1).(3.22)

For Δτ = 0, one can easily obtain that

aj =

⎧
⎪⎨

⎪⎩

Ñki

{
a∗ki(ε)
b∗ki(ε)

}
, j = ki,

0, j �= ki,

bj =

⎧
⎪⎨

⎪⎩

M̃ki

{
a∗ki(ε)
b∗ki(ε)

}
, j = ki,

0, j �= ki,

(3.23)

where i = 1, 2. The coefficients of Φ(φ) in (3.16) are given by

p0 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ω + εσ1/k1 for

{
a∗k2

(ε)

b∗k2
(ε)

}
= 0,

ω + εσ2/k2 for

{
a∗k1

(ε)

b∗k1
(ε)

}
= 0,

(3.24)

and pj = 0, qj = 0 for all j > 0. From (3.19) and (3.20), one has also

r0 = −p0 τ,(3.25)

and rj = 0, sj = 0 for all j > 0.

A small increment of τ from the initial value of τ0 to τ0 + Δτ yields small increments of
the following quantities:

Z → Z + ΔZ, Zτ → Zτ + ΔZτ , Φ → Φ + ΔΦ, and φ1 → φ1 + Δφ1.(3.26)

Substituting (3.26) into (3.17) and (3.18), and expanding in Taylor’s series about an initial
solution, one can obtain linearized incremental equations by ignoring all the nonlinear terms
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of small increments as below:

Z ′ΔΦ(φ) + Φ(φ)ΔZ ′ − C ΔZ −DΔZτ

− ε

(
∂F (Z,Zτ )

∂Z

∣
∣
∣
∣
∣
0

ΔZ − ∂F (Z,Zτ )
∂Zτ

∣
∣
∣
∣
∣
0

ΔZτ

)

= C Z + DZτ + ε F (Z ,Zτ ) − Φ(φ)Z ′,

(3.27)

φ′
1ΔΦ(φ) + Φ(φ)Δφ′

1 − ΔΦ(φ1) − Φ′(φ1)Δφ1 = Φ(φ1) − Φ(φ)φ′
1,(3.28)

where the subscript 0 represents the evaluation of the relevant quantities corresponding to the
initial solution. From (3.16), (3.19), (3.21), and (3.22), one has

ΔΦ(φ) =
∑m

j=0(Δpj cos jφ + Δqj sin jφ),

ΔΦ′(φ) =
∑m

j=1 j(Δqj cos jφ− Δpj sin jφ),
(3.29)

Δφ1 =
∑m

j=0(Δrj cos jφ + Δsj sin jφ),

Δφ′
1 =
∑m

j=1 j(Δsj cos jφ− Δrj sin jφ),
(3.30)

ΔZ =
∑m

j=0(Δaj cos jφ + Δbj sin jφ),

ΔZ ′ =
∑m

j=1 j(Δbj cos jφ− Δaj sin jφ),
(3.31)

and

ΔZτ =

m∑

j=0

(Δaj cos jφ1 + Δbj sin jφ1) +
∂Zτ

∂φ1
Δφ1.(3.32)

In addition, a small increment of τ0 to τ0 + Δτ also yields the linearized incremental
equation of (3.20) as

∫ φ

φ1

ΔΦ(θ)

Φ2(θ)
dθ +

Δφ1

Φ(φ1)
=

∫ φ

φ1

dθ

Φ(θ)
− τ0 − Δτ,(3.33)

which implies, for φ = 0,

∫ 0

ξ

ΔΦ(θ)

Φ2(θ)
dθ +

Δφ1(0)

Φ(α)
=

∫ 0

ξ

dθ

Φ(θ)
− τ0 − Δτ,(3.34)

where ξ = φ1(0).
Substituting (3.29)–(3.32) into (3.27) and using the harmonic balance method, one obtains

the linearized equation (3.27) in terms of the increments Δaj , Δbj , Δpj , Δqj , Δrj , and Δsj
as

∑m
j=0 (Ψ1,jΔaj + Ψ2,jΔbj + Ψ3,jΔpj + Ψ4,jΔqj + Ψ5,jΔrj + Ψ6,jΔsj)

= Λ1,
(3.35)
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where

Ψ1,j = −jΦ(φ) sin jφ− C cos jφ−D cos jφ1 − ε

(
∂F
∂Z

∣
∣
∣
∣
∣
0

cos jφ + ∂F
∂Zτ

∣
∣
∣
∣
∣
0

cos jφ1

)

,

Ψ2,j = jΦ(φ) cos jφ− C sin jφ−D sin jφ1 − ε

(
∂F
∂Z

∣
∣
∣
∣
∣
0

sin jφ + ∂F
∂Zτ

∣
∣
∣
∣
∣
0

sin jφ1

)

,

Ψ3,j = Z ′ cos jφ,

Ψ4,j = Z ′ sin jφ,

Ψ5,j = −D ∂Zτ
∂φ1

cos jφ− ∂F
∂Zτ

∣
∣
∣
∣∣
0

∂Zτ
∂φ1

cos jφ,

Ψ6,j = −D ∂Zτ
∂φ1

sin jφ− ∂F
∂Zτ

∣∣∣∣∣
0

∂Zτ
∂φ1

sin jφ,

Λ1 = C Z + DZτ + ε F (Z ,Zτ ) − Φ(φ)Z ′.

(3.36)

Similarly, from (3.28) and (3.34), we obtain, respectively,

m∑

j=0

[Ψ7,jΔpj + Ψ8,jΔqj + Ψ9,jΔrj + Ψ10,jΔsj ] = Λ2(3.37)

and

m∑

j=0

[Ψ11,jΔpj + Ψ12,jΔqj + Ψ13,jΔrj ] = Λ3,(3.38)

where

Ψ7,j = φ′
1 cos jφ− cos jφ1,

Ψ8,j = φ′
1 sin jφ− sin jφ1,

Ψ9,j = −jΦ(φ) sin jφ− Φ′(φ1) cos jφ,

Ψ10,j = jΦ(φ) cos jφ− Φ′(φ1) sin jφ,

Ψ11,j =
∫ 0
ξ

cos jθ
Φ2(θ)

dθ,

Ψ12,j =
∫ 0
ξ

sin jθ
Φ2(θ)

dθ,

Ψ13,j = 1
Φ(ξ) ,

Λ2 = Φ(φ1) − Φ(φ)φ′
1,

Λ3 =
∫ 0
ξ

dθ
Φ(θ) − τ − Δτ.

(3.39)
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Since Ψi,j (1 ≤ i ≤ 13, 1 ≤ j ≤ m) and Λk (1 ≤ k ≤ 3) are periodic functions in φ, they
can be expressed in a Fourier series, the coefficients of which can easily be obtained by the
method of fast Fourier transform (FFT). Let aij , bij ∈ R (1 ≤ i ≤ 2, 0 ≤ j ≤ m) be the ith
element in aj and bj , respectively. By comparing the coefficients of 2(2m + 1) + 1 harmonic
terms of (3.35) and 2m+ 1 of (3.37) and (3.38), a system of linear equations is thus obtained
with unknowns Δaij , Δbij , Δpj , Δqj , Δrj , and Δsj in the form

∑2
i=1

∑m
j=0(Ak,ijΔaij + Bk,ijΔbij)

+
∑m

j=0(Pk,jΔpj + Qk,jΔqj + Rk,jΔrj + Sk,jΔsj) = Tk,
(3.40)

where k = 1, 2, . . . , 3(2m+1)+2 and Tk are the residue terms. The values of aj , bj , pj , qj , rj ,
and sj are updated by adding the original values and the corresponding incremental values.
The iteration process continues until Tk → 0 for all k (in practice, |Tk| is less than a desired
degree of accuracy). The entire incremental process proceeds by adding the Δτ increment
to the converged value of τ , using the previous solution as the initial approximation until a
new converged solution is obtained. We note that the value of m may be changed during the
continuation so as to ensure sufficient accuracy of the solution.

The stability of a periodic solution can be determined by the Floquet method [34, 35].
Let ζ ∈ R2 be a small perturbation from a periodic solution of (2.1). Then,

dζ

dϕ
=

1

Φ
[A(ϕ,ϕ1)ζ + B(ϕ,ϕ1)ζτ ] + O(ζ2, ζτ

2),(3.41)

where A(ϕ,ϕ1) = C + ε∂F (Z,Zτ )
∂Z and B(ϕ,ϕ1) = D + ε∂F (Z,Zτ )

∂Zτ
. The entities of A and B are

all periodic functions of ϕ with period 2π, which can be determined by using the incremental
procedure. The time delay interval I1 = [−τ, 0] corresponds to I2 = [α, 0] in the ϕ domain.
Discrete points in I2 are selected for the computation of Floquet multipliers.

From the incremental procedure, the Fourier coefficients of ϕ1 in (3.30) are obtained.
Assume that ϕ = β when ϕ1 = 0 and let I3 = [0, β]. For each ϕ ∈ I3, there corresponds a
unique ϕ1 ∈ I2. We choose a mesh size h = β

N−1 and discrete points ϕ(i) = ih (0 ≤ i ≤ N −1)

in I3, which correspond to ϕ
(i)
1 = ϕ1(ϕ

(i)) in I2. Let ζ(ϕ
(i)
1 ) be the (i+1)th unit vector in R2.

By applying numerical integration to (3.1), we obtain the monodromy matrix M as

M = [ζ(ϕ
(0)
1 + 2π), ζ(ϕ

(1)
1 + 2π), . . . , ζ(ϕ

(N−1)
1 + 2π)].(3.42)

The eigenvalues of M are used to determine the stability of the periodic solution. One
of the eigenvalues or Floquet multipliers of M must be unity which provides a check for the
accuracy of the calculation. If all the other eigenvalues are inside the unit circle, the periodic
solution under consideration is stable; otherwise, it is unstable.

Although the incremental step described above is for case (b), it can be extended in a
similar way to cases (c) and (d).

In this section, we have proposed the two steps of the PIS in details. As for applications,
two examples will be investigated in the next two sections to illustrate the validity of the PIS.
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4. Weak resonant double Hopf bifurcation for van der Pol–Duffing system with delayed
feedback. First, we consider the van der Pol–Duffing oscillator with linear delayed position
feedback governed by

ü− (α− ε γ u2) u̇ + ω2
0 u + ε β u3 = A(uτ − u),(4.1)

where α, γ, and β are positive constants, A < 0, τ is the time delay, ε is the small perturbation
parameter, and uτ = u(t− τ). The system (4.1) can be expressed in the form of (2.1), where

c11 = 0, c12 = 1, c21 = −ω2
0 −A, c22 = α,

d11 = 0, d12 = 0, d21 = A, d22 = 0,
(4.2)

which imply, from (2.4),

c1 = α, c2 = A + ω0
2, d1 = 0, cd = −A.(4.3)

Substituting (4.2) into (2.7)–(2.9), one obtains that if

2A + ω0
2 > 0,

(−2A + α2
)2 − 4α2 ω0

2 > 0,
(4.4)

then

ω± =

√√√√
A− α2

2
+ ω0

2 ±
√(

A− α2

2

)2

− α2 ω0
2,(4.5)

cos(ω± τ) = 1 +
ω0

2 − ω±2

A
, sin(ω± τ) =

α

A
ω±.(4.6)

For A < 0 and α ≥ 0, it follows from (4.6) that

τ±[j] =
1

ω±

[
2jπ − cos(−1)

(
1 +

ω2
0 − ω2±
A

)]
,(4.7)

where j = 1, 2, 3, . . . , and ω± are determined by (4.5). With aids of (2.12) and (2.15), the
necessary conditions in terms of the critical values Ac and τc for the occurrence of resonant
double Hopf points with frequencies in the ratio k1 : k2 are given by

α2 − 2 (Ac + ω0
2) +

(k1
2 + k2

2)ω0

k1 k2

√
2Ac + ω0

2 = 0,(4.8)

τc = τ+ = τ−,(4.9)

and the corresponding frequencies are

ω− =

√
k1

k2
ω0

√
2Ac + ω0

2, ω+ =

√
k2

k1
ω0

√
2Ac + ω0

2,(4.10)
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Table 1
Some critical values at possible weak resonant double Hopf bifurcations for the system (4.1).

j ω− : ω+ α Ac ω− τc
3:4 0.301697 -0.306536 0.683027 5.67888

1 3:5 0.17468 -0.336338 0.585895 5.88976
4:5 0.32397 -0.301196 0.710246 5.64733
5:6 0.33501 -0.298532 0.727308 5.63222

2 4:5 0.073289 -0.1892405 0.79416 12.261248
5:6 0.106497 -0.176272 0.818864 12.1415189

3 6:7 0.035351 -0.13606 0.855147 18.63072
7:8 0.0555963 -0.1268220 0.869442 18.5164772

4 8:9 0.020823 -0.106556 0.8879772 24.9618595
9:10 0.0343324 -0.099884 0.8972743 24.85826

-0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15

5

5.5
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7.5

-0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15

5
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6
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7

7.5

τ 3 : 5

A

Figure 1. High-order resonant double Hopf bifurcation diagram with frequencies in the ratio ω− : ω+ = k1 :
k2 for α = 0.17468 and ω0 = 1.0, where the solid line represents τ+, the dashed line τ−, and the grey region
amplitude death.

where ω0 is a constant.

For α �= 0, Ac cannot be solved from (4.9) in a closed form, but they can be easily solved
numerically for a fixed ω0. Some values of the possible weak resonant double Hopf bifurcation
are shown in Table 1 for ω0 = 1. In Figure 1, we plot the diagrams for the case with
α = 0.17468 in Table 1. The grey color regions show the stable trivial solutions for system
(4.1), i.e., amplitude death regions. The intersection points located on the amplitude death
regions are two double Hopf bifurcation points with 3:5 resonance. To obtain the neighboring
solutions derived from such double Hopf bifurcation, we let A = Ac + εAε and τ = τc + ετε for
a given α, where εAε and ετε are very small. Thus, system (4.1) can be rewritten as

Ż(t) = C Z(t) + Dc Z(t− τc) + F̃ (Z(t), Z(t− τc), Z(t− τc − ετε) , ε) ,(4.11)

where
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Z(t) =

{
u(t)
v(t)

}
, C =

[
0 1

−(Ac + ω0
2) α

]
, Dc =

[
0 0
Ac 0

]
,

F̃ =

{
0

Ac (uτc+ετε − uτc) + ε
(
Aε (uτc+ετε − u) − u2 (βu + γv)

)
}
,

(4.12)

where uτ = u(t− τ).
As an example, we consider the case shown in Figure 1 with ω0 = 1, α = 0.17468, where

a 3:5 weak resonant double Hopf bifurcation occurs in system (4.1) at Ac = −0.336338 and
τc = 5.88976 (cf. Lemma 8.15 in [36]). It follows from (3.11), (3.12), and (3.13) that

W (t) =

{
w1(t)
w2(t)

}
,(4.13)

with

w1(t) = −0.17468pk1 cos(0.585895t) − 0.17468pk2 cos(0.976492t)

− 0.343274qk1 cos(0.585895t) − 0.953538qk2 cos(0.976492t)

+ 0.585895pk1 sin(0.585895t) − 0.102345qk1 sin(0.585895t)

+ 0.976492pk2 sin(0.976492t) − 0.170574qk2 sin(0.976492t),

w2(t) = pk1 cos(0.585895t) + pk2 cos(0.976492t)

+ 0.585895qk1 sin(0.585895t) + 0.976492qk2 sin(0.976492t),

(4.14)

ak1 = −1.70679rk1 sin(θ1), bk1 = −rk1 cos(θ1) − 0.298142rk1 sin(θ1),

ak2 = −1.02407rk2 sin(θ2), bk2 = −rk2 cos(θ2) − 0.178885rk2 sin(θ2),
(4.15)

and

u(t) = rk1 cos(θ1 + t (0.585895 + εσ1)) + rk2 cos(θ2 + t (0.976492 + εσ2)),

v(t) = −0.585896rk1 sin(θ1 + t (0.585895 + εσ1))

− 0.976492rk2 sin(θ2 + t (0.976492 + εσ2)).

(4.16)

Substituting (4.12), (4.13), (4.14), and (4.16) into (3.8), noting that p1, p2, q1, and q2 are
independent and cos2(θi) + sin2(θi) = 1 (i = 1, 2), yields

rk1ε
(
Aε + 0.384107rk1

2β + 0.768215rk2
2β − 0.291413σ1 + 0.0307097τε

)
= 0,

rk1ε
(
Aε − 0.481362rk1

2γ − 0.962723rk2
2γ − 5.62729σ1 − 0.616891τε

)
= 0,

rk2ε
(
Aε + 10.8584rk1

2β + 5.42919rk2
2β − 6.865σ2 + 1.20574τε

)
= 0,

rk2ε
(
Aε − 0.962726rk1

2γ − 0.481363rk2
2γ + 3.71089σ2 + 0.558141τε

)
= 0.

(4.17)

It can be seen from (4.16) that rk1 , rk2 , σ1, and σ2 determine the feature of motions of the
system (4.11) when the double Hopf point at (Ac, τc) is perturbed by Aε and τε for given values
of ε, β, and γ. Such motion can be amplitude death (rk1 = 0 and rk2 = 0), periodic (rk1 = 0
and rk2 �= 0 or rk1 �= 0 and rk2 = 0), or quasi-periodic (rk1 �= 0 and rk2 �= 0). Therefore, it is
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τ τ

A A

(a) simple case: γ = 1, β = 0 (b) difficult case: γ = 0, β = 4

Figure 2. Classification and bifurcation sets of the solution for system (4.11) due to 3:5 resonant double
Hopf bifurcation where solid lines, dashed lines, and dot-dashed lines represent boundaries and amplitude death
region is in grey for (a) the simple case: γ = 1, β = 0 and (b) the difficult case: γ = 0, β = 4.

necessary to classify the solutions of the algebraic equation (4.17) in the neighborhood of the
double Hopf point (Ac, τc).

To this end, one has first to distinguish so called “simple” and “difficult” double Hopf
cases (see, for example, section 8.6 in [36]). In the simple case, the truncated cubic amplitude
system (4.17) has no periodic orbits and addition of any fourth- and fifth-order terms does
not change its bifurcation diagram. In the difficult case, one has to consider the truncated
fifth-order amplitude system to “stabilize” the Hopf bifurcation there. This Hopf bifurcation
implies the existence of three-dimensional invariant tori in the full four-dimensional system
on the central manifold. Both cases can be seen when one takes β = 0, γ �= 0 and β �= 0,
γ = 0, respectively, as shown in Figures 2(a) and 2(b).

We do not discuss the simple case shown in Figure 2(a) here as a similar case will be
discussed at length in the next section.

As for the difficult case with γ = 0, solving (4.17) yields that (rk1 , rk2) = (rk10, rk20) =
(0, 0) is always a root and that up to three other roots (in the positive quadrant) can appear,
as follows:

(rk1 , rk2) = (rk11, rk20) = ( 1.57118
√

−Aε−0.0660777τε
β , 0 ) for Aε+0.0660777τε

β < 0,

(rk1 , rk2) = (rk10, rk21) = ( 0, 0.724522
√

−Aε−0.785373τε
β ) for Aε+0.785373τε

β < 0,

(rk1 , rk2) = (r12, r22) = ( 0.68769
√

Aε−0.46195τε
β , 1.21275

√
−Aε−0.019497τε

β )

for Aε−0.46195τε
β > 0, Aε+0.019497τε

β < 0,
(4.18)

σ1 = 0.177705 (Aε − 0.616891τε) , σ2 = −0.269477 (Aε + 0.558141τε) .

The stability of the solution (4.16) determined by (4.18) can be easily analyzed with the aid
of (4.17). Thus, the parameter plane (A, τ) in the neighborhood of (Ac, τc) is divided into
seven regions (I)–(VII) bounded by (4.18), as shown in Figure 2(b), which is very similar to
that produced by Guckenheimer and Holmes (cf. Figure 7.5.5 in [32]).
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In Figure 2(b), there are a stable trivial solution (0, 0) and an unstable periodic solution
(0, rk21) in region (I) which is an amplitude death region. With (A, τ) changing to region (II),
the trivial solution loses its stability and no local solution appears. Two unstable solutions at
(0, 0) and (rk11, 0) exist in region (III). When (A, τ) enters into region (IV), there are three
unstable solutions given by (0, 0), (rk11, 0), and (0, rk21). The stable nontrivial solutions of
system (4.17) occur in regions (V) and (VI), determined by (rk12, rk22) and (rk11, 0), respec-
tively. The other unstable solutions in region (V) are at (0, 0), (rk11, 0), and (0, rk21), and
those in region (VI) at (0, 0), (0, rk21). It is easily seen from (4.16) that the stable solution in
region (V) is quasi-periodic as σ1/σ2 is not a rational number. Particularly, the Hopf bifurca-
tion of the nontrivial equilibrium at (rk1 , rk2) = (r12, r22) occurs in the cubic amplitude system
(4.17). This leads to the boundary between regions (VII) and (VIII), and a three-dimensional
invariant torus in the full four-dimensional system on the central manifold occurs in region
(VIII). Thus, one has to consider the truncated fifth-order amplitude system to observe the
cycle generated by the Hopf bifurcation. Following section 8.6 in [36], one can obtain the
border between regions (VIII) and (V), given by

τ = −15.377 − 134.333A− 211.40A2, A ≤ Ac,(4.19)

along which the cycle coexists with three saddles at (rk10, rk20), (rk11, rk20), and (rk10, rk21).
Thus, the cycle disappears via a heteroclinic bifurcation when the parameter is varied from
regions (VIII) to (V). These results are also sketched in Figure 2(b).

Now, the numerical simulation is employed to examine the validity and accuracy of step
one of the PIS (or perturbation step of the PIS) for the difficult case as shown in Figure 2(b).
To this end, the following two cases are considered. The values of the delay and gain are
chosen to be, first, close to, and second, far away from the double Hopf bifurcation point at
(Ac, τc) in Figure 2(b). The Runge–Kutta scheme is adopted to produce the numerical results,
where β = 4, γ = 0, and the other parameters are the same as those in Figure 1. The gain A
is kept fixed for the two cases as the effect of the time delay on the system under consideration
is the prime concern.

First, we consider the case of A kept fixed and τ varying in region (VI). Figure 3 shows
a comparison between the approximate solution (4.16) represented by a solid line and the
numerical simulation from system (4.1) represented by crossing symbols for (a) A = −0.3348,
τ = 5.852; (b) A = −0.33, τ = 5.7; (c) A = −0.31, τ = 5.4; and (d) A = −0.33, τ = 5.2. The
values of (A, τ) in Figures 3(a) and (b) are close to (Ac, τc), while those of Figures 3(c) and (d)
are far away. In Figures 3(a) and (b), the analytical prediction is in good agreement with the
numerical result. This implies that the periodic solutions obtained from the presented method
are accurate even for large ε as long as (A, τ) are near the double Hopf bifurcation point at
(Ac, τc). With (A, τ) drifting away from (Ac, τc), the accuracy decreases as shown in Figures
3(b) and (d). This can be seen clearly from Figures 4(a) and (b), where τ is decreased from
τc while A is kept fixed.

A similar conclusion can be obtained for (A, τ) in region (V). The time history of the
quasi-periodic solution of system (4.1) is illustrated in Figures 5(a) and (b) with small and
large ε, where the approximate solution (4.16) is represented by a solid line and the numerical
simulation by crossing symbols. It follows from Figure 5, where good agreement is observed
between the analytical prediction and the numerical simulation, that step one of the PIS can
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Figure 3. A comparison among the approximate solution (4.16) (solid), the solution from step two of the
PIS (thick blue), and the numerical simulation (crossing symbols) in Max(u) versus ε for the periodic solution
of system (4.1) with (A, τ) located in region (VI) in Figure 2: (a) A = −0.3348, τ = 5.852, (b) A = −0.33,
τ = 5.7, (c) A = −0.31, τ = 5.4, and (d) A = −0.33, τ = 5.2.
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Figure 4. A comparison between the approximate solution (4.16) (solid), the solution from step two of the
PIS (thick blue), and the numerical simulation (crossing symbols) in Max(u) versus τ for the periodic solution
of the system (4.1) when (A, τ) is located in region (VI) of Figure 2, where (a) ε = 0.1 and (b) ε = 1.0 and
A = −0.3365.

provide an analytical expression with high accuracy in the neighborhood of the double Hopf
bifurcation point even for the quasi-periodic motions. However, with (A, τ) drifting away from
the bifurcation point, the method becomes invalid as shown in Figure 6.

From Figures 3 to 6, one can see that step one of the PIS provides not only a fairly good
prediction qualitatively but also an analytical expression with high accuracy for both periodic
and quasi-periodic motions when parameters are chosen to be close to the weak resonant
point. However, the analytical expression is not accurate enough quantitatively when the
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Figure 5. A comparison between the approximate solution given in (4.16) (solid) and the numerical sim-
ulation (crossing symbols) in time history for the quasi-periodic solution of system (4.1), where (a) ε = 0.1,
(b) ε = 1, and A = −0.34, τ = 5.85 are chosen in region (V) of Figure 2 and close to (Ac, τc).
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Figure 6. A comparison between the approximate solution (4.16) (solid) and the numerical simulation
(line with diamond symbols) in time history for the quasi-periodic solution of system (4.1) when (A, τ) is in
region (V) but far away from (Ac, τc), where ε = 1, A = −0.5, τ = 4.

bifurcation parameters drift away from the bifurcation point. The approximate expression is
now considered as an initial guess for step two of the PIS which traces the periodic solutions
for bifurcation parameters far away from (Ac, τc).

To this end, we choose ε = 1 and (τ, A) = (5.85,−0.3365) which is close to (Ac, τc) as the
starting point. It follows from Figure 2(b) that this point is located in region (VI) at which
the stable periodic solution is given by

Z(t) =

{
rk11 cos((0.585895 + εσ1) t + θ1)

−0.585896 rk11 sin((0.585895 + εσ1) t + θ1)

}
,(4.20)

where rk11 and σ1 are determined by (4.18), τε = τ − τc, Aε = A − Ac, and θ1 is determined
by initial values. Thus, θ1 = 0 by setting v(0) = 0. The solution (4.20) is in good agreement
with the numerical one as depicted in Figure 7(a), but such agreement disappears for τ = 3
as shown in Figure 7(b). If the solution (4.20) is considered as an initial guess of step two,
then the initial coefficients in the incremental solution given by (3.21), (3.16), and (3.19) can
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Figure 7. A comparison between the approximate solution (4.16) (solid), solution (thick blue) from step
two of PIS and the numerical simulation (crossing symbols) in phase plane for the periodic solution of system
(4.1), where (a) τ = 5.85, (b) τ = 3, ε = 1, and A = −0.3365 throughout.

Table 2
Coefficients of u, v, Φ(φ), and φ1 for solution derived from step two of the PIS in Figure 7(b).

m = 8, A = −0.38, ε = 1.0, τ = 3.0

i a1i b1i a2i b2i pi qi ri si
0 0 0 0 0 0.10761 0 -3.88243 0
1 0.6575807 0 0.01062 -0.61389 0 0 0 0
2 0 0 0 0 0.166645 -0.04232 0.02121 -0.01261
3 0 0 -0.01085 -0.043191 0 0 0 0
4 0 0 0 0 -0.00416 0.00096 -0.00111 0.00024
5 0 0 0.00021 0.00145 0 0 0 0
6 0 0 0 0 -0.00054 -0.00010 0.00006 -0.00002
7 0 0 -0.00002 -0.00009 0. 0 0 0
8 0 0 0 0 -0.00002 0 0 0

be expressed as (cf. (3.23), (3.24), and (3.25))

a0 = 0, a1 =

{
rk11

0

}
, b1 =

{
0

−0.585895 rk11

}
,

aj = bj = 0 for j = 2, . . . ,m,

(4.21)

p0 = 0.195298 +
σ1

3
, pj = qj = 0 for j = 1, . . . ,m,(4.22)

and

r0 = −p0 τ = −5.85
(
0.195298 +

σ1

3

)
, rj = sj = 0 for j = 1, . . . ,m.(4.23)

With the incremental procedure from τ = 5.85 down to τ = 5.85 + nΔτ = 3 (n ∈ Z+,
|Δτ | 	 1) and step two of the PIS in terms of (3.26)–(3.42), a converged periodic solution at
τ = 3 can easily be obtained after a few iterations as shown in Figure 7(b). It follows from
Figure 7(b) that although the approximate solution derived from the theorem is far away from
the numerical solution, an accurate solution can be obtained through the incremental process
of the PIS. The updated solution by step two of the PIS is listed in Table 2.
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Similarly, we can use step two to consider the other cases of Figures 3 and 4. However, the
incremental step of the PIS has not been presented here for the continuation of quasi-periodic
solutions shown in Figures 5 and 6. This will be investigated in future.

Finally, the numerical simulation verifies that there is a stable trivial solution in region (I)
but not any stable solution in regions (II), (III), (IV), and (VII).

5. Stuart–Landau system with time delay. As the second example, we consider the
Stuart–Landau system with a limit cycle oscillator governed by

ẋ = αx− ω0 y − (x2 + y2)x,

ẏ = ω0 x + α y − (x2 + y2) y,
(5.1)

where ω0 is the frequency of the oscillator, α a real positive constant. It is easily seen that
system (5.1) has a stable limit cycle of amplitude

√
α with frequency ω0. The system (5.1) is

the normal form of a supercritical Hopf bifurcation for a two-dimensional autonomous system
and it can also be obtained by averaging the van der Pol–Mathieu system. Therefore, it is
useful for modeling numerous engineering problems. In addition, it is often regarded as a basic
element in a large scale system such as the Kuramoto model [29]. The collective dynamics of
a large scale system depend on the dynamic behavior of each individual subsystem and the
coupling between these subsystems. The time delay often occurs in such a coupling due to
finite propagation speeds of signals, finite reaction times, and finite processing times [30, 31].
Thus, the dynamics of each oscillator can be considered as being excited by a driven source
which comes from the collective feedback of the other oscillators. Motivated by such a view,
we consider

ẋ = αx− ω0 y − ε(x2 + y2)x−K xτ ,

ẏ = ω0 x + α y − ε(x2 + y2) y −K yτ
(5.2)

to study the resonant double Hopf bifurcation due to the time delay, where xτ = x(t − τ),
yτ = y(t − τ), K is a real positive constant and represents a feedback strength, and ε is a
small or large parameter.

Comparing system (5.2) with the linear part of (2.1), one obtains

c11 = c22 = α, c21 = c12 = ω0,

d11 = d22 = −K, d12 = d21 = 0, det(D) = K2.
(5.3)

For K ≥ α, substituting (5.3) into (2.18) and (2.19) yields

ω− = ω0 −
√

K2 − α2,

ω+ = ω0 +
√

K2 − α2,
(5.4)

τ−[j] = 1
ω−

(
2jπ − cos−1(α/K)

)
,

τ+[j] = 1
ω+

(
2jπ + cos−1(α/K)

)
,

(5.5)
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and a k1 : k2 weak resonant double Hopf bifurcation can be expressed as

Kc =
α

cos
(

2jπ(k2−k1)
k2+k1

) , τc =
4jk1π

(k1 + k2)ω−
(5.6)

provided that ω0 >
√
K2 − α2, k1, k2 ∈ Z+, k1 < k2, and k1 �= 1. Correspondingly, ω± are

expressed as

ω− =
2 k1 ω0

k1 + k2
, ω+ =

2 k2 ω0

k1 + k2
(5.7)

at the double Hopf point. The explicit expressions in (5.4) and (5.5) are the same as that
derived by Reddy and his coauthors [12]. By using (5.6)–(5.7), we obtain the distribution of
some weak resonant double Hopf points, as shown in Table 3.

Table 3
Some critical values at possible resonant double Hopf bifurcation for system (5.2).

j ω− : ω+ α Kc ω− τc

2:3 −1+
√

5

5
√

2 (5+
√

5)
2
5

√
2

5+
√

5

4
5

2π

3:4
cos( 2 π

7
)

√
49−49 cos( 2 π

7
)
2

1√
49−49 cos( 2 π

7
)
2

6
7

2π

3:5 0 1
4

3
4

2π

1 4:5
cos( 2 π

9
)

9
√

1−cos( 2 π
9

)
2

1√
81−81 cos( 2 π

9
)
2

8
9

2π

5:6
cos( 2 π

11
)

11
√

1−cos( 2 π
11

)
2

1√
121−121 cos( 2 π

11
)
2

10
11

2π

5:7 1

6
√

3

1

3
√

3

5
6

2π

5:8
3 cos( 6 π

13
)

13
√

1−cos( 6 π
13

)
2

3

13
√

1−cos( 6 π
13

)
2

10
13

2π

6:7
cos( 2 π

13
)

13
√

1−cos( 2 π
13

)
2

1√
169−169 cos( 2 π

13
)
2

12
13

2π

4:5
cos( 4 π

9
)

9
√

1−cos( 4 π
9

)
2

1√
81−81 cos( 4 π

9
)
2

8
9

4π

2 5:6
cos( 4 π

11
)

11
√

1−cos( 4 π
11

)
2

1√
121−121 cos( 4 π

11
)
2

10
11

4π

6:7
cos( 4 π

13
)

13
√

1−cos( 4 π
13

)
2

1√
169−169 cos( 4 π

13
)
2

12
13

4π

3 6:7
cos( 6 π

13
)

13
√

1−cos( 6 π
13

)
2

1√
169−169 cos( 6 π

13
)
2

12
13

6π

It can be seen from Table 3 that the resonant double points occur periodically with
increasing τc provided that ω0 >

√
Kc

2 − αc
2.

Figures 8(a) and (b) show three cases for the frequency ratios 2:3, 3:5, and 7:9, respectively,
where the grey regions represent the amplitude death. The parameters for 2:3 and 3:5 are
presented in Table 3.

To study the solutions derived from the double Hopf bifurcation, we let τ = τc + ετε and
K = Kc + εKε so that system (5.2) becomes

Ż(t) = C Z(t) + Dc Z(t− τc) + F̃ (Z(t), Z(t− τc), Z(t− τc − ετε) , ε),(5.8)
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Figure 8. Resonant double Hopf bifurcation diagrams with frequencies in the ratio of ω− : ω+ = k1 : k2 for

(a) α = −1+
√

5

5
√

2 (5+
√

5)
, ω0 = 1.0, Kc = 2

5

√
2

5+
√

5
corresponding to frequency ratio 2:3 (j = 1), and (b) α = 0,

ω0 = 1.0 to ratio 3:5 (j = 1, Kc = 1
4
) and 7:9 (j = 2, Kc = 1

8
), where solid lines represent τ+, dashed lines

τ−, and grey regions amplitude death.

where

Z(t) =

{
x(t)
y(t)

}
, C =

[
α −ω0

ω0 α

]
, Dc =

[ −Kc 0
0 −Kc

]
,

Dε =

[ −Kε 0
0 −Kε

]
, F (Z(t) ) =

{ −x(x2 + y2)
−y(x2 + y2)

}
,

F̃ (Z,Zτc , Zτc+ετε , ε) = Dc [Zτc+ετε − Zτc ] + ε
[
DεZ(τc+ετε) + F (Z)

]
.(5.9)

A double Hopf bifurcation with weak resonance may occur in the system when ε = 0.

As an example, we take ω0 = 1 and α = −1+
√

5

5
√

2 (5+
√

5)
. From Table 3, a 2:3 resonant double

Hopf bifurcation occurs in system (5.2) at (K, τ) = (Kc, τc) = (2
5

√
2

5+
√

5
, 2π). Thus, the

solution of (3.7) can easily be obtained as

W (t) =

{
p2 sin(4

5 t) + p3 sin(6
5 t) + q2 cos(4

5 t) + q3 cos(6
5 t)

−p2 cos(4
5 t) − p3 cos(6

5 t) + q2 sin(4
5 t) + q3 sin(6

5 t)

}

.(5.10)

It follows from (3.5) and (3.6) that the approximate solution of (4.11) can be expressed as

Z(t) =

{
a2 sin((4

5 + εσ1)t) + a3 sin((6
5 + εσ2)t) + b2 cos((4

5 + εσ1)t) + b3 cos((6
5 + εσ2)t)

−a2 cos((4
5 + εσ1)t) − a3 cos((6

5 + εσ2)t) + b2 sin((4
5 + εσ1)t) + b3 sin((6

5 + εσ2)t)

}

.

(5.11)

Substituting (5.9), (5.10), and (5.11) into (3.8) and noting that p2, p3, q2, and q3 are inde-
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Figure 9. Classification and bifurcation sets of the solution for the system (5.2) due to 2:3 resonant double
Hopf bifurcation where solid lines, dashed lines, and dot-dashed lines represent boundaries, and amplitude death
region is in grey.

pendent yield

r2

(
4Kε +

(−1 +
√

5
)
r2

2 + 2
(−1 +

√
5
)
r3

2 +

√
2
(
5 +

√
5
)
σ1

)
= 0,

r2

(
25

√
2
(
5 +

√
5
) (

r2
2 + 2r3

2
)

+ 5
(
5 − 5

√
5 + 16

√
2

5+
√

5
π
)
σ1 + 32

√
2

5+
√

5
τε

)
= 0,

r3

(
4Kε + 2

(−1 +
√

5
)
r2

2 +
(−1 +

√
5
)
r3

2 −
√

2
(
5 +

√
5
)
σ2

)
= 0,

r3

(
25

√
2
(
5 +

√
5
) (

2r2
2 + r3

2
)− 5

(
5 − 5

√
5 + 16

√
2

5+
√

5
π
)
σ2 − 48

√
2

5+
√

5
τε

)
= 0,

(5.12)

where a2 = −r2 sin θ1, b2 = r2 cos θ1, a3 = −r3 sin θ2, b3 = r3 cos θ2, and θ1 and θ2 are
determined by the initial values. Correspondingly, (5.11) becomes

Z(t) =

{
r2 cos

(
(4
5 + ε σ1)t + θ1

)
+ r3 cos

(
(6
5 + ε σ2)t + θ2

)

r2 sin
(
(4
5 + ε σ1)t + θ1

)
+ r3 sin

(
(6
5 + ε σ2)t + θ2

)

}

,(5.13)

where r2, r3, σ1, and σ2 are determined by (5.12), from which the stability can also be
analyzed. Thus, all local solutions and their stability in the neighborhood of a double Hopf
bifurcation are classified, as shown in Figure 9. The solutions in the same region have the
same topological structure. It is easily seen that (r20, r30) = (0, 0) is always a root of (5.12)
and the existence of other roots depends on the location of (K, τ). For example, there are four
roots in region (IV), given by (0, 0), (r21, 0), (0, r31), and (r22, r32), in which the two coexisting
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Figure 10. A comparison among the approximate solution (5.13) (solid), the solution from step two of
the PIS (thick blue), and the numerical simulation (crossing symbols) in Max(x(t)) versus ε for the periodic
solution of system (4.1) with (K, τ) located in region (II) in Figure 9: (a) K = 0.2, τ = 6.0, (b) K = 0.2,
τ = 5.0.

periodic solutions with (r21, 0) and (0, r31) are stable, while only one root exists on region (I).
All roots can easily be solved from (5.12) for a 2:3 resonant double Hopf bifurcation:

(r20, r30) = (0, 0),

(r21, r30) = (0.0159182
√

6751.8Kε − 1067.17 τε, 0),

(r20, r31) = (0, 0.0159182
√

6751.8Kε + 1600.76 τε),

(r22, r32) = (0.00919038
√

6751.8Kε + 4268.69τε , 0.00919038
√

6751.8Kε − 3735.11τε),

σ1 = 0.1 (0.878616 τε − 16.0735Kε) , σ2 = 0.1 (16.0735Kε + 1.31792 τε) .

(5.14)

It can be obtained from an analysis of the stability that a unique periodic solution exists
in all regions except in regions (I) and (IV). The region (I) is a “death island” and there two
stable periodic solutions coexist in region (IV). In addition, there is an unstable quasi-periodic
solution in region (IV). Similar to the technique described in the previous sections, the stable
harmonic solution is investigated to verify the validity and accuracy of step one of the PIS
by comparing it with the numerical simulation for system (5.2). Two cases are investigated.
The values of the delay and gain are chosen to be, first, close to, and second, far away from
the double Hopf bifurcation point at (Kc, τc). Figures 10(a) and (b) show the comparisons
for the two cases. When (K, τ) is near the double Hopf point, the approximate solution in
the analytical form given by (5.11) has good agreement with the numerical simulation even
for large ε. However, the discrepancy becomes apparent when (K, τ) is away from (Kc, τc).
Therefore, step one of the PIS is valid and accurate quantitatively if both |K−Kc| and |τ−τc|
are small. It may also provide a fairly accurate qualitative analysis if |K−Kc| or |τ−τc| is not
small. This can be observed in Figures 11(a)–(c), where ε is fixed and three different values
of K are considered which correspond to the small, medium, and large values of |K −Kc|. In
Figure 11(a), as τ is increased across the boundaries near the double Hopf point the system
enters the amplitude death island from a periodic motion (region (II)) and then goes back to
another periodic motion (region (VI)) again. For the two cases of K = 0.3 and K = 0.4, when
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Figure 11. A comparison between the approximate solution of (5.13) (solid), the stable solution from
step two of the PIS (thick blue), the unstable solution from step two of the PIS (thick dashed lines), and the
numerical simulation (crossing symbols) in Max(x) versus τ when τ transverses from region (II) to (VI) in
Figure 9 for (a) K = 0.2, (b) K = 0.3, (c) K = 0.4, where ε = 1.0.

τ is in the regions (III)–(V), the system has two coexisting periodic motions with different
amplitudes and frequencies. These two periodic solutions are stable in region (IV) (see Figures
11(b) and (c)). Moreover, it follows from Figure 11 that step one of the PIS is able to predict
the harmonic motions of the system qualitatively, although it is not accurate enough quanti-
tatively to represent these motions when (K, τ) is far away from the double Hopf bifurcation
point. In particular, it is difficult to find the initial guesses for the coexisting solutions if one
employs the IHB method. The PIS overcomes this disadvantage as the approximate solution
derived from step one can provide such a guess for subsequent continuation.

Next, we use step two of the PIS to trace those periodic solutions at values far away from
(Kc, τc). To this end, we first choose ε = 1 and (τ,K) = (6.3, 0.3) which is closed to (Ac, τc) as
a starting point to illustrate the process of the application of the PIS. It follows from Figure 9
that this point is located in region (IV) and there are two coexisting stable periodic solutions
given by

Z(t) =

{
r21 cos((4

5 + σ1) t + θ1)

r21 sin((4
5 + σ1) t + θ1)

}

,(5.15)

and

Z(t) =

{
r31 cos((6

5 + σ2) t + θ2)

r31 sin((6
5 + σ2) t + θ2)

}

,(5.16)

respectively, where r21, r31, σ1, and σ2 are determined by (5.14), and τε = τ−τc, Kε = K−Kc.
The solutions (5.15) and (5.16) are in good agreement with the numerical one as depicted in
Figure 12(a), but such good agreement disappears with τ varying to τ = 6.16 as shown in
Figure 12(b). Thus, step two of PIS is used to trace the real solutions. The initial guess of
step two is given by

a0 = 0, a1 =

{
r21

0

}
, b1 =

{
0
r21

}
, aj = bj = 0 for j = 2, . . . , 5,(5.17)

p0 =
4

5
+ σ1, pj = qj = 0 for j = 1, . . . , 5,(5.18)

r0 = −6.16

(
4

5
+ σ1

)
, rj = sj = 0 for j = 1, . . . , 5,(5.19)
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Figure 12. A comparison between the approximate solution (5.13) (solid), the solution from step two of the
PIS (5.23) and (5.24) (thick blue), and the numerical simulation (crossing symbols) in phase plane for the two
coexisting periodic solutions of system (4.1), where (a) τ = 6.3, (b) τ = 6.16, K = 0.3, and ε = 1.0 throughout.

and

a0 = 0, a1 =

{
r31

0

}
, b1 =

{
0
r31

}
, aj = bj = 0 for j = 2, . . . , 5,(5.20)

p0 =
6

5
+ σ2, pj = qj = 0 for j = 1, . . . , 5,(5.21)

r0 = −6.16

(
6

5
+ σ2

)
, rj = sj = 0 for j = 1, . . . , 5,(5.22)

where θ1 and θ2 are chosen to be zero. With the incremental procedure from τ = 6.3 to
τ = 6.3 + nΔτ = 6.16 (n ∈ Z+, |Δτ | 	 1) and step two of PIS from (3.26) to (3.42), two
converged periodic solutions at τ = 6.16 can easily be obtained after a few iterations, given
by

Z(φ) =

{
0.35793

0

}
cosφ +

{
0

0.35793

}
sinφ,

Φ(φ) = 1.29719, φ1 = φ− 7.99074,

(5.23)

and

Z(φ) =

{
0.39613

0

}
cosφ +

{
0

0.39613

}
sinφ,

Φ(φ) = 0.71443, φ1 = φ− 4.40092.

(5.24)

The stability of the obtained solutions can be analyzed by using (3.41) and (3.42). It follows
from Figure 12(b) that the approximate solution derived from the perturbation step of the
PIS is far away from the numerical solution but an accurate solution is obtained through step
two of the PIS, which shows good agreement with that from the numerical simulation.

Similarly, we can use the PIS to consider the other cases as shown in Figures 10 and 11,
where the thick solid lines represent stable solutions and the thick dashed lines instable ones.
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6. Discussion and conclusion. We close with a brief discussion of the implication of
the results obtained from system (2.1). Many current methods can be employed to classify
and describe the dynamics and the bifurcating solutions of systems governed by a set of
ODEs [32, 33]. Some of them can be extended to investigate local dynamics of systems
governed by a set of DDEs. However, such computation is very tedious [20, 28, 21, 23,
25]. The MMS is valid only for weak nonlinearities and for fixed delay [5, 19]. Therefore,
seeking an easy and valid method to investigate delay systems with strong nonlinearity and
variable delay has become an open problem. In fact, it is well known that the time delay
can lead to various bifurcations and complex dynamics of a delay feedback system. A double
Hopf bifurcation is one of these bifurcations. This paper deals with delay-induced resonant
double Hopf bifurcations and harmonic solutions in a type of two-dimensional DDE with
bifurcation parameters of arbitrary magnitude. It is an extension of the recent investigation
[22, 27, 21] of the authors. A new method is proposed to classify those harmonic solutions
derived from double Hopf bifurcations, including the periodic, quasi-periodic, and coexisting
solutions, both quantitatively and qualitatively. When two parameters vary autonomously in
the neighborhood of a double Hopf bifurcation point, the topological structure of the solution
and dynamics of the system exhibit genuinely distinct stability types, which correspond to
different bifurcation sets. The phase portraits of all cases reduce to the same degenerate one
as the two parameters tend to the double Hopf bifurcation point.

For those values of the two parameters close to the double Hopf point, step one of the
PIS provides not only a qualitative classification of solutions arising from the double Hopf
bifurcation, but also produces an accurate analytical expression for the bifurcating solutions,
such as periodic, quasi-periodic, and coexisting periodic solutions.

For those values far away from the double Hopf point, the perturbation step is invalid
quantitatively but still valid qualitatively. The PIS developed recently by the authors and
their collaborators is extended quantitatively to express the periodic solutions in a closed
form. Moreover, the quantitative results obtained by the theorem may be regarded as the
initial guess of the incremental step of the PIS to overcome the disadvantage of the IHB
method.

The system investigated in this paper consists of two first-order DDEs with variable delay
feedback and nonlinearities and has only one limit cycle in the absence of time delay. It
is one of the most simple cases. By using this simple system as a model, one can vividly
observe the effects of the time delay on it. Physically, the system may be regarded as a basic
element integrated into a large scale system. As illustrative examples, two typical systems,
namely, the van der Pol–Duffing and the Stuart–Landau systems, are considered to show the
advantage of the PIS by comparing the analytical and numerical results. In addition, one
can again observe that the time delay can induce a system with one limit cycle to gradually
contain quasi-periodic and coexisting periodic motions, as the result of a resonant double Hopf
bifurcation derived from the time delay and gain.

In this paper, we treat only weak resonant double Hopf bifurcations. Such bifurcations are
codimension-2 phenomena and require two parameters to unfold. It should be noted that a
double Hopf bifurcation with 1:2 strong (or low-order) resonance occurs in (4.1) when α = 0,
A = −3/8, and τ = 2π. The strong resonant bifurcation requires three parameters to unfold
in order to consider the features of solutions near the bifurcation point. It is possible to
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find period doubling bifurcations near such a point for a system without the time delay [18].
The possible extension of the PIS to strong resonances and quasi-periodic solutions will be
considered in future research.

Acknowledgment. The constructive comments by the anonymous reviewers are gratefully
acknowledged.
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A Model for p53 Dynamics Triggered by DNA Damage∗
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Abstract. Several recent experiments on DNA-damage-induced signaling networks in mammalian cells have
shown interesting dynamics in p53 protein expression during the repair cycle. Pulses of p53 are
produced, whose frequency and amplitude are fairly independent of the amount of damage, but the
probability of a cell exhibiting this pulsatile behavior increases with damage. This phenomenon has
been described as a “digital oscillator.” We present here a simple model oscillator comprising two
species, p53 and Mdm2, which is activated by the Atm kinase. The Atm kinase exhibits bistable
switch-like behavior. The network dynamics essentially consists of the core p53 oscillator, which is
turned ON/OFF by the Atm switch, which is in turn activated by DNA damage. The complex
dynamics are thus explained by the modular nature of the network and are fairly independent of the
biological details. A stochastic model of the network dynamics reveals that the pulsatile behavior
is robust to intrinsic noise of the protein components and extrinsic noise which arises due to noisy
damage signals. The robustness is due to the bistable switch, which makes the system more resilient
to stochastic fluctuations in its components. However, the system is more susceptible to noise in
the Mdm2 protein production rate.

Key words. mathematical biology, Hopf bifurcation, stochastic, Langevin
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The p53 protein is a transcription factor that is present in most higher eukaryotes. It
has three major functions: it arrests the cell cycle, thereby giving the cell time to correct
any DNA damage, activates transcription of gene indirectly responsible for DNA repair, and
can be the cause of apoptosis [1]. The p53 protein is subject to a series of posttranslational
modifications that modulate its transcription factor activity [1].

A phosphorylated form of p53, p53-P, is the active transcription factor that binds to a
number of target DNA sites that regulate the expression of several genes involved in cell cycle
checkpoint arrest and programmed cell death, respectively [2]. Additionally, p53-P induces
transcription of the gene p53AIP1, whose product in the cytoplasm leads to the release of
cytochrome-c protein from mitochondria, which in turn activates programmed cell death di-
rectly by activating the cytoplasmic protease cascade [3]. The p53 protein regulates itself
through its interaction with Mdm2. The phosphorylated form of p53 is a transcription factor
for the Mdm2 gene, whose protein product targets p53 to degrade by the process of ubiquiti-
nation [4]. p53 is a target of the Atm kinase, a protein frequently abnormal in the inherited
human disease Ataxia Telangiectasia, which causes the phosphorylation of p53 [5], thus mak-
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ing p53 an effective transcription factor. Ionizing radiation generates DNA double strand
breaks that trigger the kinase activity of Atm [6, 7, 8]. Hence if DNA damage occurs, Atm is
activated, which in turn activates p53 and Mdm2.

Recently, Lahav et al. [9] measured intracellular concentration of total p53 and Mdm2
proteins by fusing their coding sequences to fluorescent reporter domains. Examination of
single human cells following treatment with ionizing radiation that produces DNA double
stranded breaks (DSB) revealed that p53 and Mdm2 protein concentrations in single cells
oscillate in response to DNA damage. The period and the amplitude of these oscillations
remained fairly constant over a range of radiation doses. The number of pulses, however, was
found to be proportional to the radiation dose; i.e., the larger the dose, the more pulses were
observed. Lahav et al. [9] therefore proposed that the system behaved as a “digital oscillator.”
These observations led to several interesting models and hypotheses [10, 11].

More recently, Alon and colleagues further improved upon these earlier experiments [12],
in which the p53 and Mdm2 protein levels were monitored for several days. These experiments
led to new insight about the system. The data showed that many cells exhibited the pulsatile
behavior which continued over the entire course of the experiment. In general, it was found
that the pulses were fairly regular, but with variation in amplitude. Increasing the amount
of damage led to more cells being coerced into oscillations. This leads one to believe that
the probability of a cell to exhibit oscillations is proportional to the damage. The authors
also developed several models that suggest that basal production rates were responsible for
increased variation of the amplitude.

In response to the first set of experiments which showed the digital oscillator behavior,
Tyson [13] suggested a novel DNA damage control system. Following DNA damage, the
steady state p53 concentration was assumed to pass through a Hopf bifurcation (HB) [14, 15]
(as a function of the damage parameter) and the p53 and Mdm2 levels begin to oscillate. This
would lead to a halt of the cell cycle, giving time for the machinery of the cell to correct
the damage. Once the damage is corrected, the system is pulled back from the oscillatory
region to its original steady state. This idea was further expanded into an explicit model
that took into account the regulation of p53 degradation by Mdm2 and p53 as a transcription
factor for Mdm2 RNA synthesis [10]. A crucial aspect of this model was a positive feedback
loop by which p53 inhibits the localization of Mdm2 into the nucleus through its interaction
with PTEN [16], thereby increasing the p53 levels. This positive feedback leads to bistable
behavior which, when coupled to the negative feedback loop (transcription of Mdm2 by p53)
results in a relaxation oscillator. This model differed from earlier models which described
these oscillations by including a sufficiently long delay using negative feedback, as for example
in the case of a hypothetical intermediate step introduced by Bar-Or et al. [17].

Another approach to modeling the p53 dynamics makes explicit use of delays in the system
corresponding to the time it takes for transcription and translation of proteins [18, 19, 20].
Using this approach, a recent model [11] described the p53 oscillations arising from the tran-
scriptional delays in a p53-Mdm2 circuit, through its interaction with Atm. In this model the
Atm protein acts as a damage sensor, signaling the presence of DNA damage, which effectively
turns on the p53 oscillator. The model is described by delay differential equations, where the
delay is ascribed to the time required for transcription of Mdm2. DNA repair is modeled as a
stochastic process which leads to a variable number of p53 pulses required to correct a given
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amount of damage.

Recent experiments [12] that contradict some of the original conclusions on the response
of p53 dynamics to the dosage of ionizing radiation have once again opened the doors to ideas
regarding the dynamical basis of models which describe the system. Tyson [21] has compared
the result of two types of dynamics, i.e., passage of the system through a super-/subcritical
Hopf bifurcation, and based upon this has suggested that the variability in the amplitude
but steadiness in periodicity may be the signature of the fact that the system traverses a
supercritical Hopf bifurcation. In this paper, we would like to argue that the variability in
amplitude that arises is due to the stochastic fluctuations in protein numbers, and could be
fairly independent of the specific bifurcation if we fix the oscillatory behavior through the
occurrence of a bistable switch. The super-/subcritical bifurcations are then equivalent in
the sense that the system is rapidly moved from the stable zone into the oscillatory zone
independent of the nature of the bifurcation. A strong motivation for a switch to do this task
is the Atm sensor. On DNA damage it is known that active Atm molecule concentration rises
rapidly and phosphorylates p53. As we will describe in a later section, there is some evidence
on the activity of Atm that points to switch-like behavior. Ma et al. [11] use this to suggest
that the Atm response is ultrasensitive with respect to the damage.

Our motivation for this paper is twofold: we are interested in describing a generic model
that could be used to construct a control system to respond to DNA damage by inducing p53
oscillations, correct the damage, and finally shut off the oscillations; this is much in the spirit
of Ciliberto, Novak, and Tyson [10]. The experiments discussed earlier do not necessarily point
to a control system to repair the damage, as these cells are derived from cancer cell lines which
may already be defective in the repair mechanism. However, we believe it is still important to
hypothesize the idea of a general control system, which can be used to describe the correction
of damage in normal cells. The second motivation comes from recent experiments which
demand that the model must be able to exhibit oscillations with reasonable periodicity, even
if it is constantly buffered by stochastic fluctuations. The stochasticity is due to the inherent
fluctuations which accompany the birth and death of proteins, and fluctuations due to the
damage signal or other noise sources which are external to the core network.

The model we will describe uses a simplified p53-Mdm2 oscillator model which assumes
autocatalytic activity in p53. The Atm damage detector is the input into the basic oscillator,
which activates the oscillator. We assume that the oscillations correct the damage and ulti-
mately the system is shut off. Our model shares some similarity with that of Ma et al. [11]
in that we share the same general structure of a switch determining the onset of oscillations.
There are, however, several testable differences. The authors of [11] construct a biologically
motivated network that explicitly takes into account delay in the system. Although the idea of
using a delay is useful in lumping uncertain details about specific molecular interactions into
a few unknowns, which can subsequently be fitted to experimental data, we believe that by
exploring novel interactions one can identify testable hypotheses. Our model, therefore, has
delays which occur due to the inherent nonlinearity. We also explicitly model the dynamics
of the Atm kinase, as a bistable switch, in a different way than in [11]. Bistability turns out
to be crucial to our model, and gives rise to pulsatile behavior even in the presence of noise
in the damage signaling process. Such behavior would not be possible with ultrasensitivity.

In section 1, we modularize the damage control system and describe the individual basic
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components, i.e., the p53-Mdm2 oscillator model, the Atm switch, and the repair module. In
section 2, we discuss the integrated model dynamics. The effects of stochasticity are analyzed
numerically in section 3, and we finally summarize our conclusions in section 4.

1. Model. Our model network can be modularized into three parts. The first is the
p53-Mdm2 oscillator, the second is the Atm activation network, and the third is the repair
mechanism which involves both Atm and p53.

1.1. The p53 oscillator. We model the p53-Mdm2 network in a simplistic way by assuming
that these are the only two components which interact to give oscillations. This simplification
is made to highlight the underlying structure in which the Atm activation module interacts
with the p53 oscillator model. In reality it is known that there are several other components,
such as the phosphorylated forms of p53, Mdm2, and other genes such as SIAH and ARF [4],
which are part of the p53 pathway.

The central biologically known interactions that need to be captured by the model are that
p53 activates Mdm2 and that Mdm2, in turn, causes the degradation of p53 [1]. As such, if x
and y are used to denote the concentrations of p53 and Mdm2, respectively, the two-variable
system can be written in the form

ẋ = F (x, y), ẏ = G(x, y);(1)

the functions F and G must have the properties that Gx > 0 (for p53 to activate Mdm2)
and Fy < 0 (for Mdm2 to degrade p53). Here, Fx and Gy refer to partial derivatives. In
seeking to obtain a model with possible oscillatory behavior in the form of a limit cycle, a
fixed point of the system that resides within the limit cycle needs to be an unstable spiral so
that trajectories in the phase plane originating at that fixed point spiral out and asymptote
onto the limit cycle. For a two-dimensional system to have an unstable spiral as a fixed
point, the Jacobian matrix evaluated at the fixed point must have a trace T = Fx + Gy and
a determinant D = FxGy − FyGx that satisfy [14]

T > 0 and D > T 2/4.(2)

Positivity of the trace requires that at least one of the two terms Fx or Gy be positive. This
suggests “autocatalysis” by either p53 or Mdm2. In addition, with a positive trace, the second
condition in (2) requires that −4FyGx > (Fx −Gy)

2. For instance, if only p53 autocatalyzes
itself (Fx > 0, Gy = 0), the degree of autocatalysis must not be so large as to exceed

√−4FyGx

and turn the unstable spiral into an unstable node.

In the absence of autocatalysis, one can still get oscillations if p53 also down-regulates
Mdm2 or Mdm2 also up-regulates p53, in addition to their normally opposite roles.1 Consider
two types of “motifs,” as illustrated in Figure 1, which are discussed in [10]. Figure 1(a) has
autocatalysis in p53, whereas in Figure 2(b), in addition to the normal activation of Mdm2 by
p53, there is a path by which Mdm2 is down-regulated by p53.

Our model for the p53-Mdm2 oscillator is based upon the former pathway, i.e., via au-
tocatalysis, where some evidence seems to suggest such a process [22]). The p53 oscillator

1i.e., Gx < 0 and Fy < 0, respectively.
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Figure 1. Two motifs for the p53-Mdm2 network.

model of Ciliberto, Novak, and Tyson [10] is based upon the second motif.2 This model dif-
fers from two previous models [11, 17] in that it involves, in addition to the transcriptional
activation of Mdm2 by p53, the negative feedback of Mdm2 on p53 through the process of
ubiquitination, a positive feedback loop by which p53 suppresses the nuclear import of phos-
phorylated Mdm2 [16], which normally ubiquinates p53, thereby causing p53 concentration to
rise. This positive feedback leads to the possibility of bistable behavior, which through the
transcriptional activity of p53 on the Mdm2 gene results in relaxation oscillations.

With x(t) = [p53](t) and y(t) = [Mdm2](t) denoting the dimensionless concentrations,
we propose the following biologically motivated system of differential equations to model the
oscillator:

ẋ = α0 + α1x
n/(k1 + xn) − γ1xy − γ2x,

ẏ = α2 + α3x
4/(k2 + x4) − γ3y.

(3)

In the first equation for d[p53]/dt, the first term, α0, represents the production rate of p53.
It is known that Atm phosphorylates p53 and its active form is what transcribes Mdm2. This
term is therefore ascribed to Atm and also includes a basal production level of p53. The second
term represents an autocatalytic process which we assume exists due to positive feedback of
p53 on itself [22] and is described with a Hill coefficient n. The third term on the right-hand
side represents the active process of ubiquitination of p53 by Mdm2 [1], and the fourth term
represents the degradation of p53 independently of Mdm2. Likewise, in the second equation for
d[Mdm2]/dt, the first term describes a basal production level of Mdm2, and the second term
represents the activation of Mdm2 by p53, described by a Hill equation with exponent 4, since it
is known that p53 binds as a tetramer [23]. The last term represents the degradation of Mdm2.
In Figure 2 we show nullclines for the system of equations (3), for two different parameter sets.
The two cases as we will show correspond to two different bifurcation properties. Panel A
shows a stable limit cycle around an unstable state with [p53] � 1.7 and [Mdm2] � 2 for
which we have n = 4, α0 = 1, α1 = 15, α2 = 0.05, α3 = 15, k1 = 80, k2 = 80, γ1 = 0.75,
γ2 = 0.001, and γ3 = 0.75. Panel B shows a stable limit cycle around an unstable state with

2In the appendix we describe an oscillator model similar to the motif in Figure 1(b). The model is qualita-
tively similar to the more refined model of [10] in that it involves a positive feedback loop. The nature of the
bifurcations that we obtain are, however, different, since we obtain supercritical Hopf bifurcations, whereas the
authors in [10] obtain homoclinic bifurcations.
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Figure 2. Nullclines for the two sets of parameter values for the p53 oscillator. ẋ = d[p53]/dt = 0: thick
line. ẏ = d[Mdm2]/dt = 0: dashed line. The thin line in both plots is the stable limit cycle.
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p53−Mdm2 Oscillator: Subcritical Hopf Bifurcation
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Figure 3. Bifurcation and time-series plots of the p53 oscillator model for the two different parameter sets.
Panel A1 shows two supercritical Hopf bifurcations occurring at α0 � 0.1, 6.25. Panel B1 shows two subcritical
Hopf bifurcations occurring at α0 � 10, 180. The time-series plot for p53, Mdm2 in A2 are obtained by setting
α0 = 1, and in B2 by setting α0 = 50.

[p53] � 15 and [Mdm2] � 20 for which we have n = 6, α0 = 50, α1 = 700, α2 = 0.05, α3 = 40,
k1 = 107, k2 = 5 103, γ1 = 1, γ2 = 1, and γ3 = 0.7. We should mention at this point that the
choice of parameters is not obtained from experimental data but merely serves to describe the
dynamics. The nullclines can be manipulated to obtain a specific condition, which is that the
slope of the lines which intersect should both be positive for a positive trace and hence lead
to oscillatory behavior. In Figure 3 we plot the steady state values of p53 as a function of the
bifurcation parameter α0, and the time-series plots of p53 and Mdm2 for the two parameter
sets described. The bifurcation parameter is chosen to be α0, since this is later related to the
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strength of the Atm signal which moves the system from one stable state into another. In
both plots, the upper graph shows the bifurcation diagram for p53 levels as a function of the
parameter α0. Panel A1 shows two supercritical Hopf bifurcations. Setting α0 = 1, we obtain
p53-Mdm2 oscillations as shown in panel A2. The oscillations show the two protein levels as
out of phase, which is expected since the basic network contains an activation-inactivation
loop. For the second parameter set, panel B1 shows two supercritical Hopf bifurcations. In
panel B2 we plot the p53-Mdm2 time series for α0 = 50.

The crucial observation about both oscillators, from a dynamical point of view, is that
if we wish to control the onset of oscillations and “fix” the amplitude and frequency of the
oscillations, then we must be able to quickly turn ON the value of the bifurcation parameter
α0 such that it is within the oscillatory region, and also maintain it at that value until such
time that these oscillations are required. Once this time has elapsed, the bifurcation parameter
can be switched OFF. This then brings the system out of the oscillatory region back to its
original stable state. This means that in the supercritical case α0 must be rapidly moved
from 0 → 1, and in the second case from 0 → 50, since we are assuming that p53 levels are
low to start with, i.e., before damage has occurred. The rapid movement is required to fix
the system into the oscillatory region very quickly so that we obtain oscillations with fixed
amplitude and frequency. Ciliberto, Novak, and Tyson [10] point out that in the case of a
supercritical bifurcation, the slow increase of the amplitude of the oscillations as a function of
the bifurcation parameter would result in a variable amplitude of oscillation as a function of
time, as the system is slowly dragged into the oscillatory zone. In fact, Ciliberto, Novak, and
Tyson use the “sudden birth” of oscillations property of the homoclinic bifurcation [14, 15]
in their model to predict the required digital behavior. Therefore, their model has a switch
naturally built into the model. However, as we will argue, a switch has one more interesting
property which is that it provides stability, keeping the bifurcation point from wandering.

We will therefore couple this oscillator to a bistable switch, which can move the bifurcation
parameter in and out of the oscillatory zone quickly. This can be done by modifying the first
equation in (3) to read

ẋ = α0z + α1x
n/(k1 + xn) − γ1xy − γ2x,

where we now fix α0 = 1, and where z(t) = [Atm-P](t) is the switch variable that will
be described in the next subsection. In all subsequent calculations we choose the second
parameter set, since the oscillations have larger amplitudes, and this allows us to set up a
simple stochastic model. However, the results we obtain are fairly independent of the nature
of the bifurcation, since the switch rapidly moves the system into and out of the oscillatory
zone.3

1.2. The Atm kinase switch. Atm proteins are normally sequestered in the form of
dimers/multimers and are thought to undergo autophosphorylation [8, 24]. A class of phos-
phatases, PP-2A, are known to dephosphorylate Atm-P [25]. When a double strand break
occurs, two events happen very quickly. The first is that the phosphatases dissociate from

3The alternative oscillator model described in the appendix could also be used as the p53 oscillator model,
since a prudent choice of the bifurcation parameter can once again be made to move the system into and out
of the bifurcation zone.
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Atm multimers which results in an increased net phosphorylation rate, and the second is that
the Atm dimers dissociate to form activated monomers. It has been hypothesized that “turn-
ing off” the suppressive effect of the phosphatases on the autophosphorylation of Atm allows
rapid signal transduction of the DNA damage signal [25]. Upon DNA damage, Atm-P accu-
mulates rapidly in the nucleus [8]. We assume that the effect of ionizing radiation is to reduce
the ability of the phosphatases to bind to Atm. This reduction in the phosphatase activity
following DNA damage could be thought to occur due to competition among Atm-P and the
signal Dmg (DNA Damage) to bind to the phosphatases or some other proteins that recruit
PP-2A. Atm-P phosphorylates Nbs1, which is part of the MRN complex, and that the MRN
complex further increases the activity of Atm [26, 27]. We take this as a cue to hypothesizing
the interaction between Atm and Nbs1 as a positive feedback system. As such, active Atm
(i.e., phosphorylated Atm) will activate Nbs1 in the MRN complex (through phosphoryla-
tion), leading to further activity in Atm. This explains why Atm-P levels increase rapidly in
the cell upon DNA damage. Thus, Nbs1-P positively regulates activity of Atm by causing its
phosphorylation. Alternatively, one can regard this effect to be due to a further activation
of Atm-P by Nbs1-P. The preceding discussion motivates a simple model for Atm into which
is built a positive feedback loop wherein the phosphorylated form of Atm-P promotes further
phosphorylation of Atm (this actually occurs through Nbs1, but for simplifying the model we
do not introduce Nbs1). Atm therefore acts as a kinase promoting phosphorylation of itself.
Hence once a small amount of Atm-P is produced, it leads to further increase in Atm-P, until
all the Atm is converted into its phosphorylated form. This should occur only when significant
DNA damage occurs. This process can be modeled by the equation

ż =
α1szw

(k1s + w)
− α2s

(k0d + Dmg)

z

(k2s + z)
,(4)

where z = [Atm-P] and w = [Atm] and w can be obtained by using the conservation equation
Atm+Atm-P = 50 so that w = 50−z. Here, Dmg denotes the DNA damage signal, representing
the amount of DNA damage which exists in the cell. The kinetic constants for this equation
are chosen to be α1s = 1, k1s = 0.05, α2s = 50, k2s = 50, and k0d = 0.1. The second term on
the right-hand side of the equation for ż = d[Atm-P]/dt describes the dependence of the rate of
dephosphorylation as a function of the damage level. We assume that ionizing radiation, which
causes DNA damage, also reduces the ability of phosphatases to bind to Atm. Hence when the
DNA damage signal is high, the rate of dephosphorylation is low, which allows Atm-P to reach
high levels rapidly. When the damage starts to decline, the dephosphorylation rate increases,
Atm-P begins to dephosphorylate, and subsequently Atm reaches high levels. In Figure 4 the
upper plot shows the bifurcation plot of Atm-P as a function of Dmg. There are two saddle-
node bifurcations which make this a bistable switch. For low values of damage, the system’s
stable condition is a low value of Atm-P, and all of the kinase is in its unphosphorylated form.
When the damage crosses the threshold Dmg � 0.9, there is jump in the Atm-P level. If
subsequently the damage is slowly reduced, the switch remains ON until Dmg � 0.42. At this
second threshold Atm-P gets fully unphosphorylated, and Atm levels rise. In the lower panel
we show these dynamics in time, assuming that the damage is reduced exponentially in time.
Hence in this model for the Atm kinase activity we couple the DNA damage signal by making
it the bifurcation parameter.
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Figure 4. Bifurcation and time-series plots of the Atm kinase activity. The upper panel shows a bifurcation
plot of the Atm-P kinase concentration as a function of the DNA damage signal Dmg. There are two saddle-
node bifurcations, SN1 and SN2, corresponding to the thresholds Dmg � 0.9, 0.42 at which the switch is turned
ON/OFF respectively. The lower plot shows the Atm and Atm-P dynamics as a function of time, assuming that
the damage (dotted line) which starts out at a high level decreases exponentially in time: Dmg(t) = 50 exp−0.1t.
The Atm-P level which switches ON initially is ultimately switched OFF after the damage signal (dotted line)
reduces below the threshold 0.42 (indicated by an arrow).

Finally, we assume that the DNA is repaired by the combined actions of Atm-P and p53,
as described by

d[Dmg]

dt
= −αd[Dmg][Atm-P][p53] = −αd[Dmg]zx,(5)

where αd = 2.510−4 is the rate of repair in dimensionless units.

2. Integrated model. As shown in Figure 5, there are three functional modules which
interact with one another through the following: An initial DNA damage stops the process of
dephosphorylation of Atm-P, thereby increasing its levels rapidly; increased levels of Atm-P
activate p53, and this turns ON the p53-Mdm2 oscillator; the p53 oscillations lead to the start
of DNA damage repair, and this gradually reduces the damage signal, Dmg; finally, the rate
of dephosphorylation begins to increase, the Atm switch is turned OFF, and the p53-Mdm2
oscillator is shut down.

In Figure 6 we plot p53, Mdm2, Dmg, Atm-P, and Atm levels for an initial DNA damage
signal Dmg = 10. In the upper plot, after a short time interval, the Atm switch is turned ON,
and the p53 oscillations occur. As the damage decreases, Atm-P decreases rapidly at a later
time, and the system assumes the steady state, i.e., low values of p53, Mdm2 (in all simulations,
the initial conditions are chosen to be the final values of all the protein concentrations, after
any initial damage is repaired). In the lower panel are displayed the Mdm2 and Atm time-series
plots that show that, after the repair, Mdm2 stops oscillating and Atm assumes its steady state
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Figure 5. The core regulatory network. The three modules indicate the p53 oscillator, the Atm kinase
switch, and the DNA damage repair, respectively. These are described in detail in the text.
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Figure 6. Time-series plots of the protein concentrations, p53, Mdm2, Atm, Atm-P, and Dmg. These plots
were obtained for an initial concentration of the damage signal Dmg = 10.

(Atm = 50). The amplitude and frequency of oscillations do not change because the value of
Atm-P is fixed at Atm-P = 50 during the repair process. Atm-P increases/decreases rapidly
and hence the entry/exit from the oscillatory region for the p53-Mdm2 oscillator is very rapid.
This essentially fixes the amplitude and frequency of oscillations.

In Figure 7 we plot p53 for various initial damage levels. The plots show that the number
of pulses increases with increasing damage levels. In each case the amplitude and frequency



A MODEL FOR p53 DYNAMICS TRIGGERED BY DNA DAMAGE 71

0 5 10 15 20 25 30 35 40 45 50
0

50

100

Number of Pulses vs Dmg

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

0 5 10 15 20 25 30 35 40 45 50
0

50

100

Time

C
o

n
ce

n
tr

at
io

n
p53
Dmg

p53
Dmg

p53
Dmg

Figure 7. Number of pulses as a function of initial damage. The plots were obtained for Dmg = 10, 25, 100.
The number of pulses increases with damage levels, though not linearly. A linear relation could be obtained if
the rate of repair were made proportional only to the p53 levels.

of oscillations remain fixed. The number of oscillations are monotonic in the damage level. If
the rate of repair is made proportional to −[p53][Atm] (and independent of Dmg), any initial
damage would decrease almost linearly with time, and hence the number of p53 oscillations
would become linear in the damage level.

3. The effects of stochasticity. Having explored the damage control system, we now
describe the effects of stochasticity on the switch-oscillator system. We assume that there
exists a fixed amount of damage which causes the network to exhibit pulsatile behavior.
We are not so much interested in the control system in this section but rather on how the
network functions for a fixed amount of damage, in the presence of noise. Stochastic effects
are naturally inherent in biochemical networks due to the randomness involved in chemical
reactions. In gene regulatory networks, the stochasticity is ascribed to slow promoter dynamics
and low copy numbers of transcription factors (the randomness is related to the birth and
death of protein numbers) [28]. The noise is naturally divided into two components: intrinsic
noise due to the fluctuations of species comprising the network and extrinsic noise due to
external factors [29] such as temperature fluctuations and noise in signaling events. A complete
treatment of this problem would involve deriving a master equation, which in most cases is
difficult to solve analytically, and hence we resort to Monte Carlo simulations, i.e., Gillespie
runs [30]. However, it is possible to make the approximation that the random effects can be
added to deterministic equations to simulate the noisy environment, leading to a Langevin
treatment [31, 32, 33]. We supplement the deterministic equations with noise terms, which are
Gaussian white noise with variance equal to the mean value of the individual rates contributing
to the Langevin equation. For example, the Langevin equation for a simple birth-death process
for protein p would be
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dp

dt
= A− λp +

√
A + λp η(t),(6)

where η is a unit variance, Gaussian white noise which satisfies 〈η(t)η(t′)〉 = δ(t − t′) and
where the individual noise terms due to the birth (∝ √

A) and death (∝ √
λp) are lumped

together into one noise term. This is because each is an independent Gaussian source of
noise, and the sum of independent such sources is Gaussian with variance equal to the sum
of the variances. This treatment is formally called the chemical Langevin equation and has
been derived for mass action kinetics [31]. Here we assume that under the conditions of
rapid promoter dynamics (p53 binds rapidly to Mdm2 relative to their decay rates), the mean
field equations can be supplemented by noise terms, whose strength is equal to the sum of the
variances of the individual uncorrelated noise terms. We also consider the addition of extrinsic
noise sources, particularly in the damage signal, and noise in the basal rate of production of
Mdm2. We do not consider explicitly extrinsic noise in p53, since that is already taken care
of by assuming noise in the switch that controls the p53 production rate. These assumptions
lead to the equations

ż = α1szw
(k1s+w) − α2s

(k0d+Dmg)
z

(k2s+z) +
√

α1szw
(k1s+w) + α2s

(k0d+Dmg)
z

(k2s+z) η1(t) + D1 η2(t),

ẋ = α0z + α1x
n/(k1 + xn) − γ1xy − γ2x +

√
α0z + α1xn

(k1+xn) + γ1xy + γ2x η3(t),

ẏ = α2 + α3x
4/(k2 + x4) − γ3y +

√
α2 + α3x4

(k2+x4)
+ γ3y η4(t) + D2 η5(t),

(7)

where 〈ηi(t)ηj(t′)〉 = δijδ(t− t′), the noise terms η1, η3, and η4 are due to the intrinsic noise
of Atm-P, p53, and Mdm2, respectively, and η2 and η5 are due to extrinsic noise sources in
the damage signal and Mdm2 basal rate of production, respectively. The above equations can
be simulated using the Euler or implicit Euler method [33], and a typical realization is shown
in panel A, Figure 8. For this plot, Dmg = 10, and D1 = D2 = 0; i.e., there is no extrinsic
noise, and hence the fluctuations we see in Atm-P, Mdm2, and p53 are due to intrinsic noise.
The Atm-P levels rapidly turn ON, and as soon as the system crosses the Hopf bifurcation,
oscillations emerge. Note the fairly regular periodicity of the oscillations. For large damage,
Atm-P is switched ON, and any intrinsic noise in Atm-P cannot pull it down from its high
level, due to the positive feedback. The bistable switch tends to stabilize the input to the
system. At the beginning of a cycle, fluctuations in p53 lead to a sudden increase, due to
positive p53 autoregulation. This in turn leads to Mdm2 production, which ultimately begins
to degrade p53 due to ubiquitination. At this point p53 levels fall, and this cuts off the
source for Mdm2, which subsequently decays to small levels. What is crucial is that during
the decay, further fluctuations of p53 are ineffective at restarting the process; it must wait
for Mdm2 levels to fall below the noise, at which point the next cycle gets started. This is a
robust mechanism which shows how oscillations with fairly regular periodicity can be achieved
in the presence of noise. We have performed several Monte Carlo simulations, where for each
run we collect the pulse delay time between neighboring oscillations of p53 and Mdm2, as well
as the p53 pulse amplitude. In the lower panels B and C, we plot histograms of these, which
show the coefficient of variation (CV), defined as the ratio of the standard deviation and the
mean, to be roughly 30%, for each. While these numbers are different from those reported



A MODEL FOR p53 DYNAMICS TRIGGERED BY DNA DAMAGE 73

0 5 10 15 20 25 30
0

20

40

60

80

100

Time
C

o
n

ce
n

tr
at

io
n

0 0.5 1
0

500

1000

1500

Delay

F
re

q
u

en
cy

0 50 100 150
0

500

1000

1500

2000

2500

Amplitude
0 5 10 15

0.2

0.25

0.3

0.35

0.4

Noise (D
2
)1/2

C
V

delay
Amp

ATM−P
p53
Mdm2

A 

B C D 

Figure 8. Panel A shows a typical realization of p53, Mdm2, and Atm-P oscillations. The arrow marks
the time interval when Mdm2 is in the decay mode, since it has reduced p53 levels considerably and hence is not
being produced anymore. However, its concentration is so high that subsequent stochastic fluctuations of p53
are not sufficient to start the next cycle. Hence the system waits until Mdm2 levels are so low that a fluctuation
of p53 kick-starts the next pulse using its positive autoregulation. Panels B and C are histograms for the delay
between neighboring pulses of p53 and Mdm2 and amplitude of p53. Panel D is the result of Monte Carlo
simulations for the delay and amplitude CV’s for increasing values of the noise in the Mdm2 basal production
rate.

in [12], where the authors find a larger CV in amplitude than in the delay, our model is highly
simplified and hence we do not expect it to match the experimental results exactly but only to
reproduce some common features. We have performed several Monte Carlo runs for different
values of D1, extrinsic noise in the switch due to damage signaling. These show robustness of
the oscillations. The robustness can be explained by the stabilizing influence of the positive
feedback in the bistable switch. More interesting is the noise in the Mdm2 basal production
rate, D2. In panel D, we plot the CV for the delay and amplitude of oscillations, which show
a small increase in the CV for both as a function of the noise strength D2. Increasing the
Mdm2 basal rate delays the onset of p53 oscillations, and only a rare, large fluctuation can
get the system to oscillate. This leads to both increase in delay as well as more variation in
amplitude. The extrinsic noise in Mdm2 could arise from other protein components which we
have not considered in the model.

The regularity in the periodicity of the oscillations is, as we have argued, due to the
bistable nature of the switch. This can be seen when we compare the effects of extrinsic noise
in the damage signal on the network with a bistable switch as compared to an ultrasensitive
switch. We would expect that extrinsic noise in the Dmg signal would move the bifurcation
point up and down the steady state curve for an ultrasensitive switch. An example of such a
switch is shown in panel A, Figure 9. The arrow marks the point at which the system crosses
into the oscillatory zone. To obtain this curve we assume that the deterministic equation for
Atm-P follows
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Figure 9. Panel A shows an ultrasensitive switch with respect to the Dmg. In panels B and C, time series
of p53, Mdm2, and Atm-P are shown with extrinsic noise, D1 = 10, Dmg = 10, for the cases of the bistable
switch and ultrasensitive switch, respectively.

dz

dt
=

α1sw

(k1s + w)
− α2s

(k0d + Dmg)

z

(k2s + z)
,(8)

where α1s = 1, k1s = 50, k0d = 0.01, α2s = 1, k2s = 100. Although there is no positive
feedback, ultrasensitivity can be achieved by adjusting the parameters α1s, etc. In panels
B and C we plot the result of a simulation for Dmg = 10, D2 = 0, and D1 = 10, i.e.,
large noise fluctuations in the damage signal, but no extrinsic noise in Mdm2. Panel B is
for the bistable switch, and panel C is for the ultrasensitive switch. As we can see, the
network which employs the bistable switch still exhibits fairly robust oscillations, whereas the
network with the ultrasensitive switch has larger differences in periodicity. Hence although a
deterministic treatment may show that an ultrasensitive switch is enough to move the system
rapidly into the oscillatory zone, the stochastic treatment of the same problem shows that
the effect of ultrasensitivity is to transduce the input noise into the system and reduce the
periodic structure of the oscillations. In contrast, a bistable switch imparts more stability to
the system and periodicity is maintained.

4. Conclusions. In this paper we have discussed a generic scheme for a DNA damage
response system involving the key players p53, Mdm2, and the damage sensor Atm. By using a
modular approach, we coupled a bistable switch to an oscillator, with the switch controlling the
oscillations. The switch itself is turned ON when DNA damage occurs. Although knowledge of
the molecular details of the components of the oscillator are crucial for making any comparison
with experimental results, we have shown that the interaction between the bistable switch and
the oscillator is one way to obtain pulsatile behavior. We also studied the effects of stochastic
fluctuations in a simplified way by treating both internal and extrinsic noise that were added to
deterministic solutions. We found that the system exhibited fairly robust oscillatory behavior
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in the presence of noise. From the results of Monte Carlo simulations we argued that the
robustness arises from the stability provided by the positive feedback in the bistable switch as
well as the actual mechanism by which p53 and Mdm2 interact, i.e., through a combination
of autocatalysis and Mdm2 mediated degradation. We speculate that these features will still
hold independently of the parameter values of the network, although the actual details of
the shapes and amplitudes may vary. The important noise contribution that does seem to
degrade the robustness of the oscillations was the extrinsic noise in Mdm2. An experiment
in which extrinsic noise can be introduced into Mdm2 would reveal further properties of the
pulsatile behavior of the p53-Mdm2 loop. Our oscillator model uses autocatalysis in p53 in
addition to known interactions such as transcription of Mdm2 by p53 and degradation of p53
by Mdm2. The oscillator model of Ciliberto, Novak, and Tyson [10] differs fundamentally
from this treatment, as it inherently contains a bistable property. As the authors point out
in [10], under certain conditions (one example could be inefficient transcriptional activity of
p53) cells could exhibit one of the two stable p53 concentration levels. This is one prediction
that could be used to differentiate between a model with autocatalysis and one with inherent
bistability. Our model for the damage network which uses the Atm damage sensor as a bistable
switch leads to a sudden rise in Atm-P following DNA damage, and lasts until the damage
is corrected. Moreover there is a certain amount of damage which allows one of two stable
states [34] to exist; i.e., the system is at a stable state with low values of p53 concentration, or
the system is exhibiting oscillations. An experiment which could slowly ratchet up the amount
of damage could possibly search for hysteresis. Such experiments [35, 36] have demonstrated
hysteresis in Mammalian gene networks. One major prediction that arises from our model
based upon the hysteretic effect is due to the Atm switch.

In Figure 10 we plot the steady state values of Atm-P as a function of Dmg for the same set
of parameters as for Figure 4, but for k0d = 0.6. The increase in this parameter value can be
thought of physically as arising due to a reduction of the ability of the phosphatases to bind to
Atm. Hence once the switch is turned ON, subsequent decrease of damage is not enough for
the switch to turn OFF, and this leads to one of the saddle-node points crossing the vertical
axis, leading to irreversibility in the switch-like behavior. Hence initially once the damage
increases beyond the minimum threshold, Atm-P will permanently remain ON, even after the
damage is completely repaired. This dynamics indicates that if it were possible to introduce
into a cell a constitutively active, gain-of-function, mutant Atm kinase gene (“always ON”
mutant), then the p53 level would oscillate even without DNA damage.

Appendix. An alternative model for the p53 oscillator can also be used; this model, in
addition to the activation-inactivation loop, has a process whereby p53 causes repression of
Mdm2. This model takes the form

ẋ = α∗
0 − γ∗1xy − γ∗2x,

ẏ = α∗
1x

4/(k∗1 + x4) − α∗
2xy/(k

∗
2 + y2) − γ∗3y

with the parameters given by 0.1 < α∗
0 < 0.5, α∗

1 = 3, α∗
2 = 2.25, k∗1 = 8, k∗2 = 1.5, γ∗1 = 0.1,

γ∗2 = 0.001, and γ∗3 = 0.005. The mathematical structure of this model is qualitatively similar
to the model in Ciliberto, Novak, and Tyson [10], although the details vary (the nature of the
Hopf bifurcation in this paper is subcritical). For this model, in Figure 11 we plot the steady
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Figure 10. Steady state values of Atm-P as a function of Dmg. All parameters are the same as for
Figure 4, except k0d = 0.6. The saddle node on the lower branch crosses the y-axis, and hence this gives rise
to irreversibility. Hence, even after any initial DNA damage is repaired, p53 can continue to oscillate. This is
seen in the lower plot, which shows oscillations even when damage falls to zero.
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Figure 11. Bifurcation and time-series plots for p53, Mdm2 for the alternative oscillator model. The
bifurcation plots of p53 as a function of the bifurcation parameter α∗

0 show two supercritical HB’s occurring at
α∗

0 � 0.24, .36. The time-series plots for p53, Mdm2 are obtained by setting α∗
0 = 0.3.

state values of p53 as a function of the bifurcation parameter α∗
0, and the time-series plots

for p53 and Mdm2. One could now assume that it is through the term α∗
0 that the switch

variable Atm-P will enter the equations. The first Hopf bifurcation is supercritical. Hence, this
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oscillator can also be coupled to the Atm-P switch in exactly the same way as the oscillator
with the autocatalysis to obtain pulsatile behavior by allowing Atm-P to drag the bifurcation
parameter into and out of the oscillatory zone. The pulsed behavior is therefore independent
of the detailed mechanism used to build the oscillator but is related to the way in which the
oscillator is controlled by external means, i.e., through Atm-P.
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Topological Entropy of Braids on the Torus∗

Matthew D. Finn† and Jean-Luc Thiffeault†

Abstract. We present a fast method for computing the topological entropy of braids on the torus. This work is
motivated by the need to analyze large braids when studying two-dimensional flows via the braiding
of a large number of particle trajectories. Our approach is a generalization of Moussafir’s technique
for braids on the disk. Previous methods for computing topological entropy include the Bestvina–
Handel train-track algorithm and matrix representations of the braid group. However, the Bestvina–
Handel algorithm is computationally intractable for large braid words, and matrix methods give only
lower bounds, which are often poor for large braids. Our method is computationally fast and gives
exponential convergence towards the exact entropy. As an illustration we apply our approach to the
braiding of both periodic and aperiodic trajectories in the sine flow.

Key words. topological entropy, braid groups
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1. Introduction. Investigation of two-dimensional fluid mixing by topological techniques
is rapidly gaining popularity [1]. Topological perspectives on mixing involve either studying
braiding motion of the stirring apparatus itself [7], or the diagnosis of mixing by analyzing
braiding of orbits of the flow [13, 15, 16, 30]. The quantity that is usually of interest is the
topological entropy of the braid [6], which serves as a lower bound for the topological entropy
of the flow. The topological entropy of the flow is related to the exponential growth rate of
material lines [5, 14, 22], which has long been a favorite measure of mixing quality, though it is
by no means the only one [12]. In many cases the braid entropy is quite a sharp bound on the
flow entropy [11, 13, 16], which is one reason why analyzing braids is useful. Another reason is
that experimental particle trajectory data can be found easily by particle image velocimetry,
but it is usually very difficult to measure entropies directly from material stretching or by
computing Lyapunov exponents.

There are many techniques for calculating braid topological entropies, or lower bounds
on them, including train-tracks [2, 17], the Burau representation of the braid group [19], and
others [20, 21]. Where braiding of periodic (or aperiodic) orbits is used to analyze a flow,
one needs to interpret braids that have both a large number of strands and a large number of
generators. In this scenario, exact methods based on train-tracks quickly become prohibitively
expensive computationally, and methods based on the Burau matrix representation of the
braid group usually give very poor lower bounds. Recently, Moussafir described a fast method

∗Received by the editors May 11, 2006; accepted for publication (in revised form) by J. Meiss October 17, 2006;
published electronically February 9, 2007. This work was funded by the UK Engineering and Physical Sciences
Research Council grant GR/S72931/01.

http://www.siam.org/journals/siads/6-1/65963.html
†Department of Mathematics, South Kensington Campus, Imperial College London, London SW7 2AZ, United

Kingdom (matthew.finn@imperial.ac.uk, jeanluc@imperial.ac.uk).

79

http://www.siam.org/journals/siads/6-1/65963.html
mailto:matthew.finn@imperial.ac.uk
mailto:jeanluc@imperial.ac.uk


80 MATTHEW D. FINN AND JEAN-LUC THIFFEAULT

Figure 1. The spatially periodic domain with n punctures. (a) Any motion of the punctures (up to homo-
topy) can be written as a braid word consisting of a string of σi, ρi, and τi motions and their inverses. (b) It
is convenient to define the additional operation σn, the clockwise exchange of the last and first punctures.

for calculating the entropy of pseudo-Anosov braids to arbitrary precision [21]. This method
is based on a Dynnikov coordinate representation of an integral lamination [9]. There are
many other ways of encoding integral laminations, such as triangulation, Dehn–Thurston
parametrization [10, 26, 27, 29], or a coding of train-tracks on the hyperbolic disk [18]. (We
discuss this further in section 6.1.) In this paper we extend Moussafir’s technique to braids
on the torus using a triangulation of the surface. We are motivated by the fact that many
interesting dynamical systems are defined in periodic (cylindrical or annular) or biperiodic
(toroidal) spatial domains. For instance, the alternating sine flow [28] can be analyzed from
a topological perspective using this approach [13].

Figure 1 shows the setting for the dynamical system under study. We consider a flow on a
torus, so that the domain is periodic in both directions. We identify n distinguished points or
punctures. We then consider motions that move the punctures in such a way that they always
return to their initial configuration, possibly having been permuted amongst themselves. The
three types of motions that we consider are illustrated in Figure 1(a); they are

1. σi, the clockwise interchange of the ith and (i + 1)th puncture,
2. ρi, the ith puncture making a full tour around the vertical periodic direction,
3. τi, the ith puncture making a full tour around the horizontal periodic direction.

The inverse of any of these motions is obtained by reversing its direction. The elementary
motions {σi, ρi, τi} are generators of the braid group on n strands on the torus [3, 4]. Rec-
ognizing the periodicity of the domain, we also define an additional operation σn to be the
clockwise interchange of the nth puncture with the first puncture. To be precise, we mean
here the first puncture in the “copy” of the domain above and to the right of the nth punc-
ture, as pictured in Figure 1(b), so that both periodic boundaries are crossed in performing
σn. Defining σn in this way keeps both periodic directions on an equal footing and is also
convenient in what follows, as it is related to a translational symmetry for the punctures.

A sequence of generators, such as ρ−1
3 σ2ρ6σ6, is called a braid word, and we use the

convention that the elementary motions in a braid word occur from left to right, so that ρ−1
3

occurs first in our example. By planar braid we mean a braid word that can be written using
only generators from the set {σ1, . . . , σn−1} and their inverses. A planar braid is equivalent
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to a braid on the plane with n punctures. In other words, a planar braid does not take
advantage of the periodic directions. By cylinder braid (or annular braid) we mean a braid
word that can be written using only generators from either the set {σ1, . . . , σn−1, ρ1, . . . , ρn} or
{σ1, . . . , σn−1, τ1, . . . , τn} and their inverses. In other words, a cylinder braid takes advantage
of one periodic direction but not the other. Finally, a torus braid is a braid word that is
neither a planar braid nor a cylinder braid. In this paper we will derive a general method for
torus braids, which includes planar and cylinder braids as special cases.

The description of our method here is intended to be accessible to dynamicists and requires
no specialized understanding of braid groups. The paper is divided as follows. In the next
section we describe how integral laminations (equivalence classes of simple closed curves) can
be encoded by triangulation of the flow domain. Section 3, the heart of the paper, gives the
details of how this encoding evolves under fundamental braiding motions. Several examples are
given in section 4 to illustrate and verify the method. In section 5 we show how to compute the
braid topological entropy from evolution of integral laminations, and demonstrate the rapid
convergence. We also look at braiding in the sine flow as an example application. In section 6
we place our work in the wider context of the topological study of surface homeomorphisms,
and we summarize our current work and discuss possibilities for further study.

2. Encoding of integral laminations by triangulation. We wish to calculate a lower bound
on how rapidly material lines are stretched in a continuous-time flow based on the motion of
a finite number of punctures, or a finite set of periodic orbits. Our approach, inspired by the
method of Moussafir [21], is to study the stretching and folding of integral laminations. An
integral lamination is an equivalence class (under isotopy) of simple closed curves that are
not isotopic to any part of the boundary (treating the punctures as boundaries) and cannot
be continuously shrunk to a point. For example, a loop that encloses at least two punctures
belongs to an integral lamination. We usually represent the equivalence class by just drawing
a typical loop, and when we refer to a loop we will usually mean the isotopy class it belongs
to. This will always be clear from the context. An example of a loop on our doubly periodic
toroidal domain is shown in Figure 2(a).

In order to calculate how a given loop is transformed under the action of the braid, it
is necessary to have a way of encoding the loop, and a method for evolving this encoding
under the action of the braid. An elegant way of encoding the isotopy class of a loop is
by triangulating the entire domain and counting the number of crossings the loop makes
with the edges of the triangulation [29]. The number of crossings for our example is shown in
Figure 2(b). Note that there are infinitely many different ways the domain can be triangulated,
so in this paper we choose a triangulation that is most convenient for studying the action of
braiding motions. The notation we use for counting crossings is illustrated in Figure 3. For n
punctures the resulting encoding {xi, yi, zi} contains 3n crossing numbers.

To ensure that all homotopic curves produce the same set of crossings we insist that the
curve is first pulled tight, which means that no loops are allowed where the curve enters and
leaves a triangle by the same edge. Under the pulled-tight assumption, the set of crossing
numbers then uniquely identifies the integral lamination. The reason for this is that the path
of the loop can be determined uniquely in each triangle (up to homotopy), and therefore the
global picture of the loop is also unique.

For completeness, we now describe the construction procedure for one triangle. Consider
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Figure 2. (a) A representative loop of an integral lamination on a toroidal domain with five punctures.
The top and bottom edges, and the left and right edges, are identified so that the picture shows exactly ten
triangles. (b) The number of crossings with each edge of the triangulation, from which the lamination can be
reconstructed.

Figure 3. Notation for our chosen triangulation of the doubly periodic domain with n punctures. The
domain is divided into 2n triangles Ui and Li. Two copies of the domain are shown one above the other for
clarity.

Figure 4. The path of the lamination inside a triangle T can be completely reconstructed from the set
of crossing numbers {xi, yi, zi}. The solution in a single triangle is illustrated. Equation (1) determines the
number of arcs that must pass directly between each pair of edges. Up to homotopy, there is only one way to
draw these arcs without crossings.

the triangle T depicted in Figure 4, where T is Ui or Li from Figure 3. The crossing numbers
with each of the three edges are x, y, and z. In our notation, any part of the curve passing
between edges x and y is counted by T z, and, likewise, T y counts arcs passing between x and
z, and T x counts arcs between y and z. Since we assume that the curve is pulled tight at all
times, there cannot be any arcs that enter and leave by the same edge, so T x+T y +T z counts
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all the arcs. We must have x = T y + T z, y = T x + T z, and z = T x + T y, which gives

T x = 1
2 (y + z − x) ,

T y = 1
2 (x + z − y) ,

T z = 1
2 (x + y − z) .

(1)

Given T x, T y, and T z, there is only one way to draw the arcs without them crossing each
other. The T x, T y, and T z arcs are highlighted using different dash patterns for the example
in Figure 4. The numbers given by (1) are crucial to the arguments that follow.

It is worth remarking that although every integral lamination corresponds to a unique set
of crossings {xi, yi, zi}, the converse is not true. Exactly those triplets related to each Li and
Ui that satisfy the triangle inequalities y + z ≥ x, x + z ≥ y, and x + y ≥ z implied by (1)
correspond to a valid closed loop.

3. Deformation of integral laminations under braid operations. In this section we de-
scribe the effect of braiding operations on an integral lamination. We start with a representa-
tive loop that is pulled tight, and we record the initial set of crossing numbers {xi, yi, zi}. All
we have to do now is to determine how these numbers are updated under the action of each
braid operation.

To calculate the new set of crossings we simply determine the number of crossings with
the preimage of each edge. We denote the preimage of edge e by e∗, which is a curve that
becomes e (up to homotopy) after the braid operation. Our argument is that the number of
crossings of e∗ before the braid operation has to be equal to the number of crossings with e
afterwards. This must be the case, as the only way the number of crossings could change is if
the end of a loop were to cross through the edge as it is deformed from e∗ to e—but by the
pulled-tight assumption any such loop would have to be wrapped around a puncture, and by
construction no punctures pass through the edge as it deforms from e∗ to e.

It will turn out that we have to consider explicitly only the braid group operations ρi, ρ
−1
i

(i = 1, . . . , n) and σi, σ
−1
i (i = 1, . . . , n−1). We then determine the effect of other independent

group elements τi and τ−1
i by invoking group presentation rules and the operation σn (see

Figure 1(b)). This is explained in detail in section 3.5 for those not familiar with the braid
group presentation. For convenience we assume in what follows that indices are treated
“modulo” n, so that the puncture to the right of puncture n is puncture 1.

3.1. Crossing update rules for ρi. For the braid operation ρi, we need consider only
edges incident on the ith puncture, since the number of crossings with other edges will remain
unchanged. For example, the relevant preimages are shown for ρ3 in Figure 5 as dashed lines.
The affected crossing numbers here are x2, y2, x3, y3, and z3. Many of the preimages are other
edges, so the number of crossings is already known. This is not a coincidence: the triangulation
was chosen to have this property. In this example, x2 and y3 are the exact preimages of y2

and x3, respectively. The edge z3 is the preimage of itself, so in fact its crossing number will
not change under ρ3. The preimages x∗2 and y∗3 are not edges in the triangulation, so more
work is required to determine how many crossings are made. We illustrate in Figure 6 how
to determine the number of crossings with the x∗2 preimage. All arcs entering x2 and z3 must
cross x∗2 (by the pulled-tight assumption), unless they loop directly from x2 to z3 (shown
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Figure 5. Preimage illustration for ρ3.

Figure 6. The number of crossings with a preimage x∗
2 that is not part of the triangulation.

dotted). The number of these loops is exactly min(U z
2 , L

x
2). Hence the number of preimage

crossings is x2 + z3 − 2 min(U z
2 , L

x
2). The number of crossings y∗3 can be deduced in a similar

way.
A very important feature to note here is that any parts of the curve that cross over the

preimage and immediately back again (see Figure 6) are automatically discounted, so that the
pulled-tight assumption still holds for the updated set of crossing numbers. This prevents the
counting of loops that might later be shortened, and thus the growth rate of the braid from
being overestimated.

For a general ρi, the update rules for the affected crossing numbers are

x∗i−1 = xi−1 + zi − 2 min(U z
i−1, L

x
i−1) = xi−1 + zi−1 − 2 min(Ux

i−1, L
z
i−1),

y∗i−1 = xi−1,

x∗i = yi,

y∗i = zi + yi − 2 min(Uy
i , L

z
i ) = yi + zi+1 − 2 min(U z

i , L
y
i ),

z∗i = zi.

(2)
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Figure 7. Preimage illustration for σ2.

3.2. Crossing update rules for ρ−1
i . We can work out the update rule for ρ−1

i by noting
the π-rotational symmetry of the triangulation about a puncture and relabeling the variables
in the rules (2) given above. The update rules for affected crossing numbers are

x∗i−1 = yi−1,

y∗i−1 = yi−1 + zi − 2 min(U z
i−1, L

y
i−1) = yi−1 + zi−1 − 2 min(Uy

i−1, L
z
i−1),

x∗i = zi + xi − 2 min(Ux
i , L

z
i ) = xi + zi+1 − 2 min(U z

i , L
x
i ),

y∗i = xi,

z∗i = zi.

(3)

3.3. Crossing update rules for σi. The same ideas can be used to determine the updated
crossing numbers following a σi operation. However, since there are two moving punctures,
more edges are affected, and the preimages are therefore more complicated. An example of
a preimage diagram for σ2 is shown in Figure 7. The dashed lines show the preimages of
all edges whose crossing number may change. The edge x2 is its own preimage, and so the
number of crossings remains unchanged. The number of crossings with y∗2 is determined using
the quadrilateral trick illustrated in Figure 6. The other preimages require further calculation.

Figure 8 illustrates how to compute the crossings with x∗1 and y∗1. In a way similar to that
in Figure 6, the number of crossings with preimage x∗1 is given by the number of arcs crossing
x1 and x2, minus twice the number of loops directly between x1 and x2. The number of such
loops is exactly min(Ly

1, U
x
2 , L

z
2). Hence x∗1 = x1 + x2 − 2 min(Ly

1, U
x
2 , L

z
2). The preimage

problem for y∗1 is similar, but involves four triangles and hence a minimum of four numbers,
so that y∗1 = y1 + x2 − 2 min(U z

1 , L
y
1, U

x
2 , L

z
2). Preimages x∗3 and y∗3 are handled in the same

way as x∗1 and y∗1, by invoking rotational symmetry.
The two remaining crossing numbers to find are z∗2 and z∗3 . Since these preimages pass

through a total of seven triangles, it is nontrivial to determine the number of crossings directly.
Instead we employ a trick and deduce z∗2 and z∗3 by invoking the quadrilateral solution again
with the updated crossing numbers. We introduce temporary edges p and q directly between
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Figure 8. Two slightly more difficult preimage problems for the operation σ2.

Figure 9. The number of crossings with z∗2 and z∗3 are difficult to determine directly from the old set
of crossing numbers. However, by introducing temporary edges p and q, they may be calculated using the
quadrilateral solution shown in Figure 6 from the already updated crossing numbers.

punctures 1 and 3 and between 2 and 4, as shown in Figure 9. The preimage of p is y1, and
the preimage of q is y3. Since x∗1, y∗1, p, x∗2, y∗2, q, x∗3, and y∗3 are known, z∗2 and z∗2 can be
deduced easily.

In general, for σi the update rules for the affected crossing numbers are

x∗i−1 = xi−1 + xi − 2 min(Ly
i−1, U

x
i , L

z
i ),

y∗i−1 = yi−1 + xi − 2 min(U z
i−1, L

y
i−1, U

x
i , L

z
i ),

x∗i = xi,

y∗i = zi + xi − 2 min(Ux
i , L

z
i ) = xi + zi+1 − 2 min(U z

i , L
x
i ),

z∗i = x∗i−1 + y∗i−1 − min(y∗i−1 + yi−1 − x∗i , x
∗
i−1 + yi−1 − y∗i ),

x∗i+1 = xi + xi+1 − 2 min(U z
i , L

x
i , U

y
i+1),

y∗i+1 = xi + yi+1 − 2 min(U z
i , L

x
i , U

y
i+1, L

z
i+1),

z∗i+1 = x∗i + y∗i − min(x∗i + yi+1 − y∗i+1, y
∗
i + yi+1 − x∗i+1).

(4)

This includes the operation σn, which switches the first and last punctures across the periodic
boundaries (see Figure 1(b)); we shall require this operation in sections 3.5–3.6 to find the
update rules for τi and τ−1

i .

3.4. Crossing update rules for σ−1
i . Since the triangulation does not have a reflection

symmetry about a vertical line through the midpoint of two punctures, it is not possible to
deduce the update rules for σ−1

i by a relabeling in the rules for σi. An example of a preimage
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Figure 10. Preimage illustration for σ−1
2 . Note that due to asymmetry the preimage problems are slightly

different from those for σ2.

diagram for σ−1
2 is shown in Figure 10. The preimage curve y∗i is the most complicated yet,

as it passes through ten triangles. However, the crossing number of all these preimages can
be calculated as before, using the techniques illustrated in Figures 6, 8, and 9.

The update rules for the affected crossing numbers are

x∗i−1 = xi−1 + xi − 2 min(U z
i−1, L

x
i−1, U

y
i ),

y∗i−1 = yi−1 + xi − 2 min(Lx
i−1, U

y
i ) = xi−1 + yi − 2 min(Ly

i−1, U
x
i ),

x∗i = xi,

y∗i = x∗i + z∗i − min(z∗i + yi − x∗i , x
∗
i + yi − z∗i+1),

z∗i = xi + yi − 2 min(Ux
i , L

y
i−1, U

z
i−1, L

x
i−1, U

y
i ),

x∗i+1 = xi + xi+1 − 2 min(Ly
i , U

x
i+1, L

z
i+1),

y∗i+1 = yi + xi+1 − 2 min(Lx
i , U

y
i+1) = xi + yi+1 − 2 min(Ly

i , U
x
i+1),

z∗i+1 = xi + yi − 2 min(Ly
i , U

x
i+1, L

z
i+1, U

y
i+1, L

x
i ).

(5)

3.5. Crossing update rules for τi. In sections 3.1–3.4 we showed how to update the set
of crossing numbers {xi, yi, zi} for the braid operations ρi, ρ−1

i , σi, and σ−1
i . To complete

the set of update rules for any braid we must give the corresponding rules for τi and τ−1
i . In

performing τi, the ith puncture moves once around the torus in the horizontal direction (see
Figure 1). In doing so it passes through many edges in our triangulation, so it is difficult to
draw the preimages and to derive the number of crossings directly. However, we can deduce
the update rules for τi and τ−1

i by appealing to group properties [3] that relate σi, ρi, and
τi. In Figure 11 we illustrate how τ1 is achieved through a sequence of σ−1

i (including σ−1
n

defined in Figure 1(b)) followed by one ρ−1
1 . The other τi and τ−1

i are produced in a similar
manner. A computational recipe for each τi operation is given in this section, and τ−1

i in the
following section.

To calculate the updated set of crossing numbers {xi, yi, zi} for τi do the following:
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Figure 11. The operation τ1 is achieved using a sequence of σ−1
j operations, including the operation σ−1

n

(see Figure 1), followed by a single ρ−1
1 . This is described in more detail in the text.

1. Use (5) to perform, in turn, σ−1
i−1, σ

−1
i−2, . . . , σ

−1
i+2, and σ−1

i+1. Treat the indices “modulo”

n, so that σ−1
n follows σ−1

1 .
2. Relabel xi ← xi+1, yi ← yi+1, and zi ← zi+1. This leaves all punctures except the ith

one in the correct position.
3. Use (3) to perform ρ−1

i .

3.6. Crossing update rules for τ−1
i . To calculate the updated set of crossing numbers

{xi, yi, zi} for τ−1
i invert the operation of section 3.5 as follows:

1. Use (2) to perform ρi.
2. Relabel xi → xi+1, yi → yi+1, and zi → zi+1. This leaves the punctures in the wrong

position, but the next sequence corrects everything . . .
3. Use (4) to perform, in turn, σi+1, σi+2, . . . , σi−2, and σi−1. Treat the indices “modulo”

n, so that σ1 follows σn.

4. Illustrations using simple braids. To illustrate the use of the update rules given in
section 3 we show how a loop is deformed under some simple previously studied braids.
We have implemented the update rules in a short C++ program, using the Gnu Multiple
Precision library to allow the number of crossings to grow arbitrarily large while maintaining
exact arithmetic. We also have a Matlab script to draw the loop, one triangle at a time, using
the procedure described in section 2. This was used to produce all the figures in this section.
In each case our initial condition is a closed loop that passes between the first two punctures,
with x1 = y1 = 1 and all other xi, yi, and zi set to zero (see the upper-left frame in Figure 12).

Figure 12 shows the roll up of the loop under the repeated action of the planar braid σ1

with three punctures. In this case it is clear that the third puncture is redundant. This braid
has zero entropy and is very poor at stirring as it results in linear growth of material lines.
Note that even though coils form around the pair of moving punctures, there is always exactly
one crossing of the loop from one copy of the domain to the copy above. This is because there
was exactly one crossing in the initial loop and this is only a planar braid, so it cannot create
any further crossings under the pulled-tight assumption.

Figure 13 shows the result of repeating τ2 with three punctures. In this simple braid the
second puncture moves in a straight line to the left, but catching the loop on the puncture
exactly once. The illustration is provided to validate the method described in sections 3.5–3.6
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Figure 12. Lamination evolution under the braid σ1. This results in linear growth in the number of
crossings, and zero entropy.

Figure 13. Lamination evolution under the braid τ2. This braid also has zero topological entropy, but
the illustration is provided to verify the correctness of the procedure for performing τi using a combination of
σi and ρi.

for performing τi operations using a combination of σi and ρi motions.

The planar pigtail braid σ1σ
−1
2 with three punctures is illustrated in Figure 14 [7]. This

braid is pseudo-Anosov and has a growth rate per braid letter of 1
2(1 +

√
5), which is the

golden ratio. This “golden braid” has been proved to have the highest topological entropy
per braid letter for a planar braid on three strands [8]. It is also conjectured that no braid on
more strands has a higher entropy per braid letter than the golden braid [21, 31].

Figure 15 illustrates a related cylinder braid σ1σ3σ
−1
2 σ−1

4 with four punctures. This is
similar to the pigtail braid but wrapped around a cylinder so that the first and last punctures
are allowed to exchange places. The cylinder braid σ1σ

−1
2 with two punctures has a growth rate

per braid letter given by the silver ratio of 1 +
√

2, and this can be proved to be the optimum
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Figure 14. Lamination evolution under the (planar) golden braid σ1σ
−1
2 .

Figure 15. Lamination evolution under the cylinder braid σ1σ3σ
−1
2 σ−1

4 . Note that the stretched curve
becomes visibly dense more quickly than for the golden braid in Figure 14.

per braid letter over all cylinder braids. (The proof follows that of D’Alessandro, Dahleh,
and Mezić [8] using a matrix representation for the cylinder braid group.) The silver braid
entropy is almost fifty percent higher than the golden braid entropy, showing that periodic
boundary conditions can be exploited to enhance chaos. The extra stretching is clearly visible
by comparing Figures 14 and 15.

A final validation of our encoding and update rules is given by checking that a loop is
unchanged when it is subjected to the identity braid. For the braid group on the torus, one
way of writing the identity using σi, ρi, and τi is σ−2

1 ρ−1
1 τ2ρ1τ

−1
2 , which is taken from the

group presentation as written down by Birman [3]. In Figure 16 the evolution of our test loop
is shown using this braid, and it is unchanged, as required.
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Figure 16. Lamination evolution under the toroidal identity braid σ−2
1 ρ−1

1 τ2ρ1τ
−1
2 . The initial loop (not

shown) is the vertical line between the first two punctures. The images show, in order, the loop after σ−1
1 , σ−2

1 ,
σ−2

1 ρ−1
1 , σ−2

1 ρ−1
1 τ2, σ−2

1 ρ−1
1 τ2ρ1, and σ−2

1 ρ−1
1 τ2ρ1τ

−1
2 . The final loop is the same as the initial condition, as

required.

5. Calculating topological entropies from laminations. Having completed the descrip-
tion of the dynamical system for the deformation of a loop, we now discuss how the topological
entropy of a braid is related to evolution of the dynamical system. The results of Moussafir [21]
for the punctured sphere apply here: for an appropriate initial loop, the logarithm of the
growth rate of the total number of crossings between the loop and triangulation converges to
the topological entropy, h, of the braid. If S(n) =

∑
i xi(n)+yi(n)+zi(n) is the total number

of crossings after n applications of the braid, then asymptotically logS(n)/n → h as n → ∞.
An approximation of the entropy is derived by evaluating logS(n)/n for sufficiently large n.
This amounts to estimating the slope of logS(n) using S(0) and S(n). A more rapidly con-
verging estimate is found by using consecutive iterations of the braid to estimate this slope,
as this rapidly becomes independent of transient crossing numbers for small n. The estimate
we use is therefore

h† = logS(n) − logS(n− 1).(6)

Convergence is exponential (provided that the braid has a pseudo-Anosov component), and
so in practice very few iterations are required to obtain h to double precision. Finite-order
braids, which have zero topological entropy, are detected easily in practice by checking for
subexponential convergence of h†.

As an example, the exact topological entropy of the four-strand braid σ1σ3σ
−1
2 σ−1

4 (see
the previous section and Figure 15) is known to be twice the logarithm of the silver ratio
h = 2 log(1 +

√
2) = 1.762747174039086 . . . . In Table 1 we show how the total crossing

number and the entropy estimate h† given by (6) evolve under the first few iterations of the
braid (using the initial loop described in section 4). Double precision accuracy of the entropy,
which is sufficient for most purposes, is reached after about 20 iterations.

Braids naturally arise when considering periodic trajectories of points in a two-dimensional
flow. For a spatially periodic flow the space-time plot of these trajectories is typically a
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Table 1
Convergence of the entropy estimate h† in (6) towards the exact topological entropy h = 2 log(1 +

√
2) =

1.762747174039086 . . . for the silver braid σ1σ3σ
−1
2 σ−1

4 . Convergence is exponential, with approximately one
extra digit per iteration [21].

Iteration n Total crossings S(n) Entropy h† Error |h− h†|
1 24 2.48490664978800 0.72215947574891
2 154 1.85889877206568 0.09615159802660
3 912 1.77868738766070 0.01594021362162
4 5330 1.76546652708556 0.00271935304647
5 31080 1.76321328732169 0.00046611328261
6 181162 1.76282713309230 0.00007995905321
7 1055904 1.76276089245107 0.00001371841199
8 6154274 1.76274952773491 0.00000235369583
9 35869752 1.76274757786911 0.00000040383002

10 209064250 1.76274724332535 0.00000006928627
11 1218515760 1.76274718592673 0.00000001188765
12 7102030322 1.76274717607868 0.00000000203960
13 41393666184 1.76274717438903 0.00000000034994
14 241259966794 1.76274717409913 0.00000000006004
15 1406166134592 1.76274717404939 0.00000000001030
16 8195736840770 1.76274717404085 0.00000000000177
17 47768254910040 1.76274717403939 0.00000000000030
18 278413792619482 1.76274717403914 0.00000000000005
19 1622714500806864 1.76274717403910 0.00000000000001
20 9457873212221714 1.76274717403908 0.00000000000000

cylinder or a torus braid, and the entropy of this braid provides a rigorous lower bound on
the topological entropy of the flow [6, 7]. Finn, Thiffeault, and Gouillart [13] derived such a
lower bound for the sine flow using Thurston’s “iterate and guess” method to construct the
train-track for the braid formed by a set of periodic orbits. We will now describe how the
same result can be found using our lamination approach.

The sine flow is a time-periodic alternating shear-flow defined on the unit torus 0 ≤ x, y <
1. The period is T , with the velocity field given by (sin 2πy, 0) for 0 ≤ t < T/2 and (0, sin 2πx)
for T/2 ≤ t < T , with t marking time. This simple flow has been well studied because the
parameter range 0 ≤ T � 2 gives rich dynamics that vary from complete integrability to
almost global chaos (with few visible islands in a Poincaré section).

Since the flow is piecewise steady, it is easy to construct a map to track the motion of
points from one period to the next. Consequently, the entropy of the flow for a given T
can be found quickly and simply by direct numerical simulation of line stretching. Once the
entropy of the flow is known, it is instructive to see what prediction of the entropy is given
by considering the braiding of a finite number of arbitrary particle orbits.

For general T it is difficult to locate unstable periodic orbits due to the highly chaotic
nature of the sine mapping; however, for the special parameter T = 1 it is quite easy to spot
some of the low order orbits. In particular, four period-two orbits are given by {(0, 1

4), (1
2 ,

1
4)},

{(1
2 ,

3
4), (1, 3

4)}, {(1
4 , 0), (1

4 ,
1
2)}, and {(3

4 ,
1
2), (3

4 , 1)}. The first pair of orbits is depicted in
Figure 17(a), the second pair in Figure 17(b). The points associated with the first pair of
periodic orbits do not move in the second half-period, while those associated with the second
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Figure 17. The four periodic orbits considered for the sine flow with T = 1. (a) {(0, 1
4
), ( 1

2
, 1

4
)} and

{( 1
2
, 3

4
), (1, 3

4
)}; (b) {( 1

4
, 0), ( 1

4
, 1

2
)} and {( 3

4
, 1

2
), ( 3

4
, 1)}.

Figure 18. Illustration of the eight strand braid formed by a set of period-two points in the sine flow with
T = 1. The braid word is σ1σ

−1
2 τ−1

4 σ−1
3 σ−1

2 σ−1
1 σ7σ

−1
6 τ5σ

−1
5 σ−1

6 σ−1
7 ρ−1

3 σ2ρ6σ6. This braid has been shown to
have an exact entropy of 1.21875572687 . . . using train-tracks [13]. The entropy estimate using the growth of
loops agrees to every decimal place calculated.

pair do not move in the first half-period.

Now we must determine the braid formed by the eight trajectories forming these four
periodic orbits. We first disambiguate the order of the periodic points by displacing them
slightly along the x axis, as shown in Figure 18. Then we encode the trajectories in terms
of braid group generators, deforming as needed. Deforming is necessary since usually the
trajectory does not map directly onto a generator, and some intermediate operations must
be inserted. For instance, in the second snapshot in Figure 18 the generators σ−1

3 σ−1
2 σ−1

1 are
used to return the point to the leftmost position after a τ−1

4 operation. After a full period, the
resulting braid word is σ1σ

−1
2 τ−1

4 σ−1
3 σ−1

2 σ−1
1 σ7σ

−1
6 τ5σ

−1
5 σ−1

6 σ−1
7 ρ−1

3 σ2ρ6σ6. Using (6), we find
that the entropy of the braid converges to 1.21875572687 . . . , which agrees with an alternative
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calculation using train-tracks [13]. The entropy lower bound given by the braid accounts for
82% of the flow entropy of approximately 1.48.

Since it is difficult to find any exact periodic orbits for general T it is natural to ask whether
the entropy can be found by considering the braiding of any selection of trajectories. Because
point motions in the sine flow are piecewise horizontal and vertical, and, for the purposes
of braiding, can be performed sequentially, it is straightforward and computationally fast to
calculate all the σi, ρi, and τi operations that occur during each half-period of the flow, for
an arbitrary number of points. For the first half-period, where all motions are horizontal,
we record a σi operation for each change in order of the particle x coordinates. The sign of
each crossing is determined by the difference in y coordinates for the two points that cross.
Special attention is required when a point crosses the periodic boundary. Crossing leftwards
over x = 0 is achieved by τ1σ

−1
1 · · ·σ−1

n−1; this moves the leftmost point one copy of the domain
to the left, and then, through a sequence of σ operations, moves the point to position n and
undoes all the undesired crossings with the other points. Similarly, when the rightmost point
crosses over x = 1 the string τ−1

n σ−1
n−1 · · ·σ−1

1 is assigned. The computation is simpler during
the second half-period: all point motions are vertical, so no σi motions occur. If the ith point
in the x direction crosses downwards through y = 0, this is labeled ρi. Likewise, an upwards
crossing of y = 1 is assigned ρ−1

i .

To estimate the entropy of the flow we evolve an integral lamination according to the
braid that results from the point motions. Since the points are not periodic, the growth per
iteration continues to vary, but the average value of the growth always converges. The initial
points are chosen at random throughout the domain, and can either live in a chaotic region
or in a periodic island. Hence the predicted entropy for a given number of points may depend
on the initial positions. To allow for this we use an estimate 〈h†〉 obtained by averaging over
many realizations with different initial points.

In Figure 19 we show how the braid entropy 〈h†〉 converges towards the flow entropy h as
the number of trajectories in the braid is increased. For the four different values of T we have
considered, convergence appears to be as a power law for large n. Although we are unable to
prove that the exact entropy is reached in the limit as n → ∞, we would expect this since
in this limit the braid will contain perfect information about the flow. For small values of
T (such as T = 0.5 in Figure 19) the flow contains large islands of regularity, which do not
contribute greatly to line stretching. In this regime n has to become relatively large before
there are enough points exploring and encoding the dynamics in the small chaotic region to
get a good entropy estimate.

Owing to the efficiency with which the braid is determined and analyzed, we are able to
consider much larger times and number of points n than have been considered in previous
articles [30]. Another point worth noting is that for T = 1, the mean entropy estimate
〈h†〉 = 0.45 with n = 8 points is much worse than the estimate of h† = 1.22 found by using
the set of eight judiciously chosen periodic points considered earlier. This highlights the
important role of low-order periodic orbits in determining much of the nature of the flow.

We offer the numerical evidence of this section without proof. To make the estimate
based on randomly selected trajectories rigorous would require a more precise characterization
of the selection. For instance, what measure is used in the selection of the trajectories?
(We effectively used Lebesgue.) The compact region that supports the maximum topological
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Figure 19. Convergence of the mean entropy estimate 〈h†〉 towards the exact entropy h as the number of
trajectories n in the braid is increased. For large n the error appears to decrease according to a power law. For
smaller T the convergence is hindered by many of the points being inside periodic islands.

entropy could be singular with respect to the measure, but for practical applications (such as
fluid dynamics) this would render that region irrelevant. Franks and Handel [14] have shown
that for sufficiently smooth flows there exists a set of points that give an estimate of the
entropy, but in practice this set is not easy to find.

6. Discussion.

6.1. Relation to previous work on surface dynamics. Before closing with a final dis-
cussion of our results, we wish to describe our work in the wider context of the topological
theory of surface dynamics. This theory seeks a description of equivalence classes, under
isotopy, of homeomorphisms of compact surfaces [6, 10]. The key classification theorem is
due to Thurston [10, 32], based on earlier work of Nielsen [23, 24, 25], and the collection of
results is often called Thurston–Nielsen theory. The classification theorem basically says that
all homeomorphisms are isotopic to either a finite-order or pseudo-Anosov representative, or
are reducible.

One of Thurston’s greatest contributions was to compactify Teichmüller space, which is,
roughly speaking, the space of equivalence classes of hyperbolic metrics on the surface. He did
this by attaching a natural boundary to Teichmüller space, consisting of projective measured
foliations [10]. This compactified Teichmüller space is homeomorphic to a finite-dimensional
disk, which means that by Brouwer’s theorem any continuous mapping from the disk to itself
must have at least one fixed point. This holds, in particular, for the induced action of a
homeomorphism on the compactified Teichmüller space. For a mapping isotopic to a pseudo-
Anosov homeomorphism, there is a fixed point on the boundary to which convergence under
repeated application is exponential. This fixed point is a projective measured foliation; the
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integral laminations in Figures 14 and 15 are converging to this measured foliation.
Because for a pseudo-Anosov diffeomorphism the length of the integral lamination grows

exponentially under iteration, it is necessary to encode it in an efficient manner. There
are two dominant methods for this: triangulation (our choice here) and the Dehn–Thurston
parametrization [10]. The Dehn–Thurston parametrization involves a pair-of-pants decompo-
sition of a surface. The number of crossings and the “twist” of an integral lamination between
each pair of pants is recorded. Penner [26] and Penner and Harer [27] gave the action of
Dehn twists on this parametrization for the case of genus g and no boundary (i.e., no punc-
tures). Schaefer, S̆tefankovic̆, and Sedgwick [29] showed that the action of Dehn twists on an
integral lamination could be computed in polynomial time both for a triangulation or a Dehn–
Thurston parametrization. Hamidi-Tehrani and Chen [18] used a similar parametrization for
train-tracks.

The pair-of-pants decomposition is more economical, in that it requires fewer coordinates
than a triangulation. However, this is not a serious computational limitation, and we found
that the action of the braid group (that is, the mapping class group generators) on the
punctured torus is more readily expressed in terms of a triangulation. Our main contribution
here is to explicitly give this action on crossing numbers, and to use it to calculate topological
entropies.

6.2. Summary and discussion of current work. We have derived a dynamical system to
compute the evolution of an integral lamination (equivalence class of simple closed curves)
under the braiding of an arbitrary number of punctures on the torus. The method is essentially
a modification of the Dynnikov coordinate approach employed by Moussafir [21], but we use
a triangulation encoding that has favorable properties for studying torus braids. Naturally,
our method also works for the special cases of cylinder and planar braids. However, in the
planar case our dynamical system still has 3n variables, more than the 2n − 3 required by
Moussafir, so there is clearly some redundancy in this case. Also, the triangulation of our
domain is not unique, so we expect that the details of our method are not unique. However,
our triangulation seems to be the best choice for simplifying the arithmetic.

For completeness we point out that our dynamical system does not work directly for n = 2
punctures because in (4) and (5) this would mean that the indices i− 1 and i+ 1 refer to the
same quantities. There is nothing difficult about the case n = 2 though, and in principle one
could write down the corrected update rules for {x1, y1, z1, x2, y2, z2}. Alternatively, a lazy
but convenient workaround is to include a redundant third puncture, glued to one of the other
two, so that it is slaved to its motion. At a little more computational expense this allows one
computer code to handle all values of n ≥ 2. The case n = 1 is trivial.

By using arguments similar to those of Moussafir [21], it can be shown that as the number
of iterations tends to infinity, the logarithm of the total number of crossings grows by the
braid topological entropy. Though the number of crossings grows exponentially fast, our
numerical implementation of the dynamical system uses a large integer arithmetic library to
allow calculation of the entropy to arbitrary precision. As discussed in section 6.1, for pseudo-
Anosov braids, convergence is exponentially fast, with approximately one digit of accuracy
gained per iteration for the braids we have considered.

In practice, if only a few digits of accuracy are required, then double precision floating-
point arithmetic for the crossing numbers is adequate and can speed up code significantly.
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A caveat with using floating-point arithmetic is that it destroys reversibility. In general, by
performing a long braid followed by its inverse, the initial condition will not be recovered due
to exponential growth of small roundoff errors. This is akin to irreversibility due to numerical
diffusion in trajectory computations in a chaotic Stokes flow. However, since the dynamical
system itself is exact, the only errors are due to roundoff and not to discretization, so even
with double precision the dynamical system is surprisingly reversible.

If finite precision is not acceptable, our method is easily adapted to find exact entropies.
This can be done by shortcircuiting the minimum functions in the update rules (2)–(5). Under
repeated iteration of a braid, we observe numerically that the dynamical system quickly
becomes linear. That is, each “min” function always selects the same argument. With this
knowledge, each min function can be replaced by a single argument, and a linear system
written down for the crossing numbers. The logarithm of the modulus of the largest eigenvalue
gives the exact entropy.

This work was motivated by the study of two-dimensional fluid mixing via the braiding
motion of fluid particle trajectories [15, 30]. In this setting we have derived an efficient tool
that allows practical analysis of large braids. Outside of this particular application it is natural
to ask whether the method can be generalized for the braid group on surfaces of higher genus,
as considered by Birman [3]. Since any surface can be triangulated, in principle our method
could be extended to higher genus. The problem anticipated with generalizing the approach
is that it is more difficult to visualize the preimage problems on a surface with many holes,
and also it is not clear in general how to exploit group properties to gain a complete set of
crossing update rules.
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Stability Analysis of π-Kinks in a 0-π Josephson Junction∗

G. Derks†, A. Doelman‡, S. A. van Gils§, and H. Susanto¶

Abstract. We consider a spatially nonautonomous discrete sine-Gordon equation with constant forcing and its
continuum limit(s) to model a 0-π Josephson junction with an applied bias current. The continuum
limits correspond to the strong coupling limit of the discrete system. The nonautonomous character
is due to the presence of a discontinuity point, namely, a jump of π in the sine-Gordon phase. The
continuum model admits static solitary waves which are called π-kinks and are attached to the
discontinuity point. For small forcing, there are three types of π-kinks. We show that one of the
kinks is stable and the others are unstable. There is a critical value of the forcing beyond which
all static π-kinks fail to exist. Up to this value, the (in)stability of the π-kinks can be established
analytically in the strong coupling limits. Applying a forcing above the critical value causes the
nucleation of 2π-kinks and -antikinks. Besides a π-kink, the unforced system also admits a static
3π-kink. This state is unstable in the continuum models. By combining analytical and numerical
methods in the discrete model, it is shown that the stable π-kink remains stable and that the
unstable π-kinks cannot be stabilized by decreasing the coupling. The 3π-kink does become stable
in the discrete model when the coupling is sufficiently weak.

Key words. 0-π Josephson junction, 0-π sine-Gordon equation, semifluxon, π-kink
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1. Introduction. One important application of the sine-Gordon equation is to describe
the propagation of magnetic flux (fluxons) in long Josephson junctions [17, 18, 5]. The flux
quanta or fluxons are described by the kinks of the sine-Gordon equation. When many small
Josephson junctions are connected through the inductance of the superconductors, they form
a discrete Josephson transmission line. The propagation of a fluxon is then described by
the discrete sine-Gordon equation. For some materials, Josephson junctions are more easily
fabricated in the form of a lattice than as a long continuous Josephson junction. In the strong
coupling limit, a discrete Josephson junction lattice becomes a long Josephson junction.

It was proposed in the late 1970’s by Bulaevskii that a phase-shift of π may occur in
the sine-Gordon equation due to magnetic impurities [7, 8]. Only recently has this predic-
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tion been confirmed experimentally [35]. Present technological advances can also impose a
π-phase-shift in a long Josephson junction using, e.g., superconductors with unconventional
pairing symmetry [34], superconductor-ferromagnet-superconductor (SFS) π-junctions [29],
or superconductor-normal metal-superconductor (SNS) junctions in which the charge-carrier
population in the conduction channels is controlled [4].

A junction containing a region with a phase jump of π is then called a 0-π Josephson
junction and is described by a 0-π sine-Gordon equation. The place where the 0-junction
meets the π-junction is called a discontinuity point. A 0-π Josephson junction admits a
half magnetic flux (semifluxon), sometimes called a π-fluxon, attached to the discontinuity
point [13]. A semifluxon is represented by a π-kink in the 0-π sine-Gordon equation [32].

Using the technology described in [13], a 0-π array of Josephson junctions can be created
as well. Such a system can be modeled by a discrete 0-π sine-Gordon equation. A short
numerical study of a discrete π-kink is given in [31].

The presence of the semifluxon in a 0-π Josephson junction or a 0-π array of Josephson
junctions opens a new field where many questions that have been discussed in detail for the
2π-kink (fluxon) in the sine-Gordon equation can be addressed for the π-kink, too. The
fact that the π-kink cannot move in space, even in the continuum case, will give a different
qualitative behavior such as the disappearance of the zero eigenvalue (Goldstone mode), as
will be shown later.

In this paper we will study both the continuous and discrete 0-π sine-Gordon equations,
especially the stability of the kinks admitted by the equations. Knowing the eigenvalues of
a kink is of interest for experimentalists, since the corresponding eigenfunctions (localized
modes) can play an important role in the behavior of the kink [27].

The present work is organized as follows: in section 2 we will describe the mathematical
model of the problem and its interpretation as a Josephson junction system. We will discuss
the discrete system as well as several continuum approximations. In section 3 we consider the
continuous 0-π sine-Gordon equation which describes a continuous long Josephson junction
with discontinuity point. It is also the lowest order continuum approximation for the discrete
system, not reflecting any lattice spacing (coupling) effects. In [32] it is shown that there
exist three types of π-kinks in the 0-π sine-Gordon equation. We will analyze their stability
and show that one type is stable and the other two are unstable. A higher order continuum
approximation, which includes terms representing a small lattice spacing (strong coupling), is
considered in section 4. It is shown that for small values of the lattice spacing parameter, the
three types of π-kinks persist and their stability properties do not change. In section 5 the
discrete 0-π sine-Gordon with large lattice spacing (small coupling) is analyzed, especially the
existence and stability of π-kinks. Numerical calculations connecting the regions of small and
large lattice spacing (weak and strong coupling) will be presented in section 6. In this section
the analytical results of the previous sections are linked together. Conclusions and plans for
future research are presented in section 7.

2. Mathematical models for 0-π junctions.

2.1. The discrete 0-π sine-Gordon equation. The Lagrangian describing the phase of a
0-π array of Josephson junctions is given by
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L =

∫ ∑

n∈Z

[
1

2

(
dφn

dt

)2

− 1

2

(
φn+1 − φn

a

)2

− 1 + cos(φn + θn) + γφn

]

dt,(2.1)

where φn is the Josephson phase of the nth junction. The phase jump of π in the Josephson
phase is described by θn, where

θn =

{
0, n ≤ 0,

−π, 0 < n.
(2.2)

The Lagrangian (2.1) is given in nondimensionalized form. The lattice spacing parameter a
is normalized to the Josephson length λJ , the time t is normalized to the inverse plasma
frequency ω−1

0 , and the applied bias current density γ > 0 is scaled to the critical current
density Jc.

The equation of the phase motion generated by the Lagrangian (2.1) is the discrete 0-π
sine-Gordon equation

φ̈n − φn−1 − 2φn + φn+1

a2
= − sin(φn + θn) + γ.(2.3)

We use n ∈ Z for the analytical calculations, but, of course, the fabrication of the junction
as well as the numerics are limited to a finite number of sites, say, 2N . We will take the
boundary conditions to represent the way in which the applied magnetic field h = H/(λJJc)
enters the system, i.e.,

φ−N+1 − φ−N

a
=

φN − φN−1

a
= h.(2.4)

In what follows we will always consider the case when there is no applied magnetic field; i.e.,
we will take h = 0.

2.2. Approximations to the lattice spacing in the continuum limit. There are various
continuum model approximations for (2.3) that can be derived in the continuum limit a � 1.
Writing φn = φ(na) and expanding the difference terms using a Taylor expansion give

φn−1 − 2φn + φn+1

a2
= 2

∞∑

k=0

a2k

(2k + 2)!
∂k

xxφxx(na) = Laφxx

and

φn+1 − φn

a
=

∞∑

k=0

ak

(k + 1)!
∂k

xφ(na) = L̃aφx.

Thus the continuum approximation for (2.3) is

φtt − Laφxx = − sin(φ + θ) + γ,(2.5)

where θ(x) is defined similarly to (2.2), i.e.,

θ(x) =

{
0, x < 0,
−π, x > 0.
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The continuum approximation for the Lagrangian is

L =

∫∫ ∞

−∞

[
1

2
(φt)

2 − 1

2

(
L̃aφx

)2 − 1 + cos(φ + θ) + γφ

]
dx dt.

Note that the normalizations in the discrete system imply that the spatial coordinate x is
normalized to the Josephson length λJ .

There are several ways to derive approximations for the operator La when a → 0; see, for
example, [28]. The first obvious approximation is

φtt − φxx − a2

12
φxxxx = − sin(φ + θ) + γ, x �= 0.(2.6)

Another approximation can be found by using that (1 − a2

12∂xx)La = 1 − a4

240∂
2
xx + · · · . This

result reflects the invertibility of La up to fourth order. Hence (1 − a2

12∂xx) acting on (2.5)
gives the approximation (up to fourth order terms)

φxx = φtt + sin(φ + θ) − γ − a2

12
∂xx(φtt + sin(φ + θ)), x �= 0.(2.7)

Expanding this equation and using the expression for φxx again, we get

φxx = φtt + sin(φ + θ) − γ(2.8)

− a2

12

(
φtttt + [sin(φ + θ)]tt − φ2

x sin(φ + θ)

+ cos(φ + θ)[φtt + sin(φ + θ) − γ]
)
, x �= 0.

The steady state equation for (2.6) is

φxx +
a2

12
φxxxx = sin(φ + θ) − γ, x �= 0,

while (2.7) yields the equation

φxx =

(
1 − a2

12
∂xx

)
sin(φ + θ) − γ, x �= 0,

and (2.8) gives

φxx = sin(φ + θ) − γ − a2

12
(−φ2

x sin(φ + θ) + cos(φ + θ)[sin(φ + θ) − γ]), x �= 0.

Unfortunately the last two equations are not Hamiltonian, so we have lost the Hamiltonian
properties of the original system, while the first equation is singularly perturbed.

Yet another approximation that has a variational structure and is not singularly perturbed
can be obtained by combining the two equations that have lost their variational character.
Indeed, taking (2.7) twice and subtracting (2.8) give

φxx = φtt + sin(φ + θ) − γ(2.9)

− a2

12

(
2φxxtt + 2φxx cos(φ + θ) − φ2

x sin(φ + θ) − φtttt − φtt cos(φ + θ)

+ φ2
t sin(φ + θ) − cos(φ + θ)(φtt + sin(φ + θ) − γ)

)
, x �= 0.
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The Lagrangian for this system is

L =

∫∫
1
2φ

2
t − 1

2φ
2
x − 1 + cos(φ + θ) + γφ

+
a2

2

[
φx∂x(φtt + sin(φ + θ)) +

1

2
(φtt + sin(φ + θ) − γ)2

]
dx dt.

The static equation for (2.9) is

φxx = sin(φ + θ) − γ(2.10)

− a2

12

(
2φxx cos(φ + θ) − φ2

x sin(φ + θ) − cos(φ + θ)(sin(φ + θ) − γ)
)
, x �= 0.

This equation is a regularly perturbed Hamiltonian system with the Hamiltonian

H(φ, p) =
p2

2(1 + a2

6 cos(φ + θ))
+ γφ + cos(φ + θ) − a2

24
(sin(φ + θ) − γ)2 ,

which implies p = φx

(
1 + a2 cos(φ+θ)

6

)
.

In this paper, we will analyze (2.9) as a continuum strong interaction limit which incor-
porates some effects of the lattice spacing into the model. The model equation (2.9) is chosen
as it is nonsingular and has the same conservative properties as the discrete system, reflecting
its physical properties.

3. The π-kinks and their spectra in the continuum limit. In this section, we will consider
(2.9) for a = 0, which is a model for an ideal long 0-π Josephson junction:

φtt − φxx + sin(φ + θ) = γ, x �= 0.(3.1)

For a Josephson junction without an applied bias current or a phase jump, i.e., for γ = 0
and θ(x) ≡ 0, the model corresponds to the sine-Gordon equation. A stable solution of the
sine-Gordon equation is the basic (normalized) stationary, monotonically increasing fluxon,
given by

φflux(x) = 4 arctan ex, φflux(0) = π(3.2)

(see [10]).
In general the discontinuous function θ(x) in (3.1) will introduce a discontinuity at x = 0

for the second derivative φxx. Hence, the natural solution space for (3.1) consists of functions
which are spatially continuous and have a continuous spatial derivative. The behavior at
infinity is regulated by requiring that the spatial derivative of the solution belongs to H1(R)
(which allows the phase to converge to a nonzero constant at infinity). Therefore, (3.1) is
considered as a dynamical system on the function space

H = {φ : R → R | φx ∈ H1(R)}.
It is straightforward to find that for |γ| < 1 and x < 0, the “fixed points” of (3.1)

are φ−
s = arcsin(γ) and φ−

c = − arcsin(γ) + π. Similarly, for |γ| < 1 and x > 0, they
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are φ+
s = arcsin(γ) + π and φ+

c = − arcsin(γ) + 2π. In [32], it is shown that there exist
various types of stationary fronts, which connect the equilibria. Most stationary fronts are
so-called π-kinks, which are static waves connecting equilibrium states at x = ±∞ with a
phase-difference of π. Such waves are solutions of the static wave equation

φxx − sin(φ + θ) = −γ, x �= 0.(3.3)

In the x-dynamics of (3.3), the points φ±
s are saddle points and the points with φ±

c are center
points. Thus a π-kink connects φ−

s with φ+
s .

In this section we will consider the stability of those π-kinks. For completeness, we first
describe the various types of π-kinks as found in [32]. These π-kinks are constructed by taking
suitable combinations of the phase portraits for θ = 0 and θ = −π. The phase portraits for
γ = 0 are essentially different from the ones for 0 < γ < 1 (the case −1 < γ < 0 follows from
this one by taking φ 	→ −φ and γ 	→ −γ). In case γ > 0 there are homoclinic connections at
kπ + arcsin(γ), k ∈ Z, k even (θ = 0), or k odd (θ = −π). If γ = 0, then these homoclinic
connections break to heteroclinic connections between kπ and (k + 2)π.

The phase portrait of (3.3) for γ = 0 is shown in Figure 1(a). Following the notation
in [32], in case γ = 0, there are two types of heteroclinic connections (kinks) in the 0-π
junction. The first one, called type 1 and denoted by φ1

π(x; 0), connects 0 and π. The point
in the phase plane where the junction lies is denoted by d1(0). The second one, called type 2
and denoted by φ2

3π(x; 0), connects 0 and 3π. Now the point in the phase plane where the
junction lies is denoted by d2(0). This solution is not a semifluxon, but it will play a role in
the analysis of some of the semifluxons for γ �= 0.

If 0 < γ � 1, then there are three types of π-kinks (heteroclinic connections) in the
junction, all connecting arcsin(γ) and π + arcsin(γ). A phase portrait of (3.3) for nonzero γ
is shown in Figure 1(b). The first semifluxon, called type 1 and denoted by φ1

π(x; γ), is a
continuation of the connection at γ = 0. The point in the phase plane where the junction lies
is denoted by d1(γ). The π-fluxon φ1

π(x; γ) is monotonically increasing.
The second one is called type 2 and is denoted by φ2

π(x; γ). In the limit for γ → 0, it
breaks in the 3π-kink and the heteroclinic connection between 3π and π (a −2π-kink or an
antifluxon). The point in the phase plane where the junction lies is denoted by d2(γ). The
π-fluxon φ2

π(x; γ) is not monotonically increasing but has a hump.
The third one is called type 3 and is denoted by φ3

π(x; γ). In the limit for γ → 0, it breaks
in the heteroclinic connection between 0 and 2π (fluxon) and an antisemifluxon like the type 1
wave but connecting 2π and π. The point in the phase plane where the junction lies is denoted
by d3(γ). This π-fluxon has a hump, too, but a lower one than the type 2 wave. Following the
first homoclinic orbit, the junction points are ordered such that d1(γ) comes first, followed by
d2(γ), followed by d3(γ) (see Figure 1(b)).

If γ increases, the points d2(γ) and d3(γ) approach each other, until they coincide at [32]

γ = γ∗ =
2√

4 + π2
(3.4)

in the point (π + arcsin(γ∗), 0). At this point, the type 2 wave φ2
π(x; γ) ceases to exist (in the

limit it breaks into half the homoclinic connection for x < 0 and the full homoclinic connection
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d1 d2

(a)

(b)

Figure 1. (a) The phase portrait of system (3.3) for γ = 0. The trajectories for x < 0 are indicated with
bold lines, and the trajectories for x > 0 are indicated with dashed lines. Any orbit of (3.1) switches at x = 0
from bold to dashed. The type 1 semifluxon switches at d1 and corresponds to one of the gray arrow-lines. The
3π-fluxon switches at d2 and is denoted by the other gray arrow-line. (b) The phase portrait of system (3.3) for
γ = 0.1. For simplicity, only the stable and unstable manifolds of the fixed points are shown. Apart from d1,
there are also the points d2 or d3 which can be used for the switch position of x = 0 to obtain a solution with a
phase difference π between the endpoints.

for x > 0). The type 3 kink φ3
π(x; γ∗) consists of half the homoclinic connection for x < 0 and

the fixed point for x > 0, and this wave can be continued for γ > γ∗. For γ > γ∗, the type 3
kink is monotonic.

If γ increases further, the points d1(γ) and d3(γ) approach each other [32] until they
coincide at

γ = γcr =
2

π
.(3.5)

When γ = γcr, the orbit homoclinic to the hyperbolic fixed point for x < 0 is tangential at
d1(γ) = d3(γ) to the nonhomoclinic stable manifold of the hyperbolic fixed point for x > 0.
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As soon as γ > γcr, there is no more intersection of the homoclinic orbit for x < 0 with a
stable manifold of the hyperbolic fixed point for x > 0. This implies that no static π-fluxons
can exist. For more details, see [32].

After recalling the description of the π-kinks from [32], we can start the stability analysis.
It will be shown that the type 1 π-kink is nonlinearly stable for all 0 ≤ γ ≤ γcr. The type 2
and type 3 π-kinks are linearly unstable for all values of γ for which they exist. First we
consider the linearization about the π-kinks.

Theorem 3.1. The linearizations about the various π-kinks have the following properties:
(i) The eigenvalues of the linearization about the monotonic type 1 π-kink φ1

π(x; γ) are
strictly negative for 0 ≤ γ < γcr. At γ = γcr, the largest eigenvalue is zero. These π-kinks are
linearly stable.

(ii) The largest eigenvalue of the linearization about the type 2 π-kink φ2
π(x; γ) is strictly

positive for 0 < γ < γ∗. These π-kinks are linearly unstable.
(iii) The largest eigenvalue of the linearization about the type 3 π-kink φ3

π(x; γ) is strictly
positive for 0 < γ < γcr. These π-kinks are linearly unstable. In the limit for γ → 0 and
γ → γcr, the largest eigenvalue converges to zero.

Remark 3.2. Note that the instability of the two nonmonotonic π-kinks cannot be estab-
lished by the classical Sturm–Liouville argument. In the classical, autonomous setting, the
derivative of the wave about which the system is linearized is an eigenfunction of the linearized
system. This eigenfunction is associated with the translation invariance of the original system
and hence corresponds to an eigenvalue λ = 0. If the wave is nonmonotonic, then its derivative
has a zero, which implies that λ = 0 is not the largest eigenvalue [33] and that the wave must
be unstable. Due to the discontinuity at x = 0, our system is nonautonomous, and thus not
invariant with respect to translations, and λ = 0 is (in general) not an eigenvalue. Thus, it
cannot a priori be concluded that the nonmonotonic π-kinks must be unstable.

To prove Theorem 3.1, it will be shown that the linearization about a π-kink has an
eigenvalue of zero if and only if the π-kink takes a value which is a multiple of π at x = 0.
Since the value at x = 0 is related to the point di(γ), it can be derived that this happens only
at γ = γcr for the colliding type 1 and type 3 waves. To complete the proof, we will derive
expressions for the largest eigenvalue of the linearization about each semikink near γ = 0 in
three separate lemmas and use that the eigenvalues are continuous in γ to derive the sign of
the largest eigenvalue on the existence interval of the π-kink.

To linearize about a solution φi
π(x; γ), write φ(x, t) = φi

π(x; γ) + v(x, t), substitute this in
the model equation (3.1), and disregard all higher order terms:

[Dxx − cos(φi
π(x; γ) + θ(x))] v = Dtt v.(3.6)

Using the spectral Ansatz v(x, t) = eλtṽ(x), where v(x) is a continuously differentiable func-
tion, and dropping the tildes, we get the eigenvalue problem

Li(x; γ) v = λ2 v,(3.7)

where Li is defined as

Li(x; γ) = Dxx − cos(φi
π(x; γ) + θ(x)).(3.8)
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The natural domain for Li is H2(R). We call Λ an eigenvalue of Li if there is a function
v ∈ H2(R), which satisfies Li(x; γ) v = Λv. Since Li depends smoothly on γ, the eigenvalues
of Li will depend smoothly on γ, too.

The operator Li is symmetric; hence all eigenvalues will be real. A straightforward calcula-
tion gives that the continuous spectrum of Li is in (−∞,−

√
1 − γ2). Since the eigenfunctions

are continuously differentiable functions in H2(R) by the Sobolev embedding theorem, Sturm’s
theorem [33] can be applied, leading to the fact that the eigenvalues are bounded from above.
Furthermore, if v1 is an eigenfunction of Li with eigenvalue Λ1 and v2 is an eigenfunction of Li

with eigenvalue Λ2 with Λ1 > Λ2, then there is at least one zero of v2 between any pair of
zeros of v1 (including the zeros at ±∞). Hence if the eigenfunction v1 has a fixed sign, then
Λ1 is the largest eigenvalue of Li.

The following lemma gives a necessary and sufficient condition for Li to have an eigenvalue
Λ = 0.

Lemma 3.3. The eigenvalue problem

Li(x; γ)v = Λv, x ∈ R,

has an eigenvalue Λ = 0 if and only if one of the following two conditions holds:
(i) Dxxφ

i
π(x; γ) is continuous at x = 0; i.e., φi

π(0; γ) = kπ for some k ∈ Z;
(ii) Dxφ

i
π(0; γ) = 0 and there are some x±, with sgn(x±) = ±1, such that Dxφ

i
π(x±; γ) �=

0.
Proof. Since φi

π(x; γ) converges to a saddle point for |x| → ∞, this implies that Dxφπ(x; γ)
decays exponentially fast to 0 for |x| → ∞. Since φi

π(x; γ) solves (3.3), differentiating this
ODE with respect to x gives

Li(x; γ)Dxφ
i
π(x; γ) = 0 for x �= 0.

This implies that for any constant K, the function wi
K(x) = KDxφ

i
π(x; γ) satisfies Li(x; γ)wi

K(x)
= 0 for x �= 0. Hence for any K− and K+, the solution

wi(x) =

{
wi

K−(x), x < 0,

wi
K+

(x), x > 0,

solves Li(x; γ)wi(x) = 0 for x �= 0. The function wi(x) is continuously differentiable if and
only if the following two conditions hold:

1. wi
K−(0−) = wi

K+
(0+); in other words, K−Dxφ

i
π(0; γ) = K+ Dxφ

i
π(0; γ), since φi

π is
continuously differentiable;

2. Dxw
i
K−(0−) = Dxw

i
K+

(0+); thus K−Dxxφ
i
π(0−; γ) = K+ Dxxφ

i
π(0+; γ).

The first condition is satisfied if K− = K+ or Dxφ
i
π(0; γ) = 0. If Dxφ

i
π(0; γ) = 0, we can

choose K± such that the second condition is satisfied and we do not end up with the trivial
solution, except when Dxφ

i
π(x; γ) is trivial for either x > 0 or x < 0.

If Dxφ
i
π(0; γ) �= 0, we need Dxxφ

i
π to be continuous at x = 0 in order to satisfy the second

condition. Since Dxxφ
i
π(x; γ) = sin(φi

π(x; γ) + θ(x)) − γ, Dxxφ
i
π is continuous at x = 0 if and

only if sin(φi
π(0; γ)) = 0. These arguments prove that if one of the two conditions are satisfied,

then Λ = 0 is an eigenvalue of Li.
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Next we assume that Λ = 0 is an eigenvalue of Li; hence there is some continuously
differentiable function vi(x) such that Li(x)vi(x) = 0 for x �= 0 and vi(x) → 0 for |x| → ∞.
The only solutions decaying to zero at +∞ are the solutions on the one-dimensional stable
manifold, and similarly, the only solutions decaying to zero at −∞ are the solutions on the one-
dimensional unstable manifold. The stable and unstable manifolds are formed by multiples of
Dxφ

i
π. So we can conclude that there exist K± such that

vi(x) =

{
K−Dxφ

i
π(x) for x < 0,

K+Dxφ
i
π(x) for x > 0.

Now we are back in the same situation as above, so we can conclude that either one of the
two conditions in the lemma must be satisfied.

The second condition in the lemma does not occur. Indeed, the first part of the second
condition, i.e., Dxφ

i
π(0; γ) = 0, happens only if di has its second coordinate zero and hence

only at γ = γ∗ with d2 = d3. At this point, the solution φ2
π(x; γ∗) has ceased to exist and the

solution φ3
π(x; γ∗) consists of the fixed point for x > 0. Hence this solution does not satisfy

the second part of the second condition.
To see for which value of γ the first condition is satisfied, we derive the relation between

φi
π(0; γ) and γ. Multiplying the static equation (3.3) with Dxφ

i
π and rewriting it give

Dx[(Dxφ
i
π(x; γ))2] = 2Dx[−γφi

π(x; γ) − cos(φi
π(x; γ) + θ(x))], x �= 0.

Integration from ±∞ to 0 and using that Dxφ
i
π(±∞; γ) = 0 show

(Dxφ
i
π(0; γ))2 = 2[−γ(φi

π(0; γ) − φi
π(−∞; γ)) − cos(φi

π(0; γ)) + cos(φi
π(−∞; γ))],

(Dxφ
i
π(0; γ))2 = 2[−γ(φi

π(0; γ) − φi
π(+∞; γ)) + cos(φi

π(0; γ)) − cos(φi
π(+∞; γ))].

Subtracting these two equations and using that φi
π(+∞; γ) = φi

π(−∞; γ) + π, we get that

0 = −πγ − 2 cos(φi
π(0; γ)); hence cos(φi

π(0; γ)) =
πγ

2
.(3.9)

Thus the first condition is only satisfied when cos(φi
π(0; γ)) = ±1; hence γ = 2

π = γcr.
The following step in the analysis of the eigenvalues of the linearization is to consider

the behavior of the eigenvalues for γ small. First note that at γ = 0, we have an explicit
expression for the π-fluxon and the 3π-fluxon (see (3.2) for the expression of φflux):

φ1
π(x; 0) =

{
φflux(x− ln(1 +

√
2)) for x < 0,

π − φflux(−x− ln(1 +
√

2)) for x > 0,
(3.10)

φ2
3π(x; 0) =

{
φflux(x + ln(1 +

√
2)) for x < 0,

3π − φflux(−x + ln(1 +
√

2)) for x > 0.
(3.11)

Hence the derivatives of both functions are even and cos(φi
π(x; 0)+ θ) is continuous and even,

since φ1
π(0; 0) = π

2 and φ2
3π(0; 0) = 3π

2 .
For γ � 1, the homoclinic orbit in the system with θ = 0 will be crucial for the ap-

proximation of type 2 and type 3 solutions. This orbit is homoclinic to arcsin(γ) and will be
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denoted by φh(x; γ). It can be approximated up to order γ by using the 2π-fluxon φflux and
its linearization.

Lemma 3.4. For γ small, we have for the even homoclinic connection φh(x; γ)

φh(x; γ) = φflux(x + Lπ(γ)) + γ φ1(x + Lπ(γ)) + γ2R2(x + Lπ(γ); γ), x < 0,(3.12)

where the expression for the 2π-fluxon φflux can be found in (3.2),

φ1(x) =
1

2

[
−1 + coshx +

∫ x

0

ξ

cosh ξ
dξ

]
1

coshx
− arctan ex

( x

coshx
+ sinhx

)
,

and Lπ(γ) is such that φh(−Lπ(γ); γ) = π = φflux(0), implying

Lπ(γ) =
1

2
|ln γ| + ln

4√
π

+ O(
√
γ).(3.13)

Furthermore, γ2R2(x + Lπ(γ); γ) = O(γ), uniform for x < 0 and γφ1(Lπ(γ); γ) = O(
√
γ).

Thus

φh(0) = 2π − 2
√
π
√
γ + O(γ).(3.14)

Finally, φ1(x̃; γ) = O(1) and R2(x̃; γ) = O(1), uniform for x̃ < 0.
Proof. It is more convenient in the following perturbation analysis to follow the normal-

ization of φflux(x); i.e., in this proof we introduce new coordinates x̃ = x + Lπ(γ), where
Lπ(γ) is such that φh(−Lπ(γ); γ) = π = φflux(0). In the following we will drop the tildes and
work in those new coordinates. As φh in the original coordinates was even, we get in the new
coordinates Dxφh(Lπ(γ); γ) = 0. This condition will be used later to determine an asymptotic
expression for Lπ(γ).

In the new coordinates, we introduce the expansion

φh(x; γ) = φflux(x) + γφ1(x) + γ2R2(x; γ), x < Lπ(γ).

By linearizing about φflux, it follows that the equation for φ1 is

L(x)φ1 = −1, where L(x) = Dxx − cos(φflux(x)).(3.15)

The operator L(x) is identical to the operator associated with the stability of φflux(x). The
homogeneous problem Lψ = 0 has the two independent solutions

ψb(x) =
1

coshx
, ψu(x) =

x

coshx
+ sinhx,(3.16)

where ψb(x) = 1
2

d
dxφflux(x) is bounded and ψu(x) unbounded as x → ±∞. By the variation-

of-constants method, we find the general solution to (3.15),

φ1(x;A,B) =

[
A +

1

2
coshx +

1

2

∫ x

0

ξ

cosh ξ
dξ

]
1

coshx

+ [B − arctan ex]
( x

coshx
+ sinhx

)
,
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with A,B ∈ R. The solution φ1(x) of (3.15) must be bounded as x → −∞ and is normalized
by φ1(0) = 0 (since φh(0) = φflux(0) = π). Thus, we find that A = −1

2 and B = 0. Note that
limx→−∞ φ1(x) = 1, which agrees with the fact that limx→−∞ φh(x) = arcsin γ = γ + O(γ3).
The solution φ1(x) is clearly not bounded as x → ∞, the unbounded parts of φ1(x) and
d
dxφ1(x) are given by

φ1|u(x) = − arctan ex sinhx,
d

dx
φ1|u(x) = − arctan ex coshx.(3.17)

It follows that φ1(x) = O(γ−σ) for some σ > 0 if ex = O(γ−σ), i.e., if x = σ|ln γ| at leading
order. Using this, it is a straightforward procedure to show that the rest term γ2R2(x; γ) in
(3.12) is of O(γ2−2σ) for x = σ|ln γ| + O(1) (and σ > 0). Hence, the approximation of φh(x)
by expansion (3.12) breaks down as x becomes of the order |ln γ|. On the other hand, it also
follows that φ1

appr(x) = φflux(x) + γφ1(x) is a uniform O(γ)-accurate approximation of φh(x)

on an interval (−∞, L] for L = 1
2 |ln γ| + O(1). Since φflux(L) + γφ1(L) = O(

√
γ) for such L,

we can compute Lπ = 1
2 |ln γ| + O(1), as Lπ is the value of x at which

0 =
d

dx
φh(x) =

d

dx
φ1

appr(x) + O(γ) =
d

dx
φflux(x) + γ

d

dx
φ1|u(x) + O(γ).

We introduce Y by ex = Y√
γ , so that it follows by (3.2) and (3.17) that Y = 4√

π
+O(

√
γ), i.e.,

Lπ(γ) =
1

2
|ln γ| + ln

4√
π

+ O(
√
γ).

A straightforward calculation shows that (in the new coordinates)

φh(Lπ) = 2π − 2
√
π
√
γ + O(γ).

As φh(x) and φflux(x) both converge exponentially fast to fixed points which are order γ apart
for x → −∞, it follows immediately that φ1(x; γ) = O(1) and R2(x; γ) = O(1), uniform for
x < 0.

Now we are ready to consider the stability of the various types of π-fluxons individually.

3.1. Stability of the type 1 solution.
Lemma 3.5. For all 0 ≤ γ < γcr, all eigenvalues of L1(x; γ) are strictly negative. For

γ = γcr, the operator L1(x; γcr) has 0 as its largest eigenvalue. For γ = 0, the largest eigenvalue
is −1

4(
√

5 + 1). Furthermore, for all 0 ≤ γ < γcr, the type 1 semikinks φ1
π(x; γ) are Lyapunov

stable in the following sense. For all ε > 0, there is some δ > 0 such that any solution
φ(x, t) of the semifluxon equation (3.1), which is convergent to 0 at x → −∞ and to π at
x → +∞ and which satisfies initially ‖φ(·, 0) − φ1

π(·; γ)‖H1 + ‖φt(·, 0)‖L2 < δ, will satisfy
‖φ(·, t) − φ1

π(·; γ)‖L2 + ‖φt(·, t)‖L2 < ε for all t ∈ R.
Proof. From Lemma 3.3 it follows that L1 has an eigenvalue Λ = 0 at γ = γcr. The eigen-

function is Dxφ
1
π(x; γcr) and this function is always positive, since φ1

π(x; γcr) is monotonically
increasing. From Sturm’s theorem, it follows that Λ = 0 is the largest eigenvalue of L1 at
γ = γcr. Next we consider γ = 0. We can explicitly determine all eigenvalues of L1(x; 0).
From the explicit expression for φ1

π it follows that L1(x; 0) is a continuous even operator. For
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fixed Λ, the operator L1(x; 0) − Λ has two linearly independent solutions. Since the fixed
point is a saddle point and the decay rate to this fixed point is like e−x, there is one solution
that is exponentially decaying at +∞ and there is one solution that is exponentially decaying
at −∞, if Λ > −1. If we denote the exponentially decaying function at −∞ by v−(x; Λ), then
the exponentially decaying function at +∞ up to a constant is given by v+(x; Λ) = v−(−x; Λ)
(since L1 is symmetric in x). Obviously, v+(0; Λ) = v−(0; Λ); hence Λ is an eigenvalue if
Dxv+(0; Λ) = Dxv−(0; Λ) (i.e., when Dxv−(0; Λ) = 0) or if v−(0; Λ) = 0.

Using [23], we can derive explicit expressions for the solutions v−(x; Λ) (see also [10]).
Using x1 = ln(

√
2 + 1), we have

v−(x; 0) = sech(x− x1), v−(x; Λ) = eμ(x−x1) [tanh(x− x1) − μ], μ =
√

Λ + 1.

A straightforward calculation shows that v−(0; Λ) �= 0. The condition Dxv−(0; Λ) = 0 gives
that

μ2 − 1

2

√
2μ− 1

2
= 0; hence

√
Λ + 1 =

1

4

√
2(
√

5 − 1) ⇒ Λ = −1

4
(
√

5 + 1).

Now assume that the operator L1(x; γ) has a positive eigenvalue Λ1(γ) for some 0 ≤ γ <
γcr. Since Λ depends continuously on γ, there has to be some 0 < γ̂ < γcr such that Λ1(γ̂) = 0.
However, from Lemma 3.3 it follows that this is not possible.

Nonlinear or Lyapunov stability can be derived by looking at the “temporal Hamiltonian”

H(φ, p) =

∫ ∞

−∞

[
1

2
p2 +

1

2
(φx)2 − cos(φ + θ) − γ(φ + θ)

]
dx.

This functional is a Lyapunov function for the system (3.1); i.e., any solution φ(x, t) ∈ H2(R)
of (3.1) satisfies d

dtH(φ, φt) = 0, and hence H(φ(·, t), φt(·, t)) = H(φ(·, 0), φt(·, 0)) for any t ∈ R.
Furthermore, the linearization D2H at (φ, p) = (φ1

π, 0) (the point related to the π-fluxon) is
given by

D2H(φ1
π, 0) =

( −L1(x; γ) 0
0 I

)
,

which is a strictly positive definite self-adjoint operator on L2(R)×L2(R) with domain H2(R)×
L2(R). So there is some c > 0 such that for any (φ, p) ∈ H2×L2, we have H(φ, p)−H(φ1

π, 0) ≥
c(‖φ−φ1

π‖2
L2

+‖p‖2
L2

); see, e.g., [14, 36]. Finally, it is straightforward to prove that there is some
C > 0 such that H(φ, p)−H(φ1

π, 0) ≤ C(‖φ− φ1
π‖2

H1
+ ‖p‖2

L2
) for any (φ, p) ∈ H2 ×L2.

Using standard procedures in MATLAB, the eigenvalues of the type 1 π-fluxon have been
calculated numerically as a function of the applied bias current γ and are presented in Fig-
ure 2(a). Further details of the computational procedure are presented in section 6. Figure 2(a)
shows that the type 1 semifluxon has only one eigenvalue. This eigenvalue tends to zero when
the bias current γ approaches the critical value γcr as has been derived analytically. It was
first proposed in [15, 20, 21] that a constant driving force can excite the largest eigenvalue of
a semifluxon toward zero.

When we apply a bias current above the critical value γcr, numerics show that the sta-
tionary π-kink bifurcates into a semifluxon that reverses its polarity and releases a fluxon.
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Figure 2. (a) The eigenvalue of linear operator associated to the type 1 semifluxon as a function of the
bias current γ. The dashed line is the boundary of the continuous spectrum. (b) A simulation of the evolution
of a π-kink in the presence of a bias current above the critical value (γ > γcr). The plot presents the magnetic
field φx. The numerics show that the instability leads to the release of wave trains of traveling wave fluxons.
In this evolution a damping, which is proportional to φt, has been applied to the system.

This process keeps repeating itself: the semifluxon changes its direction back and forth with
releasing a fluxon or antifluxon in every change. A simulation of the release of fluxons from a
semifluxon is presented in Figure 2(b). In experiments, the polarity of a semifluxon can also
be reversed by applying a magnetic field [13].

When γ = γcr, the type 1 and type 3 semifluxons coincide. From the numerical analysis
of the eigenvalues of the type 3 semifluxon (see section 3.3 for details), it follows that there
is an eigenvalue at the edge of the continuous spectrum for γ = γcr. We conjecture that this
eigenvalue bifurcates into the edge of the continuous spectrum at this point as γ increases
to γcr (see Figure 4).

3.2. Instability of type 2 solutions.
Lemma 3.6. For all 0 < γ < γ∗, the largest eigenvalue of L2(x; γ) is strictly positive. In

the limit γ → 0, the largest eigenvalue of L2(x; γ) converges to 1
4(
√

5 − 1).
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Proof. Using the approximation for the homoclinic orbit φh(x; γ) in Lemma 3.4, we see
that, for γ small, an approximation for the π-fluxon of type 2 is given by (as before, x1 =
ln(1 +

√
2))

φ2
π(x; γ) =

⎧
⎪⎨

⎪⎩

φflux(x + x1) + O(γ), x < 0,

π + φflux(x̃) + γφ1(x̃) + γ2R2(x̃; γ), 0 < x < Lπ(γ) + x1,

π + φflux(−x̂) + γφ1(−x̂) + γ2R2(−x̂; γ), x > Lπ(γ) + x1,

(3.18)

with x̃ = x− x1 and x̂ = x− 2Lπ(γ) − x1.
There is no limit for γ → 0, since the semifluxon breaks into two parts, one of them

being the 3π-fluxon φ2
3π(x; 0). In a similar way as we found the largest eigenvalue for the

linearization operator L1(x; 0) about the π-fluxon φ1
π(x; 0), we can find the largest eigenvalue

for the linearization operator L2(x; 0) about the 3π-fluxon φ2
3π(x; 0). The largest eigenvalue

is Λ2(0) = 1
4(
√

5 − 1) and the eigenfunction is

ψ2(x; 0) =

{
eμ0(x+x1)(μ0 − tanh(x + x1)), x < 0,

eμ0(−x+x1)(μ0 − tanh(−x + x1)), x > 0,

where μ0 =
√

Λ2(0) + 1 = 1
4

√
2(1 +

√
5). (It can be shown that there is another smaller

eigenvalue Λ = −1
2 and similar eigenfunction if μ = 1

2

√
2 = tanh(x1); see Remark 3.8.)

In a similar way, using the approximation (3.18) for φ2
π(x; γ), the eigenfunction of an

eigenvalue of φ2
π for γ small is approximated by

ψ2(x; γ) =

⎧
⎪⎨

⎪⎩

eμ(x+x1)(μ− tanh(x + x1)) + O(
√
γ), x < 0,

k2 e
−μx̃(μ− tanh(−x̃)) + k3 e

μx̃(μ− tanh x̃) + O(
√
γ), 0 < x < Lπ(γ) + x1,

k4 e
μ(−x̂)(μ + tanh x̂) + O(

√
γ), x > Lπ(γ) + x1,

where ki and μ have to be determined. The eigenvalue Λ follows from μ =
√

Λ2 + 1. Note that
the secular term which is growing at infinity with the multiplication factor k3 is included in
this approximation. When γ = 0 and k3 = 0, the first two lines in the definition of ψ2 are the
eigenfunction of the linearized problem about the heteroclinic connection between 0 and 3π,
as presented above. When γ is nonzero, k3 can be of order O(γσ) for σ > μ

2 as the secular

term is of order O(γ−μ/2) at x = Lπ(γ) + x1.
The constants k2, k3, and k4 and the parameter μ have to be chosen such that for γ > 0

(but small) the function ψ2(x, γ) is continuously differentiable at x = 0 and x = Lπ(γ) + x1.
From the continuity conditions at x = 0, we obtain

k2 =

√
2

4μ(μ− 1)(μ + 1)
+ O(

√
γ),

k3 =
(3 + 2

√
2)μ(2μ2 − μ

√
2 − 1)(2μ−√

2)

4μ(μ2 − 1)
+ O(

√
γ).

From one of the continuity conditions at x = Lπ(γ) + x1, we obtain k4 = k4(k2, k3, μ).
Now we are left with one more matching condition. Values of μ for which this condition is
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satisfied correspond to the eigenvalues of the operator L2(x; γ) for γ small. More explicitly,
the spectral parameter μ has to satisfy the equation

F(μ) = 16μk3(μ− 1)2(γπ)−μ((3μ + 4)πγ + 16μ) + O(γ−μ+2) = 0.(3.19)

Note that this expression is not defined at γ = 0. This corresponds to the singularities in
the expression for φ2 as γ → 0 due to the fact that Lπ(γ) → ∞ for γ → 0. Evaluating
F(μ) (γπ)μ at γ = 0, we see that there are four positive roots for μ, leading to four squared
eigenvalues, namely, Λ(0) = 1

4(
√

5 − 1), −1
2 , and the double eigenvalue Λ(0) = 0. The first

two come from the zeros of k3 and are related to the eigenvalues of the 3π-fluxon. The double
zero eigenvalues are the eigenvalues of the fluxon. One can also notice that there is no term
with a multiplication factor k2 to this leading order. This term appears at most of order
O(γμ+2). Finally, as with the type 1 semifluxon, the root μ = 0 corresponds to the edge of
the continuous spectrum and the “eigenfunction” is not in H2(R).

The proof that the largest eigenvalue is near 1
4(
√

5− 1) for γ small will be complete if we

can show that Fμ(
√

2/4(1 +
√

5)) �= 0, i.e., the nondegeneracy condition that says that the
eigenvalue can be continued continuously for γ small.

Simple algebraic calculations give that

Fμ

(√
2

4
(1 +

√
5)

)

= c1γ
−

√
2

4
(1+

√
5) + O(γ1−

√
2

4
(1+

√
5))(3.20)

with c1 a positive constant. Hence, Fμ(
√

2
4 (1 +

√
5)) > 0.

This completes the proof that the largest eigenvalue is near 1
4(
√

5 − 1) for small but
positive γ. Since the largest eigenvalue depends continuously on γ, it can only disappear at
a bifurcation point. There are no bifurcation points and it is not possible that the eigenvalue
becomes 0 (see Lemma 3.3); hence the largest eigenvalue will be positive as long as fluxon
φ2

π(x; γ) exists, i.e., for 0 < γ < γ∗.
Remark 3.7. We cannot use a comparison theorem, because φ2

π < φ3
π for x < 0 and

φ2
π > φ3

π for x > 0.

To consider the relation between the eigenvalues of L2(x; γ) and the stability problem of
φ2

π(x; γ), we denote the largest eigenvalue of L2(x; γ) by Λ2(γ). The associated eigenvalues
for the linearizations are solutions of the equation λ2 − Λ2(γ) = 0; hence λ = ±√

Λ2(γ).
Since Λ2(γ) > 0, this implies that one of the two eigenvalues has positive real part; hence
the π-fluxons of type 2 are unstable. The numerically obtained eigenvalues of semifluxons of
this type as a function of γ are shown in Figure 3(a). In the proof of Lemma 3.6 we have
found three different eigenvalues for γ small and the possibility of a fourth eigenvalue coming
out of the continuous spectrum at γ = 0. In Figure 3(a), we see the continuation of those
eigenvalues. In Figure 3(b), we present the evolution of a 3π-kink (3.11) which is the limit of
a type 2 semifluxon when γ → 0. The separation of a fluxon from the semifluxon is clearly
seen and indicates the instability of the state (which confirms the analysis in the proof of
Lemma 3.6).

Remark 3.8. A type 2 semifluxon can be seen as a concatenation of a 3π- and a −2π-kink
in the limit γ → 0. In that limit the other eigenvalues of L2(x; γ) converge to 0, −1

2 , and −1.
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Figure 3. (a) The eigenvalues of the linear operator associated to the type 2 semifluxon as a function of
the bias current γ. The result that the largest eigenvalue is always positive shows the instability of the type 2
semifluxon. When γ → 0, Λ → 1

4
(
√

5−1) which is the largest eigenvalue of a 3π-kink. At γ = 0, one eigenvalue
comes out of the edge of the continuous spectrum (dashed line). (b) The evolution of a 3π-kink (3.11) for γ = 0.
The plot is presented in terms of the magnetic field φx. The separation of a fluxon from the semifluxon can be
clearly seen.

The eigenvalues 0 and −1 are contributions of the −2π-kink. The eigenvalue −1
2 corresponds

to the first excited state of the 3π-kink with eigenfunction

ψ2(x; 0) =

{
eμ(x+x1)(μ− tanh(x + x1)), x < 0,

eμ(−x+x1)(tanh(−x + x1) − μ), x > 0,

where μ =
√

Λ + 1 = 1√
2
.

3.3. Instability of type 3 solutions.

Lemma 3.9. For all 0 < γ < γcr, the largest eigenvalue of L3(x; γ) is strictly positive. For
γ = γcr, the operator L3(x; γcr) has 0 as its largest eigenvalue.
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Proof. The solution φ3
π(x, γcr) = φ1

π(x, γcr); hence from Lemma 3.5 it follows that the
largest eigenvalue is Λ = 0.

For γ near zero, we will use the approximation for the homoclinic orbit φh(x; γ) in
Lemma 3.4 to get an approximation for the type 3 fluxon

φ3
π(x; γ) =

⎧
⎪⎨

⎪⎩

φ1
appr(x̂) = φflux(x̂) + γφ1(x̂) + γ2R2(x̂; γ), x < −Lπ(γ) + x1,

φ2
appr(x̃) = φflux(−x̃) + γφ1(−x̃) + γ2R2(−x̃; γ), −Lπ(γ) + x1 < x < 0,

φ3
appr(−x− x1) = π + φflux(−x− x1) + O(γ), x > 0,

where x̃ = x− x1 and x̂ = x− x1 + 2Lπ(γ).
In the limit γ → 0, the type 3 semifluxon breaks into a type 1 semifluxon and a fluxon.

Both are stable and the largest eigenvalue of the fluxon is zero, while the largest eigenvalue of
the type 1 semifluxon is negative. Hence to approximate the largest eigenvalue of the type 3
semifluxon for γ small, we set

Λ(γ) = γΛ1(γ).

To construct the first part of the approximation of the eigenfunction, we consider x < −Lπ(γ)+
x1; i.e., x̂ < Lπ(γ). In this part of the argument, we will drop the hat in x̂. On (−∞, Lπ), we
expand ψ1

approx = ψ0 + γψ1; this yields the following equations for ψ0,1(x):

Lψ0 = 0, Lψ1 = [Λ1(0) − φ1(x) sinφflux(x)]ψ0.(3.21)

As ψ1
approx has to be an eigenfunction, we have ψ1

approx(x) → 0 as x → −∞. Furthermore,
we remove the scaling invariance by assuming that ψ1

approx(0) = 1. This implies that ψ0(x) is
given by

ψ0(x) =
1

coshx
(3.22)

(see (3.16)). To solve the ψ1-equation, we note that d
dxφ1(x) is a solution of

Lψ = −φ1 sinφflux
d

dx
φflux = −2φ1 sinφfluxψ0

(see (3.15) and (3.2)) so that we find as a general solution

ψ1(x) =

[
A− 1

2
Λ1

(
ln(coshx) +

∫ x

0

ξ

cosh2 ξ
dξ

)]
1

coshx

+

[
B +

1

2
Λ1 tanhx

]( x

coshx
+ sinhx

)
+

1

2

d

dx
φ1.

Using limx→−∞ ψ1(x) = 0 and ψ1(0) = 0 we find that A = π
4 , B = 1

2Λ1(0). As in the case of

φ1(x), we are especially interested in the unbounded parts of ψ1(x) and d
dxψ1(x),

ψ1|u(x) = 1
2Λ1(1 + tanhx) sinhx− 1

2 arctan ex coshx,
d
dxψ1|u(x) = 1

2Λ1(1 + tanhx) coshx− 1
2 arctan ex sinhx.

(3.23)
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We note that the error term |ψ(x) − ψ1
appr(x)| = γ2|S2(x; γ)| is at most O(γ) on (−∞, Lπ)

(the analysis is similar to that for γ2|R2(x; γ)|).
Next consider the second part of the approximation, i.e., x between −Lπ(γ) + x1 and 0.

Here we define the translated coordinate x̃ = x − x1, which is on the interval (−Lπ,−x1),
and again we drop the tildes. Since we have to match ψ1

appr(x) to the approximation ψ2
appr(x)

of ψ(x), along φ2
appr(x) and thus defined on the interval (−Lπ,−x1), we need to compute

ψ1
appr(Lπ) and d

dxψ
1
appr(Lπ) which to the leading order are calculated from (3.23); i.e.,

ψ1
appr(Lπ) =

2Λ1(0)√
π

√
γ + O(γ),

d

dx
ψ1

appr(Lπ) =
2Λ1(0) − π√

π

√
γ + O(γ).(3.24)

Thus, both ψ1
appr(Lπ) and d

dxψ
1
appr(Lπ) are O(

√
γ).

Now, we choose a special form for ψ2
appr(x), the continuation of ψ(x), i.e., the part lin-

earized along φ2
appr(x). It is our aim to determine the value of Λ1, for which there exists a

positive integrable C1 solution ψ of L3(x; γ)ψ = γΛ1(0)ψ. By general Sturm–Liouville the-
ory [33] we know that this value of Λ1 must be the largest eigenvalue. Our strategy is to try
to continue ψ(x) beyond (−∞, Lπ) by a function that remains at most O(

√
γ); i.e., we do not

follow the approach of the existence analysis and thus do not reflect and translate ψ1
appr(x)

to construct ψ2
appr(x) (since this solution becomes in general O(1) for x = O(1)). Instead, we

scale ψ2
appr(x) as γψ̃(x). The linearization ψ̃(x) along φ2

appr(x) on the interval (−Lπ, x1) must

solve Lψ̃ = O(γ); thus, at leading order

ψ̃(x) =
Ã

coshx
+ B̃

( x

coshx
+ sinhx

)
.(3.25)

The approximation ψ2
appr(x) = γψ̃(x) must be matched to ψ1

appr(Lπ) and d
dxψ

1
appr(Lπ) at

x = −Lπ; i.e.,

2Λ1(0)√
π

= − 2B̃√
π

+ O(
√
γ),

2Λ1(0) − π√
π

=
2B̃√
π

+ O(
√
γ).

Note that Ã does not appear in these equations; as a consequence, ψ1
appr(x) and ψ2

appr(x) can

only be matched for a special value of Λ1, Λ1(0) = 1
4π, with B̃ = −Λ1(0) < 0. Thus for this

special value of Λ1 and for Ã > 0, we have found a positive C1-continuation of the solution
ψ(x) of the eigenvalue problem for L3(x; γ)—recall that x < 0 in the domain of ψ̃(x). At the
point of discontinuity (−x1 for ψ̃(x), or at x = 0 in the original coordinates of (3.1)), we have

ψ2
appr(−x1) = γψ̃(−x1) = γ[12

√
2Ã− π

8

√
2(ln(

√
2 − 1) −

√
2)] + O(γ2),

d
dxψ

2
appr(−x1) = γ d

dx ψ̃(−x1) = γ[12Ã− π
8 (ln(

√
2 − 1) + 3

√
2)] + O(γ2).

(3.26)

Hence, we have constructed for a special choice of Λ, Λ = Λ∗ = π
4γ + O(γ

√
γ) > 0, an

approximation of a family of positive solutions of the eigenvalue problem for L3(x; γ) on
x < 0—in the coordinates of (3.1)—that attain the values given by (3.26) at x = 0, and
that decay to 0 as x → −∞. The question is now whether we can “glue” an element of this
family in a C1-fashion to a solution of the eigenvalue problem for L3(x; γ) on x > 0—with
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Λ = Λ∗—that decays (exponentially) as x → ∞. If that is possible, we have constructed a
positive integrable solution to the eigenvalue problem for L3(x; γ), which implies that Λ∗ > 0
is the critical eigenvalue and that φ3

π(x) is unstable.
An approximation of ψ(x) on x > 0, ψ3

appr(x), is obtained by linearizing along φ3
appr(x)

and by translating x so that x ∈ (x1,∞). Since ψ3
appr(x) has to match to expressions of O(γ)

(3.26) at x1, we also scale ψ3
appr(x), ψ3

appr(x) = γψ̂(x). We find that Lψ̂ = O(γ) so that ψ̂(x)
again has to be (at leading order) a linear combination of ψb(x) and ψu(x) (3.16). However,
ψ̂ must be bounded as x → ∞, which yields that ψ̂(x) = Â/coshx + O(γ) for some Â ∈ R.
At the point of discontinuity we thus have

ψ3
appr(x1) = γψ̂(x1) = 1

2

√
2Âγ + O(γ2),

d
dxψ

3
appr(x1) = γ d

dx ψ̃(x1) = −1
2Âγ + O(γ2).

(3.27)

A positive C1-solution of the eigenvalue problem for L3(x; γ) exists (for Λ = Λ∗) if there exist
Ã, Â > 0 such that (see (3.26) and (3.27))

1
2

√
2Ã − π

8

√
2(ln(

√
2 − 1) −

√
2) = 1

2

√
2Â,

1
2Ã − π

8 (ln(
√

2 − 1) + 3
√

2) = −1
2Â.

(3.28)

Since the solution of this system is given by Ã = 1
4π[

√
2 + ln(

√
2 − 1)] > 0 and Â = 1

2π
√

2 >
0, we conclude that the eigenvalue problem for the π-fluxon φ3

π(x; γ) has a positive largest
eigenvalue

Λ∗ =
π

4
γ + O(γ

√
γ).(3.29)

Hence the eigenvalue for γ small is positive. From Lemma 3.3 it follows that there are
no zero eigenvalues between 0 and γcr; hence the largest eigenvalue of L3(γ) is positive for all
values of γ.

Remark 3.10. For any λ = O(
√
γ) or, equivalently, any Λ1 = O(1), there exists a (nor-

malized) solution to the eigenvalue problem for L3(x; γ) on x < 0 that decays as x → −∞,
and that is approximated by ψ1

appr(x) and ψ2
appr(x) (matched in a C1-fashion at ±Lπ). If Λ1

is not O(
√
γ) close to 1

4π, however, ψ2
appr(x) cannot be scaled as γψ̃(x) and the solution is

not O(γ) at the point of discontinuity—in general it is O(1). Moreover, for any Λ1 = O(1),
there also exists on x > 0 a 1-parameter family of (nonnormalized) eigenfunctions for the
eigenvalue problem for L3(x; γ) that decay as x → ∞. In this family there is one unique
solution that connects continuously to the (normalized) solution at x < 0. In fact, one could
define the jump in the derivative at x = 0, J (λ; γ), as an Evans function expression (note that
J (λ; γ) can be computed explicitly at γ = 0; see [10]). By definition, λ2 is an eigenfunction
of L3(x; γ) if and only if J (λ; γ) = 0. In the above analysis we have shown that J (λ∗; γ) = 0
for λ∗ = 1

2

√
πγ + O(γ).

Remark 3.11. The classical, driven, sine-Gordon equation, i.e., θ ≡ 0 and γ �= 0 in (3.1),
has a standing pulse solution that can be seen, especially for 0 < γ � 1, as a fluxon/antifluxon
pair. This solution is approximated for d

dxφ > 0 (the fluxon) by φ1
appr(x) and for d

dxφ < 0
(the antifluxon) by φ1

appr(−x). It is (of course) unstable; the (approximation of the) critical
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Figure 4. The eigenvalues of the linear operator associated to the type 3 semifluxon as a function of the bias
current γ. The result that the largest eigenvalue is always positive shows the instability of the type 3 semifluxon.
When γ � 1, according to (3.29) the largest eigenvalue is approximated by Λ = π

4
γ, shown in dash-dotted line.

The dashed line is the boundary of the continuous spectrum.

unstable eigenvalue can be obtained from (3.24). The corresponding eigenfunction is approx-
imated by ψ1

appr(x) on (−∞, Lπ), and we conclude from (3.24) that d
dxψ

1
appr(Lπ) = 0 for

λ2 = γΛ1 = γ π
2 + O(γ

√
γ) (while ψ1

appr(Lπ) > 0). Hence, for this value of Λ1, we can match
ψ1

appr(x) to ψ2
appr(x) = ψ1

appr(−x) in a C1-fashion; it gives a uniform O(γ)-approximation of
the critical, positive (even, “two-hump”) eigenfunction of the fluxon/antifluxon pair at the
eigenvalue λ+ = 1

2

√
2π

√
γ + O(γ) > 0.

To consider the relation between the eigenvalues of L3(x; γ) and the stability problem of
φ3

π(x; γ), we denote the largest eigenvalue of L3(x; γ) by Λ3(γ). The associated eigenvalues for
the linearizations are a solution of the equation λ2 − Λ3(γ) = 0; hence λ = ±√

Λ3(γ). Since
Λ3(γ) > 0, this implies that one of the two eigenvalues has positive real part; hence the fluxons
of type 3 are unstable. In Figure 4, we present numerical calculations of the eigenvalues of
the type 3 semifluxon as a function of the bias current γ.

Remark 3.12. A type-3 semifluxon can be seen as a concatenation of a 2π- and a −π-kink
in the limit γ → 0. In that limit the other eigenvalue of L3(x; γ) converges to −1

4(
√

5 + 1)
(Figure 4) which is a contribution of the −π-kink.

4. Lattice π-kinks and their spectra in the continuum limit. In this section, we consider
(2.9) for a small lattice spacing a, i.e., the driven 0-π sine-Gordon equation with a small pertur-
bation due to lattice spacing effects. For a = 0, the semifluxons of all types are constructed as
heteroclinic connections with transversal intersections at x = 0 in the two-dimensional phase
space of the static equation (2.10). Therefore, all three types of semifluxons will still exist in
the perturbed system with 0 < a � 1; see [11]. The three types of semifluxons are denoted as
φi

π(x; a; γ) for i = 1, 2, and 3. In Figure 5, we present the phase portraits of the sine-Gordon
equation both with and without the effect of a perturbation due to lattice spacing.

The lattice spacing a does not affect the stationary points of the phase portraits, as can be
easily checked. The existence parameters γ∗ and γcr will be influenced by the lattice spacing a.
For a small, they are
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Figure 5. The phase portrait of the stationary system (2.10) for γ = 0 and some values of the lattice
spacing a. The dashed lines are the unperturbed phase portrait for a = 0 and the other lines correspond to
a = 0.5.

γ∗(a) =
2√

4 + π2
+

2π

3(π2 + 4)2
︸ ︷︷ ︸

≈0.0109

a2 + O(a4),(4.1)

γcr(a) =
2

π
+

√
π2 − 4 − π + 2 arcsin( 2

π )

3π2
︸ ︷︷ ︸

≈0.0223

a2 + O(a4);(4.2)

see [31] for details. For γ > γcr(a) no static semifluxon exists.

As we have seen in the last section, for a = 0, the type 3 semifluxon is marginally unstable
at γ = γcr and γ near zero. So there is a possibility that lattice spacing effects stabilize the
type 3 semifluxon near those values of γ. However, it turns out that this is not the case and
the stability of the semifluxons is similar to the case a = 0.

Theorem 4.1. For a small, the linearizations about the π-kinks have the following proper-
ties:

(i) The eigenvalues of the linearization about the monotonic type 1 π-kink φ1
π(x; a; γ)

are strictly negative for 0 ≤ γ < γcr(a). At γ = γcr(a), the largest eigenvalue is zero. These
π-kinks are linearly stable.

(ii) The largest eigenvalue of the linearization about the monotonic type 2 π-kink φ2
π(x; a; γ)

is strictly positive for 0 < γ < γ∗(a). These π-kinks are linearly unstable.
(iii) The largest eigenvalue of the linearization about the monotonic type 3 π-kink φ3

π(x; a; γ)
is strictly positive for 0 < γ < γcr(a). These π-kinks are linearly unstable. In the limit for
γ → 0 and γ → γcr(a), the largest eigenvalue converges to zero.

The proof of this theorem will proceed along similar lines as the proof in the previous
section. First we consider the eigenvalue problem of a solution φi

π(x; a; γ), which can be
written as

Li(x; a; γ) v = λ2 v,
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where Li(x; a; γ) is now defined as the linearization associated with (2.10), i.e.,

Li(x; a; γ) = Dxx − cos
(
φi

π(x; a; γ) + θ(x)
)

− a2

12

[
2 cos φ̃Dxx − 2(φi

π(x; 0; γ))x sin φ̃Dx

− 1 + 2γ sin φ̃− ((φi
π(x; 0; γ))x)2 cos φ̃

]
+ O(a4),

where φ̃ = φi
π(x; 0; γ) + θ(x).

Lemma 3.3 can be extended to a �= 0 and give a necessary and sufficient condition for
Li(x; a; γ) to have an eigenvalue Λ = 0.

Lemma 4.2. The eigenvalue problem

Li(x; γ)v = Λv, x ∈ R,

has an eigenvalue Λ = 0 if and only if one of the following two conditions holds:

(i) Dxxφ
i
π(x; a; γ) is continuous at x = 0; i.e., φi

π(0; a; γ) = kπ− a2 γ
12 +O(a4) for some

k ∈ Z;
(ii) Dxφ

i
π(0; a; γ) = 0 and there are some x±, with sgn(x±) = ±1, such that Dxφ

i
π(x±; a; γ)

�= 0.

Proof. As the proof of Lemma 3.3 is based on the fact that the derivative of the semifluxon
is a solution of the linearized system for x �= 0, we can follow the same arguments to prove
this lemma. Again this leads to two conditions: that either φi

xx is continuous at x = 0 or the
second condition as stated above.

In order to determine when φi
xx is continuous, we use the static equation (2.10) and expand

near a = 0,

Dxxφ
i
π(x; a; γ) =

(
sin(φi

π(x; a; γ) + θ(x)) − γ
) (

1 − a2

12 cos φ̃
)

+ a2

6 sin φ̃
(
γ arcsin γ +

√
1 − γ2 − γφ̃− cos φ̃

)
+ O(a4),

again with φ̃ = φi
π(x; 0; γ) + θ(x). The continuity of Dxxφ

i
π at x = 0 leads to the expression

for φi
π(x; a; γ) as given above.

At γ = γcr(a), the stable manifold of the π + arcsin γ and the homoclinic connection at
arcsin γ are tangent, implying that Dxxφ

i
π(x; a; γ) is continuous at x = 0. Thus the first

condition of the lemma is satisfied at γ = γcr(a) for i = 1, 3. For the same reasons as before,
the second condition is never satisfied.

Since Λ = 0 is an eigenvalue of the linearized operator Li(x; a; γ) if and only if γ = γcr(a),
the sign of the eigenvalues of Li(x; a; γ) will not change. Thus the behavior of the eigenvalues
near γ = 0 will again determine the stability of the semifluxons.

For γ = 0 and θ = 0, the sine-Gordon equation with a perturbation due to the lattice
spacing has a heteroclinic orbit connecting 0 and 2π. As before, the heteroclinic orbit will
play an important role in determining the stability of the semifluxons for small values of γ.
For small values of the lattice spacing a, we can approximate this heteroclinic orbit up to
order a2 by using the 2π-fluxon φflux and its linearization.
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Lemma 4.3. Let φa
flux(x) denote the heteroclinic orbit of the sine-Gordon equation with a

perturbation due to the lattice spacing (i.e., (2.9) with θ ≡ 0 and γ = 0). For the lattice
spacing a small, we have for the symmetric (i.e., φa

flux(0) = π) heteroclinic connection φa
flux(x)

φa
flux(x) = φflux(x) + a2φa(x) + O(a4),(4.3)

where

φa(x) = − 1

12

−3 sinhx + x coshx

cosh2 x
.(4.4)

This approximation is valid, uniform in x ∈ R.
Proof. The spatially localized correction to the kink shape φflux(x) due to the perturbation

term representing lattice spacing is sought in the form of perturbation series:

φa
flux(x) = φflux(x) + a2φa(x) + O(a4).

It is a direct consequence that φa(x) satisfies

L1(x; 0)φa(x) = f(x) = − 1
12

[
2 cosφflux(x)∂xxφflux(x)(4.5)

− sinφflux(x)(∂xφflux(x))2 − cosφflux(x) sinφflux(x)
]
,

where L1(x; 0) is the linearized operator associated to the fluxon, i.e., L1(x; 0) = Dxx −
cosφflux(x).

Using the variation-of-constants method, we obtain the general solution of (4.5), i.e.,

φa(x) = A(x) sechx + B(x) (x sechx + sinhx),(4.6)

where

A(x) = A0 +
1

24

[
2 ln

(
1 − coshx− sinhx

coshx− 1 − sinhx

)
+

6 sinhx

coshx
− 4 sinhx

cosh3 x
+

∫ x

0

ξf(ξ)

cosh ξ
dξ

]
,

B(x) = B0 − 1

24

[
2 +

1

cosh2 x
− 3

cosh4 x

]
.

The integration constant B0 is determined by the condition that φa(x) is bounded, leading
to B0 = 1

12 . The integration constant A0 is determined by the requirement that φa
flux(0) = π;

hence φa(0) = 0, giving that A0 = 0.
For γ = 0, the static model (2.10) for a 0-π Josephson junction with lattice spacing effects

has both a π- and a 3π-kink solution. The 2π-heteroclinic orbit found above can be used to
derive approximations for those kinks.

Lemma 4.4. For a small and γ = 0, we have an explicit expression for the π- and 3π-fluxon
up to order O(a2), respectively:

φ1
π(x; a; 0) = φ1

π(x; 0) + a2

{ −u1
π(x− ln(1 +

√
2)) for x < 0,

u1
π(−x− ln(1 +

√
2)) for x > 0,

φ2
3π(x; a; 0) = φ2

3π(x; 0) + a2

{ −u1
3π(x + ln(1 +

√
2)) for x < 0,

u1
3π(−x + ln(1 +

√
2)) for x > 0,

(4.7)
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where φ1
π(x; 0) and φ2

3π(x; 0) are the π-, respectively, the 3π-fluxons as defined in (3.11) and

u1
π(x) = 1

12 cosh x

(
3
√

2
2 − 1

2 ln(3 −
√

2) + 3 tanhx− x
)
,

u1
3π(x) = 1

12 cosh x

(
−3

√
2

2 + 1
2 ln(3 −

√
2) + 3 tanhx− x

)
.

4.1. Stability of type 1 semifluxon. We will show that the type 1 wave φ1
π(x; a; γ) is

linearly stable for small a and 0 ≤ γ ≤ γcr by analyzing the largest eigenvalue of L1(x; a; γ)
for 0 ≤ γ ≤ γcr(a).

Lemma 4.5. For the lattice spacing parameter a sufficiently small and 0 ≤ γ < γcr(a), the
largest eigenvalue of L1(x; a; γ) is strictly negative. For γ = γcr(a), the operator L1(x; a; γcr(a))
has 0 as its largest eigenvalue. For γ = 0, the largest eigenvalue decreases as a increases and
is proportional to −1

4(
√

5 + 1) − 0.0652a2 + O(a4).
Proof. First we look at the stability of the π-kink at γ = 0. Writing v(x) = v0(x) +

a2v1(x) + O(a4) and Λ = Λ0 + a2Λ1 + O(a4) and expanding the eigenvalue problem for the
stability of the π-kink φ1

π(x; a; 0) in a Taylor series result in the equations
(L1(x; 0; 0) − Λ0

)
v0(x) = 0,

(L1(x; 0; 0) − Λ0

)
v1(x) =

(
Λ1 − u1

π(x) sin(φ1
π(x; 0) + θ)

)
v0(x) − g(x),

(4.8)

where μ =
√

Λ0 + 1, Λ0 = −1
4(
√

5 + 1),

v0(x) =

{
eμ(x−ln(1+

√
2)) [tanh(x− ln(1 +

√
2)) − μ] for x < 0,

eμ(−x−ln(1+
√

2)) [tanh(−x− ln(1 +
√

2)) − μ] for x > 0,

g(x) = 1
12

[
2v0

xxΛ0 + v0 + 2v0
xx cos φ̃(x) − 2 cos2 φ̃(x)v0 − 2∂xx(φ1

π(x; 0)) sin φ̃(x)v0

− 2∂xφ
1
π(x; 0) sin φ̃(x)v0

x − (∂xφ
1
π(x; 0))2 cos φ̃(x)v0 − v0Λ2

0 − 2v0Λ0 cos φ̃(x)
]
,

with again φ̃(x) = φ1
π(x; 0) + θ(x) (see Lemma 3.5).

The parameter value of Λ1 is calculated by solving (4.8) for a bounded and decaying
solution v1(x). The general solution can be derived by using the variation-of-constants method
because we have the homogeneous solutions of the equation. One can also use the Fredholm
theorem (see, e.g., [30]); i.e., the sufficient and necessary condition for (4.8) to have a solution
v1 ∈ H2(R) is that the inhomogeneity is perpendicular to the null space of the self-adjoint
operator of L1(x; 0; 0). If 〈 , 〉 denotes an inner product in H2(R), then this condition gives

0 = 〈(L1(x; 0; 0) − Λ0)v
1, v0〉 = 〈Λ1v

0 − u1
πv

0 sin(φ1
π(x; 0) + θ) − g, v0〉,

which implies that

Λ1 =
3584(70

√
2(1 +

√
5) − 99(1 +

√
5))

24576(−70
√

10 − 350
√

2 + 495 + 99
√

5)
≈ −0.0652.(4.9)

Now assume that the operator L1(x; γ) has a positive eigenvalue Λ1(γ) for some 0 ≤ γ <
γcr(a). Since Λ depends continuously on γ, there has to be some 0 < γ̂ < γcr(a) such that
Λ1(γ̂) = 0. However, from Lemma 4.2 it follows that this is not possible.
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4.2. Instability of type 2 semifluxon. In Lemma 3.6 we have seen that for a = 0, the
linearization about the type 2 semifluxon has a strictly positive largest eigenvalue. Also the
limits of this eigenvalue for γ → 0 and γ → γ∗ are still strictly positive. Thus a small
perturbation associated with the lattice spacing cannot stabilize the type 2 semifluxons.

For completeness, we will consider the case γ = 0. In this limit, the type 2 semifluxon can
be seen as a concatenation of a 3π-kink and a −2π-kink. As before, the limit of the largest
eigenvalue for γ → 0 will be equal to the largest eigenvalue of the 3π-kink. We have seen that
the largest eigenvalue of the 3π-kink at γ = 0 and a = 0 is strictly positive and the following
lemma shows that small lattice spacing effects increase this eigenvalue.

Lemma 4.6. For the lattice spacing parameter a sufficiently small, the largest eigenvalue
of the linearization L2(x; a; 0) about the 3π-kink φ2

3π(x; a; 0) is strictly positive. Moreover, it
increases as a increases and is proportional to 1

4(
√

5 − 1) + 0.0652a2 + O(a4).
Proof. Note that the lowest order analytic expressions for the π- and the 3π-kinks differ

only in the sign of the “kink-shift” (see (4.7)). Because of this, we can follow the same steps as
the proof of Lemma 4.5. Writing the largest eigenvalue of a 3π-kink as Λ = Λ0+a2Λ1+O(a4),
with Λ0 = (

√
5 − 1)/4 as has been calculated in Lemma 3.6, we compute Λ1 to be

Λ1 =
3584(665857(

√
5 − 1) − 470832

√
2(
√

5 + 1))

24576(3329285 − 2354160
√

2 − 665857
√

5 + 470832
√

10)
≈ 0.0652.(4.10)

Thus up to order O(a4) the lattice spacing effects destabilize the 3π-kink.
Because a 2π-fluxon in the “ordinary” sine-Gordon equation can be pinned by lattice

spacing effects, one might expect to have a stable 3π-kink in the 0-π sine-Gordon equation
with larger lattice spacing effects. This is confirmed by numerical calculations in section 6;
see Figure 12. If the 3π-kink is stable for γ = 0, a stable type 2 semikink might exist for γ > 0
when the repelling force between the 3π-kink and the antifluxon is smaller than the energy
to move a fluxon along lattices. However, in section 6 it will be shown numerically that the
type 2 semikink is unstable for all values of the lattice spacing; see Figure 13(b).

4.3. Instability of type 3 semifluxon. For γ small or close to γcr, it has been shown in
Lemma 3.9 that the type 3 semifluxons are weakly unstable. This opens the possibility that
the perturbation term representing the lattice spacing stabilizes the semifluxon. This is not
the case, however.

Lemma 4.7. For small lattice spacing a and bias current 0 < γ < γcr(a), the largest eigen-
value of the linearization L3(x; a; γ) about the type 3 semifluxon φ3

π(x; a; γ) is strictly positive.
For γ = γcr(a), the operator L3(x; a; γcr) has 0 as its largest eigenvalue. For γ near zero and
a2 = γâ2, the largest eigenvalue of L3(x; a; γ) is Λ∗ =

(
π
4 + 7

180 â
2
)
γ + O(γ

√
γ).

Proof. At γ = γcr, the solution φ3
π(x; a; γcr(a)) = φ1

π(x; a; γcr(a)). Hence from Lemma 4.5
it follows that the largest eigenvalue of the linearization about φ3

π(x; a; γcr(a)) vanishes.
From Lemma 3.9 it follows that the largest eigenvalue of the linearization about φ3

π(x; a; γ)
is positive for a = 0 and 0 < γ < γcr. Thus a small perturbation cannot change the positive
sign of the largest eigenvalue if γ is not near 0 or γcr. Now assume that a small perturbation
would lead to a negative largest eigenvalue near γ = 0 or γ = γcr. Then there has to be a zero
eigenvalue near γ = 0 or γ = γcr, but this is not possible according to Lemma 4.5. Thus we
can conclude that the largest eigenvalue is always positive.
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To complete the proof, we will derive the asymptotic expression of the eigenvalue near
γ = 0. Since both a and γ are small, we relate those two parameters by writing a2 = γâ2.
Now the approximation for the type 3 semifluxon can be written as

φ3
π(x; â

√
γ; γ) =

⎧
⎪⎨

⎪⎩

φflux(x̂) + γφ1(x̂) + γâ2φa(x̂) + γ2R2(x̂; γ), x < −Lπ(γ) + x1,

φflux(−x̃) + γφ1(−x̃) + γâ2φa(−x̃) + γ2R2(−x̃; γ), −Lπ(γ) + x1 < x < 0,

π + φflux(−x− x1) + O(γ), x > 0,

where x̂ = x − x1 + 2Lπ(γ) and x̃ = x − x1. It can be shown that the shift Lπ(γ) does not
depend on â2 in lowest order; i.e., Lπ(γ) = 1

2 |ln γ| + ln 4√
π

+ O(
√
γ).

To find the largest eigenvalue, we set again Λ3(γ) = γΛ1(0) and follow the steps in the
proof of Lemma 3.9 with some additional terms added to some expressions.

First, we consider the part of the approximation with x < −Lπ(γ) + x1 or x̂ < Lπ(γ). As
before, we drop the hat in x̂ in this part of the argument. On (−∞, Lπ), the general solution
of the eigenvalue problem of the order O(γ) after expanding ψ1

approx = ψ0 + γψ1 is

ψ1(x) =

[
π

4
− 1

2
Λ1

(
ln coshx +

∫ x

0

ξ

cosh2 ξ
dξ

)]
1

coshx

+

[
1

2
Λ1(0) +

1

2
Λ1 tanhx

]( x

coshx
+ sinhx

)
+

1

2

(
d

dx
φ1 + â2 d

dx
φa

)

− ex

360(e2x + 1)3
[
16 ln 2 + e2x(32 ln 2 − 295 + 60x) + 30x + 137 + 7e6x

− 16 ln(e2x + 1)(e2x + 1)2 + e4x(151 + 30x + 16 ln 2)
]
.

We note that the error term |ψ(x)−ψ1
appr(x)| = γ2|S2(x; γ)| is still at most O(γ) on (−∞, Lπ).

Next consider the second part of the approximation, i.e., x between −Lπ(γ)+x1 and 0 or
x̃ < −Lπ(γ). Again, we drop the tilde in x̃. We scale ψ(x) as γψ̃(x). The linearization ψ̃(x)

along φ2
appr(x) on the interval (−Lπ,−x1) must solve Lψ̃ = O(γ). Thus, at leading order

ψ̃(x) =
Ã

coshx
+ B̃

( x

coshx
+ sinhx

)
.

The last part of the approximation of ψ(x) on x > 0, ψ3
appr(x), is obtained by linearizing

along φ3
appr(x) and by translating x so that x ∈ (x1,∞). We also scale ψ3

appr(x) = γψ̂(x). As

ψ̂ must be bounded for x → ∞, it follows that ψ̂(x) = Â/coshx + O(γ) for some Â ∈ R.
Finally, we have to connect all parts of the eigenfunction in a C1-fashion. This determines

the values of Λ1(0), Ã, B̃, and Â as

Λ1(0) =
1

4
π +

7

180
â2, B̃ = −Λ1(0), Ã =

1

4
π[
√

2 + log(
√

2 − 1)], and Â =
1

2
π
√

2;

thus Λ1(0) > 0, B̃ < 0, Ã > 0, and Â > 0. And we can conclude that the eigenvalue problem
for the π-fluxon φ3

π(x; â
√
γ; γ) has a positive largest eigenvalue

Λ∗ =

(
π

4
+

7

180
â2

)
γ + O(γ

√
γ).
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5. Semikinks in the weak-coupling limit. In this section we will consider the discrete
0-π sine-Gordon equation (2.3) when the lattice parameter a is large. The time independent
version of (2.3) is well known: when γ = 0, it corresponds to the so-called standard or Taylor–
Greene–Chirikov map [9], and when γ �= 0, it is called the Josephson map [24]. Since we
are interested in the case in which the lattice spacing a is large, we introduce the coupling
parameter ε as ε = 1

a2 and the equation becomes

φ̈n − ε [φn−1 − 2φn + φn+1] = − sin(φn + θn) + γ.(5.1)

When there is no coupling, i.e., ε = 0, it can be seen immediately that there are infinitely
many steady state solutions:

φn =

{
cos(knπ) arcsin γ + knπ, n = 0,−1,−2, . . . ,
cos(knπ) arcsin γ + (kn + 1)π, n = 1, 2, 3, . . . ,

where kn is an integer. The only monotone semikink is the solution with kn = 0 for n ∈ Z;
thus it is natural to identify this semikink with the type 1 semikink. However, it is less clear
which solution would correspond to the type 2 and type 3 semikinks. Possible candidates for
the type 2 wave are solutions for which there is some N ∈ N such that kn = 0 for n ≤ 0 and
n ≥ N and kn = 1 for 0 < n < N . Similarly, candidates for the type 3 wave are solutions
for which there is some N ∈ N such that kn = 0 for n ≤ −N and n ≥ 0 and kn = 1 for
−N < n < 0. But there are many other candidates involving combinations of kn = 0 or
kn = 1 as well. If one starts with such a wave in the uncoupled limit, i.e., with ε � 1 or
a → ∞, and uses continuation to follow this wave in the discrete system (5.1) toward a = 0 or
ε → ∞, then it turns out that most waves end in a saddle-node bifurcation [3]. More details
about the continuation can be found in section 6.

In this section we will focus on the analytical study of the type 1 semikink for the coupling
parameter ε small (thus the lattice spacing a large). We will denote this wave by Φ1

π(n; ε; γ),
and for ε = 0, we have

Φ1
π(n; 0; γ) =

{
arcsin γ, n = 0,−1,−2, . . . ,
π + arcsin γ, n = 1, 2, 3, . . . .

The existence of the continuation of (5.2) for small coupling ε is guaranteed by the following
lemma.

Lemma 5.1. The steady state solution Φ1
π(n; 0; γ), representing the semifluxon of type 1 in

the uncoupled limit ε = 0, can be continued for ε small and γ < 1. It is given by

Φ1
π(n; ε; γ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

arcsin γ + O(ε2), n ≤ −1;

arcsin γ + ε π√
1−γ2

+ O(ε2), n = 0;

π + arcsin γ − ε π√
1−γ2

+ O(ε2), n = 1;

π + arcsin γ + O(ε2), n ≥ 2.

(5.2)

For γ close to one, we write γ = 1 − εγ̃. If γ̃ > π, then the type 1 solution is
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Φ1
π(n; ε; 1 − εγ̃) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

π
2 −√

ε
√

2γ̃ + O(ε), n ≤ −1;
π
2 −√

ε
√

2(γ̃ − π) + O(ε), n = 0;
3π
2 −√

ε
√

2(γ̃ + π) + O(ε), n = 1;

3π
2 −√

ε
√

2γ̃ + O(ε), n ≥ 2.

(5.3)

From (5.3) we obtain the critical bias current for the existence of static semifluxon as

γcr = 1 − επ + O(ε2).(5.4)

Proof. The existence proof for γ < 1 follows from the implicit function theorem as given
in [22, Theorem 2.1] or [25, Lemma 2.2].

For the case γ = 1−εγ̃, the implicit function theorem as presented in the references above
cannot be applied immediately. However, after some manipulations, the implicit function
theorem can be applied again. First we substitute into the steady state equation γ = 1 − εγ̃

and Φ = Φ0 +
√
εΦ̃, where Φ0(n) = π

2 for n ≤ 0 and Φ0(n) = 3π
2 for n ≥ 1. This gives the

following equations:

0 = cos(
√

εΦ̃(n))−1
ε + γ̃ −√

ε[Φ̃(n− 1) − 2Φ̃(n) + Φ̃(n + 1)] =: F̃n(Φ̃, ε), n �= 0, 1,

0 = cos(
√

εΦ̃(0))−1
ε + γ̃ −√

ε[Φ̃(−1) − 2Φ̃(0) + Φ̃(1)] − π =: F̃0(Φ̃, ε), n = 0,

0 = cos(
√

εΦ̃(1))−1
ε + γ̃ −√

ε[Φ̃(0) − 2Φ̃(1) + Φ̃(2)] + π =: F̃1(Φ̃, ε), n = 1.

Using that limε→0
cos(

√
εΦ̃(n))−1
ε = −1

2(Φ̃(n))2, the definitions for F̃ can be smoothly extended
to ε = 0, too. The equations for ε = 0 become

Φ̃2(n) = 2γ̃, n �= 0, 1; Φ̃2(0) = 2(γ̃ − π); and Φ̃2(1) = 2(γ̃ + π).

For |n| large, the wave should be asymptotic to the center point of the temporal dynamics;

hence Φ̃(n) = −
√

2γ̃ for |n| large. So for γ̃ ≥ π, there are two monotone semikinks (recall

that the full semikink is given by Φ0 +
√
εΦ̃):

Φ̃±(n; 0; γ̃) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−
√

2γ̃, n ≤ −1;

±
√

2(γ̃ − π), n = 0;

−
√

2(γ̃ + π), n = 1;

−
√

2γ̃, n ≥ 2.

Note that the ±-solutions collide for γ̃ = π. The linearization DF̃ (Φ̃±, 0) is invertible for
γ̃ > π; hence the implicit function theorem can be applied again and we have the existence of
monotone semikinks Φ0(n) +

√
εΦ̃±(n, ε, γ̃). In analogue with the continuum case, the type 1

wave is the one that has the discontinuity at the lowest value of the phase. The critical bias
current for the existence of a static lattice semifluxon follows immediately from the arguments
above.
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The two ±-solutions near γcr as derived above in the proof are like the type 1 and type 3
semifluxons near γcr in the PDEs studied in the previous two sections. So in analogue to those
PDEs, we can define for γ̃ > π

Φ1
π(n; ε; 1 − εγ̃) = Φ0(n) +

√
εΦ̃−(n; ε; γ̃) and Φ3

π(n; ε; 1 − εγ̃) = Φ0(n) +
√
εΦ̃+(n; ε; γ̃),

where Φ0 and Φ̃± are as in the proof above. Thus we get

Φ1/3
π (n; ε; 1 − εγ̃) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

π
2 −√

ε
√

2γ̃ + O(ε), n ≥ −1;
π
2 ∓√

ε
√

2(γ̃ − π) + O(ε), n = 0;
3π
2 −√

ε
√

2(γ̃ + π) + O(ε), n = 1;

3π
2 −√

ε
√

2γ̃ + O(ε), n ≥ 2.

(5.5)

The spectral stability of Φi
π(n; ε; γ) is obtained by substituting φn = Φi

π(n; ε; γ) + vne
λt

in the model equation (2.3). Disregarding the higher order terms in vn gives the eigenvalue
problem

Li(ε; γ)ν = Λν,(5.6)

where Λ = λ2, ν = ( . . . , v−1, v0, v1, . . . )
T , and Li(ε; γ) is the linear discrete operator

Li(ε; γ) =

⎛

⎜⎜⎜⎜⎜⎜
⎝

. . .
. . .

. . . 0
ε −2ε−A−1 ε

ε −2ε−A0 ε
ε −2ε−A1 ε

0
. . .

. . .
. . .

⎞

⎟⎟⎟⎟⎟⎟
⎠

,

An = cos
(
Φi

π(n; ε; γ) + θn

)
, n ∈ Z.

This operator plays a similar role as the differential operator Li(x; γ) = Dxx − cos(φi
π(x; γ) +

θ(x)) in section 3. The eigenvalue problem is an infinite dimensional matrix problem for a
real and symmetric matrix. Thus the eigenvalues must be real.

In the discrete case, the continuous spectrum of semikinks is bounded. The spectrum is
obtained by substituting vn = e−ikn in (5.6) with J i

n = −2ε−
√

1 − γ2 from which one obtains
the following dispersion relation for such linear waves:

Λ = −
(√

1 − γ2 + 4ε sin2(k
2 )

)
.(5.7)

Thus the continuous spectrum consists of the intervals ±i[ 4
√

1 − γ2,

√√
1 − γ2 + 4ε] (recall

that Λ = λ2).
In the following two lemmas we will show that all eigenvalues of the linearization L1(ε; γ)

are negative for ε small. Thus for ε small, the type 1 wave is always stable. For γ = 1 − εγ̃
and γ̃ > π, it can be shown that the linearization L3(ε; 1 − εγ̃) has a positive eigenvalue for
ε small. Hence the type 3 wave is unstable for γ near γcr and with ε small.
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Lemma 5.2. For 0 < γ < 1 and ε small, the largest eigenvalue of the operator L1(ε; γ) is
negative up to O(ε2).

Proof. The eigenvalue problem to calculate the stability of the monotone discrete π-kink
φ1

π(n; ε; γ), n ∈ Z, is given by (5.6) with i = 1. Slightly modifying Baesens, Kim, and
MacKay [2], the spatially decaying solution that corresponds to an eigenvalue of the above
eigenvalue problem can be approximated by

vn =

{
c�−n, n ≤ 0,
ĉ c�n−1, n ≥ 1,

(5.8)

for some c, ĉ, and |�| < 1. The diagonal elements in L1(ε; γ) are An =
√

1 − γ2 + O(ε2),
if n �= 0, 1, A0 =

√
1 − γ2 − ε γπ√

1−γ2
+ O(ε2), and A1 =

√
1 − γ2 + ε γπ√

1−γ2
+ O(ε2). Thus

A0 �= A1; hence we need two parameters c and ĉ (modifying [2], where ĉ = ±1 following from
the symmetry A0 = A1).

For small nonzero ε, if we can match exponentially decaying solutions (5.8) on both sides
from either end of the lattice to a central site, then we obtain a candidate for an eigenfunction.
With (5.6), the parameters � and ĉ will be determined up to order ε. For n �= 0, 1, the relation
(5.6) gives up to order ε

Λ = −
√

1 − γ2 + ε
(
�− 2 + 1

	

)
.(5.9)

At the central sites n = 0, 1 we get up to order ε

Λ = −
√

1 − γ2 + ε γπ√
1−γ2

+ ε(�− 2 + ĉ);(5.10)

Λ = −
√

1 − γ2 − ε γπ√
1−γ2

+ ε
(
�− 2 + 1

ĉ

)
.(5.11)

Combining (5.9), (5.10), and (5.11) shows that there are two possible values for ĉ, being

ĉ± = − πγ√
1−γ2

±
√

1+(π2−1)γ2√
1−γ2

+O(ε), and leads to the eigenvalue Λ and the decay exponent �

as a function of ε and γ; i.e.,

�± = ±
√

1 − γ2

√
1 + (π2 − 1)γ2

+ O(ε),(5.12)

Λ± = −
√

1 − γ2 +
ε

�±
(�± − 1)2 + O(ε2).(5.13)

General Sturm–Liouville theory states that a critical eigenfunction that corresponds to
the largest eigenvalue of a continuous eigenvalue problem does not vanish, except probably at
x → ±∞. This theorem can also be extended to a discrete eigenvalue problem such that the
most critical eigenvector does not have sign changes [1]. Thus, if we have a solution of the
form (5.8) with � > 0, then it is the critical eigenvector.

From (5.12), we see that �+ > 0; thus the largest eigenvalue Λ+ from (5.13) is in the gap
between zero and the interval associated with the continuous spectrum, i.e., Λ+ < 0.

Remark 5.3. From the details in the proof, note that weak coupling with strong bias
current leads to one additional eigenvalue associated with �−, where �− < 0 and |�−| < 1. This
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indicates that the eigenvector of the form (5.8) is localized but has out of phase configuration,
i.e., has infinitely many sign changes. This is a typical characteristic of a “high-frequency”
eigenvalue which is confirmed by the fact that Λ− is indeed smaller than the phonon band. The
presence of a high-frequency eigenvalue of a kink was previously reported by Braun, Kivshar,
and Peyrard [6] in their study of the Frenkel–Kontorova model with the Peyrard–Remoissenet
potential [26].

For γ close to 1, i.e., γ = 1 − εγ̃, with γ̃ > π, both the type 1 and the type 3 waves as
given in (5.5) can be analyzed. In the following lemma we also show that both types have a
high-frequency eigenvalue.

Lemma 5.4. For γ = 1−εγ̃, with γ̃ > π, the largest eigenvalue of the operator L1(ε; 1−εγ̃)
is strictly negative and the largest eigenvalue of the operator L3(ε; 1− εγ̃) is strictly positive.

Proof. As before, we write for an eigenfunction

vn =

{
c�−n, n ≤ 0,
ĉ c�n−1, n ≥ 1,

for some c, ĉ, and |�| < 1, and we substitute this in the eigenvalue problem, which leads to
the equations

Λ = − sin
(√

ε2γ̃ + O(ε)
)

+ ε(1/�− 2 + �);(5.14)

Λ = ∓ sin
(√

2ε(γ̃ − π) + O(ε)
)

+ ε(�− 2 + ĉ);(5.15)

Λ = − sin
(√

2ε(γ̃ + π) + O(ε)
)

+ ε(�− 2 + 1/ĉ),(5.16)

where the ∓-sign in the second equation is a minus sign for the eigenvalue problem associated
with the type 1 wave and a plus sign in case of the type 3 wave. Again, by subtracting (5.16)
from (5.15), we get a quadratic equation for ĉ, with two solutions, one of order 1√

ε
and one of

order
√
ε (which is most easily found by writing the equation as a quadratic equation for 1

ĉ ):

1
ĉ1

= 1√
ε

(√
2(γ̃ + π) ∓

√
2(γ̃ − π) + O(

√
ε)

)
;

ĉ2 = 1√
ε

(
−
√

2(γ̃ + π) ±
√

2(γ̃ − π) + O(
√
ε
)
.

Combining (5.14) and (5.15), respectively, (5.16), and using the two expressions above give
that in both cases � is of order

√
ε and is given by

1
	1

= 1√
ε

(√
2γ̃ ∓

√
2(γ̃ − π) + O(

√
ε)

)
;

1
	2

= 1√
ε

(√
2γ̃ −

√
2(γ̃ + π) + O(

√
ε
)
.

Finally, substitution into (5.14) shows that

Λ1 = ∓√
ε
√

2(γ̃ − π) + O(ε);

Λ2 = −√
ε
√

2(γ̃ + π) + O(ε).
(5.17)
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The eigenvalue that corresponds to � > 0 is Λ1.
So clearly the largest eigenvalue Λ1 is negative in case of the type 1 wave and is positive

in case of the type 3 wave.
In addition, the operators L1(ε; 1 − εγ̃) and L3(ε; 1 − εγ̃) have the same high-frequency

eigenvalue Λ2 (up to order ε2).
The proofs of Lemmas 5.2 and 5.4 show the presence of a high-frequency eigenvalue for a

semikink in case the bias current is not small. In the following we will show that the eigenvalue
appears when the bias current is larger than

√
ε + O(ε).

Because we do not have an analytic expression for the type 2 and type 3 semikinks in the
small forcing limit, the analysis is done only for the type 1 semikink.

Lemma 5.5. There is a critical value γhf , γhf =
√
ε + O(ε), such that for all γ ∈ (γhf , γcr)

the operator L1(ε; γ̂) has a high-frequency eigenvalue that up to O(ε3) is attached to the lowest
boundary of the continuous spectrum. The corresponding eigenvector is localized and changes
sign between any two adjacent sites.

The appearance of this eigenvalue and the structure of its eigenvector is checked numeri-
cally in section 6.

Proof. Again, we write for an eigenvector

vn =

{
c�−n, n ≤ 0,
ĉ c�n−1, n ≥ 1,

for some c, ĉ, and |�| < 1, and we substitute this into the eigenvalue problem. We first consider

γ =
√
εγ̂. This gives An = 1 − εγ̂2

2 − ε2γ̂4

8 + O(ε5/2), if n �= 0, 1, A0 = 1 − εγ̂2

2 − ε3/2πγ̂ −
ε2( γ̂4

8 + π2

2 ) + O(ε5/2), and A1 = 1 − εγ̂2

2 + ε3/2πγ̂ − ε2( γ̂4

8 + π2

2 ) + O(ε5/2).

Using the same procedures, this implies ĉ± = −√
επγ̂ − ε3/2γ̂3π ±

√
π2γ̂2ε + 2π2γ̂4ε2 + 1

and

1

�±
= επ2 ± 2

√
π2γ̂2ε + 2π2γ̂4ε2 + 1 = ±1 +

επ2(1 ± γ̂2)

2
+ O(ε2).

For γ̂ > 1 there are two solutions |�±| < 1; �+ > 0 corresponds to the largest eigenvalue
and also exists for γ̂ ≤ 1 (Lemma 5.2); �− < 0, so that its associated eigenvector vn indeed
changes sign between any two adjacent sites.

The value γhf =
√
ε + O(ε) indicates the appearance of this high-frequency eigenvalue

from the continuous spectrum. It follows from a straightforward analysis that this eigenvalue
exists, i.e., �− ∈ (−1, 0) exists, for all γ ∈ (γhf , γcr), and the corresponding eigenvalue is

Λ− = −1 + ( γ̂2

2 − 4)ε + γ̂4/8ε2 + O(ε3). Up to O(ε3) this eigenvalue is nothing else but the
lower boundary of the continuous spectrum.

6. Numerical computations of the discrete system. To accompany our analytical results,
we have used numerical calculations. For that purpose, we have made a continuation program
based on a Newton iteration technique to obtain the stationary kink equilibria of (2.3) and
(2.4) and an eigenvalue problem solver in MATLAB. To start the iteration, one can either
choose the continuum solutions discussed in section 3, i.e., the case where the lattice spacing
parameter a = 0, or trace the equilibria from the uncoupled limit ε = 0 (a → ∞) as discussed
in the previous section. We use the number of computational sites 2N = 800 for parameter
values of a = 0.05 or larger (ε = 20 or lower).
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Figure 6. (a) Two lattice semifluxons of type 1 with no bias current (γ = 0) are plotted as a function of
the lattice index, namely, the kink for strong coupling with ε = 100 (equivalently, a very small lattice spacing
a = 0.1) (−∗−), i.e., close to (3.10), and the kink for weak coupling with ε = 1

4
(equivalently, a large lattice

spacing a = 2) (−o−). (b) Numerically computed spectrum of a lattice semifluxon against the lattice spacing
parameter a with γ = 0. We used the number of sites 2N = 300. We zoom in the plot of spectra around −1
for clarity. The bold solid line is the calculated approximate function for the point spectrum using perturbation
theory for a small, respectively, for ε small.

6.1. Stability of type 1 lattice semifluxon. The type 1 lattice semifluxon Φ1
π(n; ε; 0),

n ∈ Z, has been studied analytically both in the strong coupling limit (a � 1, or ε � 1)
and the weak coupling limit (a � 1, ε � 1). In Figure 6(a), Φ1

π(n; ε; 0) is plotted for two
different values of the coupling parameter ε. For a given value of ε, one can use as an initial
guess in the numerical procedure a solution either from the continuous limit (3.10) or from
the uncoupled limit that has been discussed in the preceding sections.

In Figure 6(b), we present the numerically calculated spectrum of the type 1 semifluxon
with γ = 0 as a function of the lattice spacing parameter. The approximate largest eigenvalue
(4.9), derived for a small, and the one derived in Lemma 5.2 for a large, are in good agreement
with the numerically obtained largest eigenvalue. Any eigenvalue below Λ = −1 belongs to the
continuous spectrum. For a close to zero we do not see dense spectra because of the number
of sites we used. By increasing the site number we will obtain a more dense spectrum.

There is only one eigenvalue outside the phonon bands—the largest eigenvalue as studied
in Lemma 5.2. This is in contrast to the case of an ordinary lattice 2π-kink [16, 19] where
there is an internal mode bifurcating from the phonon band when the parameter a increases.

If Figure 6(b) shows the spectrum of the type 1 semifluxon as a function of the coupling
parameter ε (ε = 1/a2) for a fixed bias current γ, in Figure 7 we present the numerically
calculated spectrum of the type 1 lattice semifluxon as a function of γ for a fixed ε, ε = 0.25.

Lemmas 5.2 and 5.5 established the existence of two eigenvalues (for ε small enough)
for the stability problem associated to the type 1 semifluxon, the largest eigenvalue, and
an additional eigenvalue which bifurcates from the lower edge of the phonon band for bias
current γ > γhf . It follows from the numerical simulations that these are indeed the only two
eigenvalues (Figure 7). For ε = 0.25, this minimum bias current γhf is approximately 0.466.
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Figure 7. (a) Spectrum of the type 1 semifluxon as a function of the applied bias current γ for a value of
the coupling constant ε = 0.25. The dashed line is a theoretical prediction from (5.13). In (b) we zoom in on
the spectrum around −1 for clarity. The spectrum is normalized to the lower edge of the phonon band, i.e.,√

1 − γ2 + 4ε, such that the appearance of a high frequency eigenvalue can be seen clearly.
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Figure 8. The eigenvectors associated with the two largest eigenvalues and the two smallest eigenvalues of
the truncated 2N × 2N-matrix associated with L1(ε; γ) (the type 1 discrete semikink) for ε = 0.25 and γ = 0.
The results are shown with 2N = 100 for clarity. Shown are the eigenvector of (a) the largest eigenvalue,
(b) the second one, and (c)–(d) the last two eigenvalues. There is only one eigenvalue for L1(ε; γ) as there is
only one localized eigenvector.

Interestingly, according to Lemma 5.5 the bifurcation appears at γhf =
√
ε = 0.5 at leading

order in ε. This is in remarkably good agreement with the numerical result, especially since
the error is O(ε) and ε = 0.25.

To picture the appearance of the high-frequency eigenvalue, all eigenvalues for the trun-
cated 2N×2N -matrix associated with L1(ε; γ) are determined and the eigenvectors of the two
largest eigenvalues and the two smallest eigenvalues are presented in Figures 8–10 for various
values of γ and a fixed ε. It can be observed that there is always a localized eigenfunction
associated with the largest eigenvalue. In Figure 8 (γ = 0), none of the other eigenvectors can
be associated with localized eigenfunctions, and in Figures 9 and 10, the birth of the localized
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Figure 9. The same as Figure 8 for γ = 0.5.
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Figure 10. The same as Figure 8 for γ = 0.7. Note that there are now two localized eigenvectors shown
in (a) and (d). The smallest eigenvalue associated with (d) is −1.7357, while the lower edge of the phonon
band is −1.7141. Note also that neighboring sites of the eigenvector in (d) move out of phase, indicating a
high-frequency mode, contrary to the semikink’s low-frequency mode in (a).

eigenfunction associated with the smallest eigenvalue can be observed.

If we keep increasing γ further, then there is a critical applied bias current at which the
largest eigenvalue becomes 0. Numerical computations show that this critical value is γcr(ε),
above which static lattice semifluxons disappear.

The critical bias current for the existence of a static type 1 lattice semifluxon in the
continuum limit and for a very weak coupling in the discrete system were discussed and
analytical expressions were given in sections 3, 4, and 5, respectively. In Figure 11, the
numerically calculated critical bias current γcr of the discrete system (2.3) as a function of the
lattice spacing a is presented. The approximate functions, given in (4.2) for small a, and in
(5.4) for large a (small ε), are presented as dashed lines.

6.2. Instability of type 2 lattice semifluxon. In the continuum models we have seen that
for γ small, the instability of the type 2 semikink is mainly determined by the instability of
the 3π-kink in the continuum models for γ = 0. So we start this section by looking at the
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Figure 11. The critical bias current of a static π-kink as a function of the lattice spacing parameter a.
For γ above the critical current there is no static π-kink solution. The solid line is a numerically obtained
curve. Dashed lines are the theoretical predictions (4.2) for a � 1, respectively, (5.4) for a � 1 (ε � 1).

stability of the 3π-kink in the discrete model. We will denote the 3π-kink by Φ2
3π(n; ε; 0),

where as before the coupling parameter ε and the lattice spacing a are related by ε = 1
a2 .

Using our continuation program, we have followed a 3π-kink solution from the continuous
limit 0 < a � 1 up to the uncoupled situation ε = 0 (i.e., a = ∞). We obtain that Φ2

3π(n; 0; 0)
is given by

Φ2
3π(n; 0; 0) =

⎧
⎪⎪⎨

⎪⎪⎩

0, n = −1,−2, . . . ,
2π, n = 0,
π, n = 1,
3π, n = 2, 3, . . . .

(6.1)

Note that this discrete configuration is not monotonically increasing, as opposed to the con-
tinuum configuration, which is monotonic.

In Figure 12, we present the numerically obtained eigenvalues of a 3π-kink as a function
of the lattice spacing a. For small a, the largest eigenvalue is indeed increasing as is predicted
by the perturbation theory (4.10). As soon as the lattice spacing is of order one, the largest
eigenvalue decreases and becomes zero at approximately a = 1.7521.

After establishing that increasing the lattice spacing can stabilize the 3π-kink at γ = 0,
we continue by looking at the stability of the 2π-kink for γ > 0. Interestingly, increasing the
lattice spacing does not stabilize a type 2 semikink for γ > 0. In Figure 13, we show a plot of
the type 2 semikinks for two values of ε as well as a plot of the largest eigenvalue as a function
of ε for two particular values of γ, namely, γ = 0.01 and γ = 0.1. We present the largest
eigenvalue as a function of the coupling ε instead of the lattice spacing a as the eigenvalue
changes most for small coupling (large lattice spacing). From Figure 13 it follows that the
solutions are unstable even in the weak-coupling limit. This is interesting as in the limit for
γ → 0, the type 2 semikink can be seen as a concatenation of a 3π-kink and a −2π-kink. Both
the 3π-kink and −2π-kink are stable for the coupling ε sufficiently small, while the type 2
semikink turns out to be unstable.
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Figure 12. Plot of the eigenvalues of a 3π-kink as a function of the lattice spacing parameter a. We zoom
in on the region with a � 1, where it shows that turning the lattice spacing on destabilizes the kink. The dashed
line depicts the analytically computed approximation (4.10) to the largest eigenvalue of the 3π-kink.
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Figure 13. (a) Plot of a type 2 semikink with γ = 0.01 for ε = 100 (−∗−) and ε = 40 (−o−). (b) Plot
of the largest eigenvalue of a type 2 semikink as a function of the coupling parameter ε. When ε = 0, the
eigenvalue converges to Λ =

√
1 − γ2.

This instability issue can be explained by looking at the expression of a type 2 semikink
when it is uncoupled (ε = 0). For the two particular choices of γ above, we get from the
simulations that the configurations of these semikinks are given by

Φ2
π(n; 0; 0.01) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 + arcsin(0.01), n ≤ −1,
π − arcsin(0.01), n = 0,
π + arcsin(0.01), n = 1,
3π + arcsin(0.01), 2 ≤ n ≥ 8,
2π − arcsin(0.01), n = 9,
π + arcsin(0.01), n ≥ 10,

(6.2)
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Figure 14. (a) Plot of a type 3 semikink with γ = 0.01 for ε = 100 (−∗−) and ε = 40 (−o−). (b) Plot
of the largest eigenvalue of a type 3 semikink as a function of the coupling parameter ε. When ε = 0, the
eigenvalue converges to Λ =

√
1 − γ2.

and

Φ2
π(n; 0; 0.1) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 + arcsin(0.1), n ≤ −1,
π − arcsin(0.1), n = 0,
π + arcsin(0.1), n = 1,
3π + arcsin(0.1), 2 ≤ n ≥ 6,
2π − arcsin(0.1), n = 7,
π + arcsin(0.1), n ≥ 8.

(6.3)

We see that there are two sites, namely, n = 0 and n = 9 for γ = 0.01 and n = 0 and n = 7
for γ = 0.1, where Φ takes the value of an unstable fixed point of the discrete system (2.3).
Looking only at sites numbered n = 2 to n → ∞, Φ2

π(n; 0; γ) can be viewed as a −2π lattice
kink sitting on a site which is known to be unstable. If we look only at sites numbered n = 6
to n → −∞, Φ2

π(n; 0; γ) can be seen as a deformed 3π lattice kink (at site n = 0, the phase Φ
takes the value π instead of the value 2π as in the 3π-kink). Hence, it seems that coupling
between the two kinks due to the presence of a nonzero γ is responsible for the instability.

It has been discussed in the previous sections that there is a critical bias current γ∗ for
the existence of a type 2 lattice semikink in the continuum models. However, we did not
numerically calculate the critical bias current γ∗(a) for discrete system (2.3).

6.3. Instability of type 3 lattice semifluxon. In this section, we will consider the type 3
semikinks, which will be denoted by Φ3

π(n; ε; γ). In Lemmas 3.9 and 4.7 it has been shown
that these kinks are unstable in the continuum models for small or zero lattice spacing.

The largest eigenvalue of a lattice type 3 semifluxon for three particular values of γ, i.e.,
γ = 0.01, 0.1, 0.55, is presented in Figure 14. Even though in the limit for γ → 0, a semifluxon
of this type is a concatenation of a 2π-kink and a −π-kink which can both be stable in the
discrete system, the type 3 semikink is unstable for all parameter values from the zero lattice
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spacing limit all the way to the zero coupling one. The explanation is similar to the one for
a type 2 semikink discussed above.

Indeed, for the three particular choices of γ above, Φ3
π(n; 0; γ) is given by

Φ3
π(n; 0; 0.01) =

⎧
⎪⎪⎨

⎪⎪⎩

0 + arcsin(0.01), n = −1,−2, . . . ,
π − arcsin(0.01), n = −6,
2π + arcsin(0.01), n = −5, . . . , 0,
π + arcsin(0.01), n = 1, 2, . . . ,

(6.4)

Φ3
π(n; 0; 0.1) =

⎧
⎪⎪⎨

⎪⎪⎩

0 + arcsin(0.1), n = −1,−2, . . . ,
π − arcsin(0.1), n = −2,
2π + arcsin(0.1), n = −1, 0,
π + arcsin(0.1), n = 1, 2, . . . ,

(6.5)

and

Φ3
π(n; 0; 0.55) =

⎧
⎨

⎩

0 + arcsin(0.55), n = −1,−2, . . . ,
π − arcsin(0.55), n = 0,
π + arcsin(0.55), n = 1, 2, . . . .

(6.6)

One interesting point to note for the type 3 semikink is that the number of sites with value 2π
is decreasing as γ increases. Starting from the continuum approximation of a type 3 semikink
as the initial guess for the continuation program, the 2π-plateau disappears for γ ≥ γ∗(a) (see
(4.1)). For γ > γ∗ the configuration at ε = 0 is similar to the stable type 1 π-kink (5.2), apart
from the value of the phase at the site with n = 0 (where the phase takes the value of an
unstable fixed point).

Because analytical calculation of the spectrum of the type 3 semikink has been obtained in
the small coupling limit and bias current close to 1 (5.17), it is worth comparing the analytical
predictions with numerical computations. The theoretical calculations show that for ε small
and γ close to 1, the type 3 semikink has at least two eigenvalues, one of which corresponds
to a high-frequency mode and the other to a positive eigenvalue.

Using the continuation of (6.6) for ε = 0.25, the spectrum of the type 3 lattice semikink
is presented in Figure 15 as a function of the applied bias current γ. Our numerics show
that when γ is very close to γcr, the type 3 semikink has three eigenvalues, one of which
corresponds to a high-frequency mode and is below the phonon band, while the other two are
above the phonon band. The birth of this high-frequency mode is shown in Figure 15(c) and
is qualitatively similar to the case of the type 1 lattice semikink. The two eigenvalues which
exist for all values of γ can be observed in Figure 15(a) and (b).

7. Conclusions. We have performed an existence and stability analysis for three types
of lattice π-kink solutions of the discrete 0-π sine-Gordon equation and its continuum limits.
Analytical results have been established in the continuum limits and in the weak-coupling
case. It has been shown that in the continuous 0-π sine-Gordon equation, π-kinks of type 1
are stable and the other types are unstable. The introduction of discreteness destabilizes the
unstable π-kinks even more. An approximation to the largest eigenvalue of all types of π-kinks
has been derived both in the continuum and the weak coupling limits.
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Figure 15. Spectrum of the type 3 semifluxon as a function of the applied bias current γ for a value of the
coupling constant ε = 0.25. In (b) and (c) we zoom in near the phonon band for clarity. In (b), the spectrum
is normalized to the upper edge of the phonon band, i.e.,

√
1 − γ2, and in (c) it is normalized to the lower

edge of the phonon band, i.e.,
√

1 − γ2 + 4ε. The disappearance of a high-frequency mode in the lower edge of
the phonon band can be clearly observed in (c). The insets in (b) and (c) show the eigenfunctions of the two
eigenvalues just above, respectively, just below, the phonon band for γ = 0.73.

For future research, it is of interest to study the nucleation of kinks and antikinks when a
constant force, or bias current, γ, that is above the critical value γcr is applied—see Figure 2(b).
One question that can be addressed is the mechanism and the frequency of the nucleation as
a function of the applied constant force, especially in the presence of a damping coefficient
(which has not been considered in this paper). In work in progress, the stability of the
type 3 semifluxons in the presence of defects is studied. These semifluxons are unstable,
but the largest eigenvalue is close to zero. In fact, a type 3 semifluxon consists of a fluxon
and a semifluxon with the opposite polarity. In experiments, the presence of a fluxon near
a semifluxon can influence a junction measurement [12]. Because a fluxon can be pinned by
a defect [17, 18], one can expect to have a stable type 3 semifluxon when there is a defect
present in the system.
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of invariant tori in quasi-periodic systems and developed theorems that assess their accuracy. In
this paper, we study the results of implementing these algorithms and study their performance
in actual implementations. More importantly, we note that, due to the speed of the algorithms
and the theoretical developments about their reliability, we can compute with confidence invariant
objects close to the breakdown of their hyperbolicity properties. This allows us to identify a mech-
anism of loss of hyperbolicity and measure some of its quantitative regularities. We find that some
systems lose hyperbolicity because the stable and unstable bundles approach each other but the
Lyapunov multipliers remain away from 1. We find empirically that, close to the breakdown, the
distances between the invariant bundles and the Lyapunov multipliers—which are natural measures
of hyperbolicity—depend on the parameters, with power laws with universal exponents. We also
observe that, even if the rigorous justifications in [J. Differential Equations, 228 (2006), pp. 530–
579] are developed only for hyperbolic tori, the algorithms work also for elliptic tori in Hamiltonian
systems. We can continue these tori and also compute some bifurcations at resonance which may
lead to the existence of hyperbolic tori with nonorientable bundles. We compute manifolds tangent
to nonorientable bundles.
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1. Introduction. In this paper we implement the numerical algorithms for the compu-
tation of invariant tori and their whiskers in quasi-periodically forced systems presented in
[HdlL05a]. The whiskers include in particular the stable and unstable manifolds, but also the
nonresonant and slow invariant manifolds attached to the whiskers.

The algorithms are based on the parameterization method introduced in [HdlL06b] for
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method in other contexts).
Using the numerical procedures developed, we analyze several examples that have been

considered in the literature in regimes where the results of [HdlL06b] apply.
Since the results in [HdlL06b] give “a posteriori estimates,” we know that, in some regimes,

the numerical computations correspond to true solutions of the problem close by. We will also
use the term “validating” as a synonym for “a posteriori.”

It is important to realize that once we have validating results, to guarantee the validity of
the calculations, we do not need to study the algorithms. We just need to check—after the
calculation is done—that the calculation leads to objects that solve the desired equation with
a small error and that they satisfy the nondegeneracy assumptions required for the theorem.
Of course, an analysis of the algorithms may be useful for obtaining an idea of how many
steps or what number of modes will be needed.

Once the algorithms have been benchmarked in regions where they are backed up by a
rigorous analysis, we explore situations which are not yet covered by a rigorous analysis. This
allows us to formulate conjectures, which we hope will stimulate new analytical results. The
main empirical findings of this exploration are as follows.

• We have identified an apparently robust scenario for the breakdown of exponential
dichotomies and, in particular for the breakdown of hyperbolicity.

In this “bundle merging” scenario, the invariant bundles approach each other and their
distance tends to zero as the parameters approach a critical value. Nevertheless, before the
critical value, the spectrum remains uniformly separated.

We have identified several scaling properties in this scenario and we have found that, in
the examples considered, the exponents of these scaling laws are universal.

In sections 3.2 and 6 we report in detail these phenomena. See also [HdlL06a].
• Even if the mathematical justifications in [HdlL06b] are stated only for normally hyper-

bolic tori, we note that some of the algorithms in [HdlL05a] work for tori whose linearizations
are elliptic in the normal directions.

Hence, we can continue these tori with respect to parameters of the map. This has already
been done in [CJ00], using the Newton method. In this paper we also use algorithms based on
reducibility. The refined numerical study here allows us to explore bifurcations that happen
when there are resonances between the normal modes and the internal modes. This leads to a
bifurcation in which the torus becomes hyperbolic. We note that, in this case, the stable and
unstable bundles of the tori may be nonorientable. The appearance of nonorientable bundles
in applications is the main reason why the algorithms developed in the first part took special
pains to include nonorientable bundles.

There are justifications of persistence of elliptic tori in the literature [Eli88, JS96, JV97,
Pös89], in rather general contexts, but they are not designed to validate numerics. An a pos-
teriori result that can be found in a slightly more restrictive context is in [JdlLZ99]. We hope
that an a posteriori result will be available in the near future. Some results on the bifurcations
of elliptic tori at resonance are available in [BHJ+03], but they do not include the study of
the hyperbolic manifolds generated. We hope that an a posteriori result tailored toward our
numerics will be available soon.

1.1. Quasi-periodic maps. The examples we study in this paper are quasi-periodic per-
turbations of two-dimensional (2D) maps. We will take the external perturbation to be quasi-
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periodic with one frequency. That is, we will consider maps of the form
⎛

⎝
x
y
θ

⎞

⎠ −→
⎛

⎝
fε(x, y, θ)
gε(x, y, θ)
θ + ω

⎞

⎠ ,(1)

where x, y ∈ R or T are the state variables, θ ∈ T is the external angle, and ε is a parameter
(for ε = 0, the functions f0, g0 do not depend on θ). The frequency ω ∈ R is supposed to be
irrational (in fact, we assume that ω is Diophantine, although for some of the algorithms and
results this extra assumption is not necessary). By introducing the 2D variable z = (x, y), we
write (1) in a more compact way as

(
z
θ

)
−→

(
Fε(z, θ)
θ + ω

)
.(2)

This is the simplest nontrivial case, and it is a natural first step to test the methods.
It seems that adding more variables to the phase space will not be too complicated, but we
thought it would be better to study in detail some new phenomena that appear already. Of
course, we plan to come back to these issues.

Maps of the form (2) appear also as the surface of section maps of flows which are quasi-
periodically perturbed. In this case, ω is the ratio of the two external frequencies. We will not
present any specific examples of flows (see [CJ00]). The papers [HdlL06b, HdlL05a] present
some algorithms that are specifically designed for flows.

The examples we consider are quasi-periodic perturbations of two very well-known maps:
the Hénon map and the standard map. We have included examples in which the perturbations
are analytic and another one in which the perturbation is just Lipschitz. As we will see in the
examples, the algorithms yield high precision results (in some cases, the errors are a few times
the order of magnitude of the machine epsilon). We will see that the algorithms can handle
105 Fourier coefficients in hours of work of a by now outdated desktop computer. (High order
expansions are required in the study of the Lipschitz example here, but a large number of
Fourier coefficients are needed in the computation of higher dimensional invariant tori.)

1.2. Some similar calculations in the literature. Let us end this introductory section
recalling some of the areas in which the computation of invariant manifolds has proved fruitful.
Since invariant manifolds organize the global behavior of a dynamical system, their importance
is both theoretical and practical. We will focus on the practice in this paper. For instance,
codimension 1 invariant manifolds are barriers in the phase space and are useful in describing
transport and formation of resonances. For 2D systems, stable and unstable manifolds of
hyperbolic periodic orbits have been used to study the geometrical structure of the attractors
in the Hénon map [Sim79], the mechanisms of destruction of invariant tori for the standard
map [OS87], transport phenomena in area preserving maps [Mei92], etc. In four dimensions,
the stable and unstable manifolds of a center manifold of a hyperbolic-elliptic fixed point of
the Froeschlé map have been used to bound a stability region around the totally elliptic fixed
point [Har99].

In celestial mechanics, stable and unstable manifolds of quasi-periodic solutions in the
Solar System can be used also to perform transfer orbits in space missions [Sim99, GJMS91b,
GJMS91a, ESA, NAS]. The list of applications is far from complete.
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We mention some papers dealing with a quasi-periodically forced system. In [BLW91],
the whiskers of invariant tori are the tool used to explain transport in the homoclinic and
heteroclinic tangle regions in the quasi-periodic 2D case. In [OF00] these manifolds explain
the structure of the attractors in a quasi-periodically forced Hénon map (what we call the
rotating Hénon map), and the computational method is based on a general algorithm [BOV97].
In these papers, the manifolds are approximated using simplicial complexes. The papers
[LM00, LM03] compute invariant manifolds for volume preserving maps. In [Har05], these
manifolds are related to the breakdown of KAM tori in a quasi-periodically forced standard
map (what we call the rotating standard map).

Since the objects we compute are invariant tori (and their whiskers), we will use coordi-
nates that are more adapted to them. It is natural to parameterize invariant tori using angular
coordinates, so the functions are periodic in the angular coordinates and we use truncated
Fourier series in their approximations. It is also natural to parameterize invariant mani-
folds attached to invariant tori using angular Cartesian coordinates, and then use truncated
Fourier–Taylor series in their approximations.

The use of truncated Fourier series to compute invariant tori using Newton’s method
for the invariance equation appears, for instance, in [WR87, Har02] (KAM tori), [dlLT94,
CJ00] (invariant tori in quasi-periodic systems), [GJ04] (lower dimensional tori in autonomous
conservative systems), and [MKM97] (PDE approach in continuous systems). Other different
approaches to compute invariant tori can be found, for instance, in [DLR91, DL95, Sim98,
ERS00, Tru00].

We also note that the use of high order expansions (Taylor, Fourier, Fourier–Taylor, Lind-
stedt, etc.) to compute invariant manifolds has been standard in the work of C. Simó since
the 1970’s and it has been used in many of his papers, often without mention.

2. Some implementation details. In this section, we provide some details about the
implementation we have carried out.

At the moment, we have a rather complete toolkit to manipulate periodic functions of one
angle variable. This allows us to consider, rather comfortably, one-dimensional (1D) invariant
tori and their whiskers. The numerical results reported in this paper are only for the case
that the ambient space is three-dimensional (3D) (2D maps are subject to a quasi-periodic
perturbation of one frequency).

The restriction to two dimensions allows some mathematical simplifications, and allows
more complete visualization. It is a natural first step. Increasing the dimension of the maps
seems rather straightforward but increasing the dimension of the tori requires more effort.
Both of these improvements are actively pursued.

2.1. The parameterization equations for tori and their whiskers. In this section, we
recall concisely the main algorithms developed in [HdlL05a].

2.1.1. Equations for invariant tori and algorithms to solve them. Following the param-
eterization method, to find a 1D torus invariant for (1) we seek a mapping K : T → R

2

satisfying

F (K(θ), θ) = K(θ + ω).(3)
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In [HdlL05a] we consider several algorithms to solve (3). For the purposes of this paper,
the only one we will consider is the following:

• Newton method. Given a K that approximately solves (3), we obtain K̂, an improved
approximate solution of (3), by solving the linearization of (3).
More explicitly, if K satisfies

r(θ) ≡ F (K(θ − ω), θ − ω) −K(θ)

(we should think of r as the error), an improved solution is K̃ = K + h, where h is
obtained by solving

DF (K(θ − ω), θ − ω)h(θ − ω) − h(θ) = −r(θ).(4)

The equations (4), which define the Newton method, can be treated in different ways.

• Large matrix method. The most straightforward method is simply to discretize (4) in
a basis of discretization and then apply a linear equation solver.
This method is relatively easy to implement and is quite robust. Even if the justifi-
cations of this method in [HdlL05a] are for normally hyperbolic tori, we have found
empirically that the Newton method also works well for normally elliptic tori in Hamil-
tonian systems. See section 4.3 and [CJ00].
Even if this procedure is adequate for many problems, it has the disadvantage that
it scales badly with the number of discretization parameters. If we discretize the
equation using N coefficients, the storage required for a full matrix is N2 and the
number of operations in the inversion of a matrix to accomplish one step of Newton
method O(N3). We refer to this shortcoming as the large matrix problem.
In slightly out of date desktop computers, the method works very well for N being a
few hundreds, even about one thousand, but it quickly becomes impractical.
The following algorithms overcome this large matrix problem, are faster, and use less
storage. In section 5 we present an example of a problem which is very impractical for
the large matrix method.

• Projection method. This method works for normally hyperbolic tori. The first step is
to seek parameterizations of the stable and unstable bundles. In the case that they
are 1D, this can be accomplished just by the linearized equation.
Notice that to store the DF ◦K(θ) by storing the matrix elements, we need only O(N)
storage. One step of application of DF requires just the multiplication of several func-
tions. As we will see later, much of the work reported here is done with algorithms of
multiplications which require O(N2) operations (after considering several issues we de-
cided not to use multiplication algorithms in [Knu97] which are theoretically O(N1+δ)
or even O(N logN)). In any case, irrespective of which multiplication algorithm is
used, the application of DF is significantly faster than the inversion of a matrix.
Once we have the stable and unstable bundles, we can take the projection of the error
into them and solve the resulting equations by iterations. The rate of convergence of
the method depends on the size of the gap between the stable and unstable modes.

• Reducibility method. This method tries not only to solve (3) but also to find a constant
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matrix Λ and a periodic matrix P (θ) such that

P (θ + ω)−1M(θ)P (θ) − Λ = 0,(5)

where M(θ) = DF (K(θ), θ). In this case, we say that the torus is reducible.
Note that having a solution of (5) makes it very easy to solve (4). If we substitute (5)
into (4), it becomes

ΛP−1(θ)h(θ) − P−1(θ + ω)h(θ + ω) = −P−1(θ + ω)r(θ).(6)

Equation (6) is an equation for H(θ) = P−1(θ)h(θ), which, as we will see, is block-
diagonal in a Fourier series; hence it can be solved very quickly if we discretize
in Fourier series. The desired function h can be obtained by multiplying h(θ) =
P (θ)H(θ). The storage of P , P−1, DF , etc. is only O(N) and operations required are
only linear in N and multiplications of Fourier series so that they are much faster than
inverting full matrices.
For the sake of simplicity, assume that Λ = diag(λ1, λ2) is diagonal. Then, denoting
R(θ) = −P−1(θ+ω)r(θ) and denoting the Fourier coefficients by subindices separated
by ; from the indices denoting the vector components, (6) becomes in Fourier terms

(λj − exp(2πi kω))Hj;k = Rj;k.(7)

In summary, if we know P solving (5), we can reduce the solution of (4) to several
multiplication of Fourier series and to a solution of (7), which is linear in the number
of terms used in the discretization.
Equation (5) can be treated also via a Newton method, which as we will see can be
given a fast implementation in terms of Fourier discretizations. We give some details.
Given a P,Λ for which

P (θ + ω)−1M(θ)P (θ) − Λ = S(θ),

with S small, we seek improved solutions of the form P̂ = P (Id+Q), Λ̂ = Λ+Δ, with
Δ = diag(δ1, δ2).
Expanding (5) up to first order in the corrections we obtain

ΛQ(θ) −Q(θ + ω)Λ − Δ = −S(θ).(8)

Equation (8) is diagonal in Fourier coefficients so that it can be solved in a time
proportional to the number of coefficients used in the discretization. Equation (8) in
Fourier coefficients amounts to

(λi − exp(2πi kω)λj)Qi,j;k = −Si,j;k when k �= 0 or i �= j;

Qi,i;0 = 0, δi = Si,i;0.
(9)

In practice, since inverting a Fourier matrix from scratch is time consuming, we keep
an extra matrix P̄ (θ) which is supposed to be the inverse of the matrix P (θ), that is,

P̄ (θ)P (θ) − Id = 0.(10)
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When P changes, it is very easy to obtain the new P̄ as a perturbation of the other
one. Hence, we write a Newton method for K,P, P̄ ,Λ [HdlL05a].
In [HdlL06b] it is shown that if one uses a Newton step for both (3) and (5), one obtains
a method which solves both equations with quadratic convergence. This requires
O(N) storage and the cost of one step of the method is comparable to the cost of one
multiplication.
Remark 2.1. The theory has to consider several normalizations that take care of the
fact that the solution of (5) is not unique. For example, multiplying P by a constant—
or by any matrix that commutes with Λ—is also a solution.
Nevertheless, the algorithm described above converges to a solution of (5), which is
all that is needed.
We note that the reducibility method also gives us very detailed information on the
invariant subspaces.
We also note that we have found empirically that this method works well when λ1, λ2

are complex imaginary numbers of modulus 1 for which the small divisors in (9) and
in (7) do not vanish except for k moderately large. This situation happens for elliptic
tori in Hamiltonian systems. The empirical results are presented in section 4.3.
On the other hand, we note that it can happen that (5) may fail to have solutions even
if the system is hyperbolic (and, therefore, the projection method works), so that the
reducibility method, even if more effective, has a more reduced range of applicability.
The phenomena that happen when (5) fails are quite interesting. We will study these
failures in sections 3.2 and 6.

Our most efficient method to continue tori along a parameter is to use the reducibility
method whenever possible but keep an eye on when (5) runs into trouble. Near these places,
the method switches to the projection method or the large matrix method. Since the later
methods require more effort, they may have to be run with fewer Fourier coefficients.

Remark 2.2. The condition that the coefficients of the unknowns that appear in (7) do not
vanish is usually called the first Melnikov condition. The condition that the coefficients of the
unknowns that appear in (9) do not vanish is usually called the second Melnikov condition.

Remark 2.3. We will see that, in this 2D context, reducibility is closely related to spectral
properties of the transfer operator. In particular, it is closely related to the fact that the
spectrum of the transfer operator consists of two circles. See section 2.2.5.

We will see that, in the dissipative context, there are quasi-periodic 2D mappings for which
reducibility fails because of topological reasons. Similar examples happen in four-dimensional
(4D) symplectic mappings. There are also intervals in which reducibility seems to be very
hard to compute numerically. In these intervals, there seem to be hierarchies of subintervals
in which the reducibility is harder and harder to compute. Moreover several topological and
geometric properties seem to change in each level of the hierarchy. See section 6.3.4.

On the other hand, one can expect that reducibility is quite abundant among elliptic
situations. In [dlLGJV05] it is shown that Lagrangian KAM tori are reducible, so that the
algorithms derived here work also in this case with slight modifications.

2.1.2. Equations for invariant whiskers. In this paper we will be interested only in the
study of whiskers which have one dimension more than the tori. We will also restrict ourselves
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to the nonresonant case discussed in [HdlL06b]. This includes as particular cases the stable
and unstable manifolds in a saddle-type torus and the fast stable manifolds. We also include
the slow stable manifolds in case there is no resonance.

We will look for a parameterization for the torus given by an angle variable that measures
the position with respect to the torus and another variable that moves in a direction roughly
along the bundle. We will require that, in the chosen parameterization, we have that the angle
variable moves by a rigid rotation and the normal variable contracts linearly. The fact that
these normalizations can be done without loss of generality is discussed in [HdlL06b].

Hence, we will be looking for functions W : T
1 × R

1 → R
2 in such a way that

F (W (s, θ), θ) = W (λs, θ + ω),(11)

where the unknowns are both W and λ, with |λ| �= 1.
This equation can be adapted also to deal with nonorientable whiskers. As we will see,

this generality is natural since in section 4.3 we will see that nonorientable bundles appear
naturally in the bifurcations of elliptic tori. To deal with nonorientable bundles we just
consider

F

(
W

(
s,

1

2
θ

)
, θ

)
= W

(
λs,

1

2
(θ + ω)

)
.

Equation (11) will be discretized in Fourier–Taylor series. We will write

W (s, θ) =
∑

i=0

Wi(θ)s
i

and match similar coefficients in si on both sides of (11).
We obtain

F (W0(θ), θ) = W0(θ + ω),

DF (W0(θ), θ)W1(θ) = λW1(θ + ω)

. . .

DF (W0(θ), θ)Wk(θ) + Sk[W0,W1, . . . ,Wk−1](θ) = λkW1(θ + ω),

(12)

where Sk is an explicit polynomial in W0,W1, . . . ,Wk−1 whose coefficients are derivatives of F
evaluated at W0. The polynomials Sk can be readily computed using the methods of automatic
differentiation or series manipulation.

The first equation admits the solution W0 = K, where K is the parameterization of an
invariant circle. (That is, we are choosing an invariant circle to study.)

The second equation tells us that λ is an eigenvalue of the transfer operator defined by

MωV (θ) = M(θ − ω)V (θ − ω)(13)

and that W1 is an eigenvector. This equation determines the space that we are choosing.
This determines λ and determines W1 up to a multiple. Even if all the choices of W1 are
mathematically equivalent (see [HdlL06b, HdlL05a]) and correspond to the nonuniqueness of
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the solutions of (11), the choice affects the numerical properties of the algorithm. This will
be discussed in more detail in section 2.1.5.

The other equations are quite straightforward. Note that, proceeding by induction, we can
assume that W0, . . . ,Wk−1 are known. The resulting equations for Wk can be solved provided
that λk is not an eigenvalue of the transfer operator, which is the main assumption in the
theorems about existence of nonresonant whiskers in [HdlL06b]. See also [CFdlL03a, dlL97].

We note that the nonresonance assumption above is automatically satisfied for the strong
stable manifolds (resp., the strong unstable manifolds) of an attractive (resp., repelling) torus
or by the stable and unstable manifolds of a saddle-type torus. In [HdlL06b] it is shown that all
the classical manifolds just mentioned can be obtained through a parameterization as above.
The only thing to check is that given a classical manifold, there are some coordinates in which
the motion can be made to be a multiplication by a number. In [HdlL06b] we also consider
cases in which reduction to a multiplication is not possible, but reduction to a polynomial
dynamics is possible.

2.1.3. Fourier–Taylor series. Since the components of the parameterization of a 1D torus
are periodic functions of one angle variable θ, it is natural to consider Fourier series [dlLT94,
CJ00]. We store the periodic functions of one variable as cosine and sine Fourier series. If
f(θ) is a 1-periodic function, we will write

f(θ) = a0 +
∑

k>0

(ak cos(2πkθ) + bk sin(2πkθ)) .

The finite computer memory forces us to cut off these expansions. The objects that we
compute are smooth, or even analytic; hence, the coefficients in these expansions decrease
eventually faster than powers or even faster than exponentially. Of course, when we move
parameters so that the torus is close to breakdown, this eventually fast convergence will only
be apparent for the coefficients of very high order. In this paper we also present an example
of a Lipschitz map whose invariant torus is only Lipschitz, so the Fourier coefficients of its
parameterization decrease very slowly.

The norm we have used in order to estimate the errors in the computations is

||f || = |a0| +
∑

k>0

√
a2
k + b2k ≥ ||f ||∞.

The numbers ck =
√

a2
k + b2k are called the amplitudes of the Fourier modes. For a periodic

matrix M(θ) = (Mi,j(θ)), we denote ||M || = maxi,j ||Mi,j ||.
For the computation of whiskers of invariant tori, we use Fourier–Taylor expansions of the

form

f(s, θ) =

∞∑

m=0

fm(θ)sm,

with

fm(θ) = am,0 +
∑

k>0

(am,k cos(2πkθ) + bm,k sin(2πkθ)) .
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We have used a package of routines that perform operations on series as above. Certainly,
it is elementary to implement the elementary algebraic functions (sum, product, and product
by scalar), since there are ready formulas for the coefficients of the result in terms of the
coefficients of each of the terms. It is not too hard to implement the division of series and
elementary transcendental functions (exp, sin, cos, log, power, etc.). Some hints on how to
implement the elementary transcendental functions are given in [Knu97]. These techniques
are known under the name of automatic differentiation algorithms. Similar packages have
been implemented many times in the literature [GC91, RJB83, MS91, Koc99, Har02].

Remark 2.4. The most straightforward algorithm for multiplication of Fourier series is the
use of the Cauchy formula. If we implement it in the most straightforward way, evaluating
the product of two series of N coefficients requires O(N2) operations to complete.

In [Knu97], one can find a discussion of algorithms that can be asymptotically faster.
The asymptotically fastest is to compute the FFT, multiply, and then take the FFT back.
This would give an asymptotic cost of O(N log(N)). Preliminary testing suggests that these
different methods have different numerical properties.

In this package we have used always the straightforward Cauchy formula.

It would be quite natural to implement the Fourier manipulation routines using the BLAS
library. We have not done so, but rather have used explicit loops. This has the advantage
that the precision of the programs can be changed from float to double to long double

very easily.

Using these routines, one can implement the operators involved in (3), (11), and their
derivatives provided that the function F can be written using algebraic operations and the
elementary transcendental functions.

If the map is not given explicitly (for instance, if it is given by the flow of a vector field) or
its computation is hard, we could follow the following strategy [CJ00]: take a mesh of points
on the torus, apply the map to the mesh of points, and compute the torus corresponding
to the image of the new mesh by applying FFT methods. To compute first derivatives (the
first order terms in the Taylor expansions), one has to integrate the first order variational
equations of the flow [CJ00]. For higher order derivatives, one has to integrate higher order
variational equations.

For flows, one can also use functional equations to determine the invariant manifolds. The
invariance equation of a torus is a first order linear PDE [DLR91, DL95, MKM97, ERS00,
Tru00]. See also [HdlL06b] for the invariance equations for invariant tori and their whiskers
in quasi-periodic differential equations.

As the examples that we have studied here are maps that involve only a few operations in
this paper we have used only the Fourier–Taylor methods. We think that a detailed comparison
between the FFT method and the Fourier–Taylor method would be quite interesting, and we
plan to come back to this issue. Preliminary studies indicate that the numerical properties of
both methods are quite different, especially if one looks at properties which involve derivatives.

We have not undertaken a comparison of the Fourier–Taylor method with other methods
of discretization (e.g., splines). On the other hand, we note the following.

• As will be seen in the section on numerical results, we will routinely obtain residuals
which are of the order 10−15–10−20 using only 100 terms or so (and the error is possibly
an overestimate). Achieving a similar accuracy would seem to require a method of
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interpolation of rather high degree whose stability properties would be problematic.
• Many of the equations we have to solve in a Newton step are diagonal—or quasi-

diagonal—when discretized in Fourier series. In particular, the reducibility method,
when discretized in Fourier series, makes the computational effort of a Newton step
essentially linear in the number of terms.

• Fourier methods have the disadvantage that they are not adaptive and it is hard to
increase the accuracy in the places where the manifold becomes more oscillatory.
In the present examples, the fact that the dynamics on the torus is a rigid rotation
makes the torus very homogeneous, so that there is little need for adaptivity. Our
implementation can increase or decrease the number of Fourier terms used dynamically.

The above reasons, especially the last two, are very closely tied to the models that we
are considering in this paper. It is quite possible that, when applying the parameterization
method to other problems, other methods could prove to be more convenient.

2.1.4. Assessment of the error of the calculation of invariant tori. We have introduced
several measurements that give an idea of what accuracy is achieved by our calculations of
invariant tori and their invariant bundles.

Given K,P, P̄ ,Λ approximate solutions of the equations of the invariance equation (3),
the reducibility equation (5), and the inverse equation (10), we give names to the remainders
as follows:

R(θ) = P̄ (θ + ω)(F (K(θ), θ) −K(θ + ω)),

S(θ) = P̄ (θ + ω)DF (K(θ), θ)P (θ) − Λ(θ),

T (θ) = P̄ (θ)P (θ) − Id.

The quality of the approximate solutions is given by the norms of these Fourier matrices, as
defined in section 2.1.3.

Remark 2.5. If we apply the Newton method, then we take P = P̄ = Id and Λ(θ) =
DF (K(θ), θ), so S = 0 and T = 0.

2.1.5. Domains of the parameterization of the whiskers. We have explained in [HdlL06b,
HdlL05a] how to compute the Fourier–Taylor expansions of the parameterizations of the
whiskers. Given such an expansion, we have to obtain a domain in which such approximations
are good enough to allow reliable evaluations.

In principle, the parameterization gives a complete description of the manifold and the
parameterization can follow the twists and turns of the manifold.

In practice, however, the numerical evaluation could become numerically unstable at larger
values of s. Hence, it is sometimes more advantageous to evaluate W only for values of s
smaller than a certain s0 and then use the functional equation (11).

We refer to this last step as globalizing the manifold. This has been always an ingredient
of algorithms to compute invariant manifolds since all the algorithms give only some local
piece. See, for example, [KO98]. We note that, in our case, since the parameterization covers,
in principle, the whole manifold, the globalization is to a large extent a matter of numerical
convenience and that even without performing any extension, the parameterization can follow
a large number of turns in the manifold.
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Remark 2.6. We note that if W (s, θ) is a solution of (11), so is W̃ (s, θ) = W (r · s, θ)
for any r ∈ R. The choice of r is closely related to the choice of the first coefficient in the
expansion. Hence, the choice of the multiple in the first step is related to the domain. From
the mathematical point of view, it is equivalent to choosing a larger W1 and then evaluating in
a proportionally small domain. Nevertheless, from the numerical point of view, both methods
are inequivalent. If we have coefficients of different sizes, they are much more prone to round-
off error. Hence, a rule of thumb is to choose W1 so that the coefficients computed have
comparable sizes. In practice, one can do a preliminary run that gives some idea of how the
coefficients grow. Since choosing ρW1 instead of W1 makes Wk become ρkWk, it is easy to
choose ρ so that the coefficients Wk have a comparable size. Similar adjustments are common
also in Lindstedt series [FdlL92].

Remark 2.7. The computation of slow manifolds [CFdlL03a, CFdlL03b, CFdlL05] deserves
a few words. Notice that the dynamics around an attracting invariant circle is dominated by
the normal directions associated to the “eigenvalue” with largest modulus. The situation
is analogous to the situation in linear maps. The components along the most contractive
eigenvalues disappear faster than those along the slow eigenvalue and the component along
the slow eigenvalue is the dominant one for long term behavior. Hence, from the point of view
of asymptotic behavior, the manifold associated to the spectral values closest to the unit circle
is the most observable. In [HdlL06b] it is shown that under some appropriate nonresonance
conditions, the nonresonant manifold exists and is unique among the tangent manifolds of
a degree of regularity that depends only on the spectrum. Then, this unique manifold is as
smooth as the map. Hence, as soon as we know that there is one invariant manifold with
a moderate regularity, we can bootstrap the regularity to the regularity of the map. These
results are sharp because examples in [HdlL06b] show that there are examples with resonances
with no smooth invariant manifolds. Moreover, there may be many invariant manifolds with
low regularity.

In the 2D set-up of this paper, assume the transfer operator associated to the invariant
circle has a spectrum that is two circles of radii ρ− < ρ+ < 1 (see section 2.2). The slow
manifold is tangent to the spectral subbundle associated to the circle of radius ρ+. The
nonresonance conditions in [HdlL06b] in our simpler case just amount to ρi+ �= ρ− for all

i = 2, . . . , L, with L such that ρL+1
+ ρ− < 1.

If we use only a first order approximation of the whisker, the domain where it is a good
approximation can be very small and the globalization is harder. If we are computing the fast
manifold, the iteration backward aligns the point with the fast manifold and reduces the error,
so that it is not so crucial. On the other hand, iterating backward makes the slow manifold
unstable. Hence, to obtain global slow manifolds, it is important to obtain high accuracy
which can be best obtained by computing the expansion to a rather high order.

2.2. Analysis of the dynamics of linearization. In the analysis of an invariant torus,
it is quite natural to study the dynamics of the linearization. As was discussed in great
generality in [HdlL06b], the study of the linearization is very closely related to the properties
of the linearization of the invariance equations. It is important to realize that the invariance
equations (3) are functional equations and that therefore one should think of them as equations
in a Banach space. One of the features of normal hyperbolicity theory is that there is a close
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connection between the geometric properties of the variational equations and the functional
analysis properties of (3). This connection was realized in [Mat68, Sac78]. A treatment
tailored for the examples appearing in this paper is in [HdlL03b].

At the geometric level, we observe that the linearized dynamics is given by

v̄ = M(θ)v,

θ̄ = θ + ω,
(14)

where v = (vx, vy) ∈ R
2, and M(θ) a 2 × 2 periodic matrix. In our applications, M(θ) =

DF (K(θ), θ).
We use the notation

M(θ,m) = M(θ + (m− 1)ω) . . .M(θ),

M(θ,−m) = M(θ −mω)−1 . . .M(θ − ω)−1

for m > 0 and M(θ, 0) = Id.
On the functional analysis side, the cocycle (14) induces a transfer operator Mω defined

in (13). We see that inverting Mω − Id is precisely solving the Newton step in (4). Hence, it
is quite important for the algorithms to decide whether 1 is in the spectrum or not.

In the subsequent sections, we will develop certain numerical observables that are relevant
for the analysis of the invariant torus and which are readily computable and which have an
influence on the behavior of the linearized dynamics and on the solvability of the functional
equations for the parameterizations we are interested in.

Other issues, such as reducibility of the cocycle, have been discussed above (see also
[Jor01, HdlL05a]).

In section 2.2.5, we will discuss the relation between the geometric properties and the
spectrum of the linearization of the functional equations we are interested in.

2.2.1. Projectivization of the cocycle. To describe the 1D linear subspaces we are con-
sidering, it is natural to give a set of directions at every point. That is, to parameterize an
invariant bundle, we give a mapping from the torus to the 1D projective space P

1 which we
represent as an angle in [0, π) with 0, π identified.

Corresponding to the linear transformation (14), we can consider its action on directions
given by the “projective cocycle”

ᾱ = m(α, θ),

θ̄ = θ + ω,
(15)

where ᾱ = m(α, θ) is computed as follows:
• Given α ∈ [0, π[, we consider

v =

(
cosα
sinα

)
.

• We apply the cocycle, to obtain

v̄ = M(θ)v = |M(θ)v|
(

cos α̃
sin α̃

)
,
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where α̃ ∈ [0, 2π[ is an angle in the unit circle (0 = 2π).
• Finally, if α̃ ∈ [0, π[, we define ᾱ = α̃, and if α̃ ∈ [π, 2π[, we define ᾱ = α̃− π.

Notice that a subbundle in R
2 × T is projectivized into a graph of a function θ → α(θ)

in P
1 × T. It is also very easy from this graph to know if the subbundle is orientable or not,

and what is its index. The index of a subbundle E is a semi-integer number k
2 that gives the

number of turns that gives the fiber Eθ when θ goes from 0 to 1. If k is even, the subbundle
is orientable, and if k is odd, it is nonorientable. Doubling the period of θ is equivalent to
taking a double cover so that we can orientate any 1D bundle.

In the case that the linear cocycle (14) has an exponential dichotomy, the projective
cocycle (15) will have an attractor and a repellor. The attractor will be a representation of
the unstable bundle (in the case of a hyperbolic torus) or the slow bundle (in the case of an
attractive torus). We denote this bundle E+. The repellor (i.e., the attractor under inverse
iteration) will correspond to the stable bundle (in the case of a hyperbolic torus) or the fast
bundle (in the case of an attractive torus). We denote this bundle E−.

Remark 2.8. Note that the only bundles we are considering are continuous bundles. Ac-
cording to Oseledec’s theorem [Ose68, Pes77], it could be natural to consider also measurable
subbundles, especially in situations where there is bundle collapse (see section 6).

Nevertheless, we note that the motion on the circle admits only one invariant measure (the
usual Lebesgue measure). Therefore, Oseledec’s theorem produces only one set of Lyapunov
multipliers and the Oseledec bundles can only be discontinuous in a set of measure zero (if
this set is not empty, it is dense). It could happen that this is what is observed in section 6.

The theory of reduction in the measurable category for 2D cocycles is studied in [Thi97].

2.2.2. Lyapunov multipliers. The maximal and minimal Lyapunov multipliers λ+ and
λ− are computed by taking a random vector v ∈ R

2 and a random angle θ ∈ T and applying
the formula

λ+ = lim
m→∞ |M(θ,m)v| 1

m , λ− = lim
m→∞ |M(θ,−m)v| 1

−m .

To avoid the growth of the vectors, we do, as usual, scalings at each step. To compute
the accuracy, we just compute the Lyapunov multipliers at the convergents of the continued
fraction of ω and check that there is no appreciable change. An estimate of the error is the
difference of two consecutive estimates.

We note that when the bundles are 1D, we have that γ(θ,m) =
∏m−1

i=0 γ(θ+iω), where γ(θ)
is the—scalar—block of the matrix M in the invariant bundle. We have that the corresponding
Lyapunov multiplier is given by

λ = lim
m→∞ exp

[
1

m

m−1∑

i=0

log |γ(θ + iω)|
]

= exp

[∫ 1

0
log(|γ(θ)|) dθ

]
.

(16)

Furthermore, since in many cases the system is analytic, then the 1D bundles are also
analytic, and the exponents for finite m converge to their limit (16) faster than any power in
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m. (Of course, as the analyticity properties become weaker, the exponential convergence may
take longer to manifest itself.)

The exponential convergence of the Lyapunov multipliers to their limiting value in the
uniformly hyperbolic case can be used to speed the calculation or increase the accuracy.

One could consider also the use of quadrature algorithms to evaluate (16) (this is useful
to make checks).

2.2.3. Separation of the bundles. An observable that will play an important role in
our considerations (see, in particular, section 6) is the distance between two bundles in a
exponential dichotomy. We will consider

Δ = min
θ

dist(E+
θ , E

−
θ );(17)

this is the minimum angle between the bundles E±.

As is well known, the distance between the stable and unstable bundles plays a very impor-
tant role in hyperbolicity theory. See [Fen72, HPS77]. The fact that to measure hyperbolicity
one cannot just use the Lyapunov multipliers but has to use also the distance of the splittings
is emphasized in [CL00].

2.2.4. Rotation numbers. When considering normally elliptic tori in Hamiltonian sys-
tems, it will be useful to develop fast diagnostics that detect empirically the lack of reducibility.
Besides the Lyapunov multipliers and the distance between invariant bundles, the observables
that we will use are roughly patterned on the rotation number which measures the averaged
amount of rotation per turn.

We note that, when the cocycle is reducible, the cocycle is a rotation modulo a change
of coordinates. Therefore, there are many ways to compute the rotation number. There are
several definitions of rotations numbers in the mathematical literature. See [Rue85, NNO98,
FJN03a, FJN03b] for a review.

Unfortunately, the average amount of rotation requires us to consider the angles not
modulo 2π but rather on a lift of the circle. When iterating maps, the information needed to
lift the angles seems to involve global considerations (e.g., choosing an origin for the angles
and propagating this choice along the circle, e.g., by interpolating the map by a globally
defined family). We have not succeeded in implementing any of these rigorous definitions in a
numerically efficient manner because the global considerations required by the definitions are
hard to implement efficiently.

Since our purpose is just to get some rough understanding of reducibility, we have used
several diagnostics that work well in the reducible case. When they start to show changes or
erratic behavior, this is a sign that reducibility has broken down. The thresholds computed
in this way can subsequently be refined.

The first method is to compute the rotation number γ by the formula

γa = lim
m→∞

1

m

m−1∑

i=0

ang(M(θ, i)v,M(θ, i + 1)v),(18)

where ang(v, w) denotes the oriented angle from v to w, from −π to π.
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An easy way to compute the Sturmian rotation number inspired by [DS83b] (see also
[FJN03a]) is defined as follows. If vi = (vix, v

i
y) denotes M(θ, i)v, for m > 0 we define N(m)

as the number of times in which viy changes sign for i = 0 ÷m. Then we define the rotation
number as

γs = ±π lim
m→∞

N(m)

m
.(19)

In order to specify a sign for the rotation number, we can see if, “on average,” the vector spins
counterclockwise (sign +1) or clockwise (sign −1).

We note that both definitions, even if they make sense for differential equations or small
steps, may run into trouble in some cases. For example, if we were taking long steps in a
differential equation, the angle could rotate by more than a turn. Similarly, the Sturmian
values could miss several changes of sign. In the reducible case, these mistakes happen in
a very systematic way. On the other hand, in the nonreducible case, it is not possible to
say that they will occur with a fixed frequency. For us, the above observables are just quick
diagnostics for resonances and lack of reducibility.

2.2.5. Spectral properties of the transfer operator. The transfer operators that appear
in our case are very special for several reasons: The motion in the base is a rotation and the
nontrivial bundles are 1D; hence the restriction of the derivative is commutative.

One of the consequences of the theory developed in [HdlL03b] is that the spectrum is
largely independent of the spaces considered so that we will not specify the space we are
considering the transfer operator acting on.

Putting together results from [HdlL03b], we obtain that there are only a few possibilities
for the spectrum of the transfer operator Mω introduced in (13):

(a) Two circles of radii ρ− < ρ+. In this case, we have a decomposition into continuous
invariant bundles R

2 = E+
θ ⊕ E−

θ for all θ ∈ T, characterized by the uniform rates of
growth

v ∈ E−
θ ⇔ |M(θ,m)v| ≤ C(ρ− + δ)+m|v|, m ≥ 0,

v ∈ E+
θ ⇔ |M(θ,−m)v| ≤ C(ρ+ − δ)−m|v|, m ≥ 0,

(20)

where δ is small enough, and the constant C is uniform (it does not depend on θ or
v). The vectors in E±

θ have a Lyapunov multiplier equal to λ± = ρ±. We say that
the cocycle M has an exponential dichotomy. In particular, if ρ− < 1 < ρ+, the
cocycle is uniformly hyperbolic and of saddle type, and E− and E+ are the stable
and the unstable subbundles; if ρ− < ρ+ < 1, the cocycle is uniformly hyperbolic
and of attracting node type, and E+ and E− are the fast stable and the slow stable
subbundles.
The subbundles E±

θ are as smooth as M . Moreover, if the external rotation is Diophan-
tine, the dynamics on each bundle can be reduced to a multiplication by a constant
[JS81].

(b) One circle of radius ρ. All the vectors have Lyapunov multipliers equal to ρ. This
case appears naturally in the elliptic case in Hamiltonian systems, with ρ = 1.
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(c) One annulus of radii ρ− < ρ+. In this case, there is no continuous invariant splitting
but, according to [Ose68, Pes77], there is a measurable splitting characterized by the
fact that the corresponding Lyapunov multipliers are λ± = ρ± (see [CL99] and the
references therein). If ρ− < 1 < ρ+, the cocycle is nonuniformly hyperbolic.
The forward and backward Lyapunov multipliers of vectors lie between ρ− and ρ+

[Sac78, HdlL03a], but we emphasize that the maximal and minimal Lyapunov multi-
pliers λ± = ρ± are attained in a set of full Lebesgue measure.
Moreover, for all ρ ∈ [ρ1, ρ2] there is a vector v ∈ R

2 and an angle θ ∈ T whose scaled
orbit { 1

ρmM(θ,m)v}m∈Z is bounded [Mn78, CL99, HdlL03a].

Remark 2.9. If a cocycle is reducible (or almost reducible), then the spectrum of the
transfer operator is one of the alternatives (a) and (b) above [HdlL03b]; that is, the spectrum
is either two circles or one circle.

Almost conversely, in our case, when we are in case (a), the cocycle will be reducible.

2.2.6. Rotating transformations. Assume the cocycle (14) is reducible to a matrix Λ =
ρRγ , with Rγ being a rotation matrix of angle γ. This is that there exists a periodic matrix
P (θ), of period 1 (or 2), such that

M(θ)P (θ) = ρP (θ + ω)Rγ .(21)

For k ∈ Z, consider the rotating matrix Rk(θ) = Rπkθ. For k even, this is of period 1,
but for k odd, this is of period 2. Then, it is easy to see that the matrix Pk(θ) = P (θ)Rk(θ)
satisfies

M(θ)Pk(θ) = ρPk(θ + ω)Rγ−πkω.(22)

So, the cocycle is also reducible to Λk = ρRγ−πkω.

This freedom in choosing the reduced matrix is very useful in numerical computations.
For instance, assume that the torus has a cocycle that is reduced to a matrix ρRγ . When
perturbing the system, the rotation number γ crosses resonances. Assume we are near a
resonance k1 : k2, that is,

∣∣∣∣
γ

2π
− k1 + k2ω

2

∣∣∣∣ � 0.(23)

Then, the rotating transformation Rk2 lets us reduce the system to the matrix

Λk2 = ρRγ−πk2ω � ρRk1π.

So, the matrix Λk2 is close to a diagonal matrix with the same entries in the diagonal.

It is obvious that k1 gives the sign of the elements of the diagonal. The number k2 is
related to the topology (the index) of the dynamics around the torus. The transformation
Rk2 straightens the dynamics of the cocycle but keeps the topological information. The index
of Rk2 is k2

2 . We will clarify these ideas with some examples later.
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2.3. Computer programs. The algorithms have been implemented in the C language and
have been run under the Linux environment. We have applied them to compute invariant
manifolds for 2D quasi-periodic maps, with one external frequency.

The algorithms have been applied to quasi-periodic perturbations of the Hénon map and
the standard map (although with slight modifications they can be applied to other exam-
ples). In the examples the system is coupled with a quasi-periodic external perturbation via
a parameter ε.

With this set of programs we can do the following:
1. Compute invariant and periodic circles, with continuation with respect to the param-

eter ε. The input is the set of parameters of the autonomous system (a and b in the
case of the Hénon map, and K in the case of the standard map), the period with
some specification of the initial periodic point (in the case of the standard map, for
instance, that is its rotation number and some symmetry), and a list of ε’s; the output
is a set of files containing the Fourier expansions of the circles for these ε’s. Other
programs let us obtain meshes of the circles to make plots. In the implementation
of the projection method and the reducibility method, the programs include in the
output files the reducing transformations and the reduced matrices.

2. Compute whiskers of invariant and periodic circles: The input is one of the outputs
of the previous programs, that is, a file containing the parameters and the Fourier
expansions giving the circle; the output is, in the case that the circle is hyperbolic,
the files containing the Fourier–Taylor expansions of the whiskers. If in the input
file there are the reducing frames (because we have used the projection method or
the reducibility method), these programs use them to do the computations. If not,
the programs implement the power method to compute the bundles, and we refine the
computation using reducibility [HdlL05a] (we have also done tests and computations by
discretizing the transfer operator and computing the eigenvalues of the discretization
[Jor01]). These bundles are the frames where the whiskers are constructed.

3. Globalize the whiskers: A first program computes the intersection of a whisker with a
given plane θ = θ0. A second program computes a 2D grid of points of the surface,
by doing several sections of the object with equidistant time planes. In both cases we
have to specify the total arc-length of the sections, the maximum distance between
consecutive points in the curves, and the local error to compute the fundamental
domain. This is very standard (see, for instance, [KO98]).

4. Once we have computed the meshes and grids of the objects, we can plot them using
standard packages. To produce the figures of this paper we have used xmgr, gnuplot,
and MATLAB.

We have also written many other test programs—for example, computation of Lyapunov
multipliers and rotation numbers of a cocycle, computation of attractor and repellor of a
projective cocycle, and power method.

We have also written the versions of the programs to work in the double cover. This is
just substituting the system (2) by

(
z
θ

)
−→

(
Fε(z, 2θ)
θ + ω

2

)
.(24)
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This trick lets us work with 1-periodic functions and avoid 2-periodic functions.
The timings reported correspond to work in different machines that we will specify. For

instance, some results have been produced with a desktop computer with a 700MHz processor.
From this, the reader can guess timings in other machines.

In the following we will discuss some efficiency properties of the implementation in some
representative examples and, much more importantly, we will present some conjectures that
we have obtained by observing phenomena that are not yet justified by a full mathematical
theory. We hope that reporting these conjectures will stimulate mathematical work.

3. Example 1: The rotating Hénon map. The first example we consider is a quasi-
periodic perturbation of the Hénon map. The rotating Hénon map is the quasi-periodic
dissipative map on the plane given by

x̄ = 1 + y − a x2 + ε cos(2πθ),

ȳ = bx,

θ̄ = θ + ω (mod 1),

(25)

where a, b are the parameters of the Hénon map and ε leads to a quasi-periodic forcing. The
motion of the angle variable θ is a rotation by the irrational number ω. We have taken the
golden mean ω = 1

2(
√

5 − 1).
For ε = 0, and we suppress the angle variable, we have the classical Hénon map

x̄ = 1 + y − a x2,

ȳ = bx.
(26)

This map has two fixed points

p± =

(

x± =
b− 1 ±√

(b− 1)2 + 4a

2a
, y± = bx±

)

,

provided that (b − 1)2 + 4a > 0 (for instance, if a > 0). There exists also a 2-periodic orbit,
provided that 4a − 3(1 − b)2 > 0 (at a = 3

4(1 − b)2 there is a period doubling bifurcation of
p+). Both points of the 2-periodic orbit correspond to the solutions of the quadratic equation

a2x2 − a(1 − b)x− a + (1 − b)2 = 0.

These fixed points and periodic orbits turn into invariant curves and periodic curves under
the quasi-periodic perturbation. (See Figure 1.)

The map (25) was studied in [SFKA96] as an example of system with a strange non-
chaotic attractor (SNA). In [OF00] the structure of this attractor was studied by means of
computation of stable and unstable manifolds of invariant curves of saddle type, based on the
algorithms appearing in [KO98]. The computation of slow manifolds considered here does not
seem to have been considered in the literature before.

In the following, we fix the parameters of the Hénon map to be a = 0.68 and b = 0.1. We
have used several computer programs to continue invariant and periodic tori with respect to
ε and to compute their whiskers.



COMPUTATION OF INVARIANT TORI AND THEIR WHISKERS 161

0 0.2 0.4 0.6 0.8 1 1.2
x

0

0.02

0.04

0.06

0.08

0.1

0.12

y

ε = 0.000

0 0.2 0.4 0.6 0.8 1 1.2
x

0

0.02

0.04

0.06

0.08

0.1

0.12

y

ε = 0.100

 0  0.2  0.4  0.6  0.8  1  1.2 0

 0.2

 0.4

 0.6

 0.8

 1
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

x

y

θ
 0  0.2  0.4  0.6  0.8  1  1.2 0

 0.2

 0.4

 0.6

 0.8

 1
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

x

y

θ

Figure 1. A saddle-type fixed point (blue) and an attracting 2 periodic point (red) of the Hénon map with
a = 0.68 and b = 0.1 become closed curves when we add the external perturbation. The lower pictures are 3D
views in the extended phase space.

Starting from the fixed point p+, the continuation of the invariant curve for ε = 0., 0.1,
0.2, 0.3, 0.4, 0.5 is done in less than one second using 50 harmonics in the Fourier expansions
and running on a Pentium III at 700 MHz. The errors in the functional equations are of the
order 10−19. (See Figure 1 for some examples.)

For ε = 0.1, the invariant curve is of saddle type. We can also compute the whiskers of
this invariant curve up to order 30 (the degree of the Fourier–Taylor polynomials), in less than
8 seconds. If the linear approximations of the manifolds are not provided as an input, the
program uses the power method to find them. We use these local expansions to globalize the
manifolds. For instance, to compute points of the curve of intersection with the plane θ = 0
of one of the branches of the unstable manifold (length = 10, distance between points = 0.01,
local error = 10−10) takes about 4 seconds. With this technology we can also produce 3D
grids (taking essentially different sections).

Figure 2 shows the section with the plane {θ = 0} of some invariant curves and their
whiskers for ε = 0.1.

3.1. Continuation of an invariant torus: A brief description. In the following sections we
will explain the bifurcations and transitions we have encountered in continuing the invariant
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Figure 2. Sections with the plane θ = 0 of invariant 2D manifolds associated to invariant curves. The
parameters of the rotating Henón map are a = 0.68, b = 0.1, and ε = 0.1.

circle corresponding to the fixed point p+ of the Hénon map. In particular, in section 6, we
will report on a mechanism of loss of exponential dichotomy and breakdown.

In the following exploration, which is representative of many others, we have fixed a = 0.68
and b = 0.1 and have increased ε from 0. Figure 3 shows the continuation of the invariant
torus, whose analysis is detailed below.

To measure the hyperbolicity around the torus, we have used two observables: the maximal
Lyapunov multiplier Λ = λ+ (the minimal Lyapunov multiplier is λ− = |b|/Λ) and the distance
Δ between the attractor and repellor of the projective cocycle. The results are displayed in
Figure 4, where we observe several transitions, labeled with the letters a,b,c,d,e.

The fixed point p+ of the Hénon map is of saddle type. When we take the Cartesian
product with the external rotation, the fixed point becomes a “straight” invariant circle (see
the first picture of Figure 3, where we also draw the 2-periodic attracting circle).

A bird’s eye analysis of the bifurcations detected easily in Figure 4 is as follows.

(a) At εa � 0.2549, the spectrum of the linearization crosses 1 and −1 is an eigenvalue.
The torus goes from being unstable to being stable, and there is a period doubling bifurcation
[BHTB90]. The leading spectral bundle goes from being unstable to being slowly stable.
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Figure 3. θx projection of an attractor (red).
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Figure 4. Distance (Δ) between the invariant bundles and Lyapunov multiplier (Λ) of an invariant torus
for the rotating Hénon map, continued with respect to ε.

(b) This is the first instance of a global bifurcation, which we call the bundle merging
scenario. This bifurcation will be described in more detail in section 6. In particular, we will
identify quantitative regularities.

The spectrum remains two separate circles for ε < εb � 0.4633. Nevertheless, the separa-
tion between the bundles becomes smaller and seems to tend to zero as ε approaches εb from
below.

For ε slightly bigger than εb, it seems that there are no separate continuous invariant fast
and slow bundles.

(c, d) The transition c, which happens at εc � 0.5256, seems to be a reverse of the
bundle merging scenario found in b. The bifurcation in d, which happens at εd � 0.5475, is a
direct bundle merging bifurcation.

(e) At εe � 0.8337, the spectrum of the linearization touches 1, and the torus seems to
disappear completely. In contrast with the quasi-periodic saddle-node bifurcation, there does
not seem to be any companion unstable circle nearby. For ε slightly smaller than εe it seems
that there are no continuous invariant bundles.

This transition seems hard to understand. We have not found any quantitative reg-
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ularity. We just make here the simple remark that this transition seems visually simi-
lar to the fractalization mechanism that has been described several times in the literature
[Kan84, NK96, SFKA96] (see also the review [PNR01]). In [SFKA96] there is a study of this
transition in the rotating Hénon map.

Moreover, it seems that the torus is continuous (even analytic [HdlL06b]) until the outer
radius of the spectrum (the maximal Lyapunov multiplier) touches 1 [HdlL06a, HdlL05c].
Notice that a normally hyperbolic torus persists under a sufficiently small perturbation, so
the torus could survive until the maximal Lyapunov multiplier crosses 1 and the torus loses
its normal hyperbolicity.

We would also like to refer to [HS05], which shows that some of the conclusions before
may have been based on numerics which are not accurate.

Remark 3.1. We emphasize that the above list of the bifurcations is not exhaustive. As
we will see in section 6, if we look very carefully in the interval [εb, εc], there are other
bundle merging bifurcations. Indeed, it seems that bundle merging bifurcations generate
other “daughter” bundle merging bifurcations close by. See section 6.3.4.

The beginning of Figure 4 is computed using the reducibility method. This method can
continue over the period doubling bifurcation. Nevertheless, it gets stuck on the bifurcations b,
which correspond to lack of reducibility. To get an idea of the accuracy we display some typical
results in Table 1.

We note that in this case, the fact that the reducibility fails does not imply that the torus
cannot be continued. Since the torus is attractive, either the full matrix Newton method or
even direct iteration can be used to compute the torus accurately.

Note that in the intervals εb ≤ ε ≤ εc and εd ≤ ε ≤ εe it seems that there are no
continuous invariant subbundles and that the spectrum is not reducible (it is a full annulus).
Indeed, it seems empirically that this lack of reducibility is abundant; that is, nonreducibility
holds in a set of parameters of positive measure. Moreover, if we change slightly the other
two parameters (a and b), the same phenomena is observed.

There are mathematical results showing that reducibility is dense for cocycles taking values
in SU(2) or in other compact groups [Kri99c, Kri99b, Kri99a, Kri01]. Some recent results for
noncompact groups are in [AK03].

These mathematical results suggest that the regions where reducibility fails have a compli-
cated structure. If we perform a numerical experiment with a prescribed accuracy, we obtain
a partition of parameter space in intervals where the finite precision criterion for reducibility
applies or not. In the cases where the criterion applies, the validating results in [HdlL06b]
show that reducibility is indeed true. In the cases where the finite precision criterion fails,
however, it means only that we need more delicate exploration. A higher precision computa-
tion may reveal other intervals where the criterion for reducibility holds. In the intervals not
covered by this refined criterion, we can, of course, try more refined observations, and so on.
Some of these explorations motivated by the mathematical insights are reported in section
6.3.4.

3.2. Breakdown of exponential dichotomies. To study the mechanism of loss of re-
ducibility, we study the projective cocycle associated to the torus (see (15) in section 2.2)
around the critical value. We will see that the breakdown of reducibility is associated to the
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breakdown of the existence of exponential dichotomies. That is, the fast and slow bundles
merge. See the discussion in section 2.2.5.

By direct iteration of (15), the orbits will converge to an attractor. Similarly, the iteration
of the projectivization of the inverse cocycle will converge to a repellor. If there are slow and
fast invariant bundles, the attractor corresponds to the slow bundle and the repellor to the
fast bundle. The results of this experiment are depicted in Figure 5. Compare the results
with those in Figure 4.

For ε = 0.400 the attractor and repellor of the projective cocycle are smooth curves.
These correspond to the invariant subbundles of the cocycle corresponding to the least and
most attractive eigenvalues, respectively.

We note that, as ε approaches a critical value εb, the attractor and the repellor in the
projective space approach each other. We note that the theory in [JS81, HdlL03b] ensures
that, provided that the distance remains positive, the invariant bundles will be analytic.

In fact, the distance between both curves for ε = 0.463 is of the order of 10−3. For
ε = 0.463254 the distance is of the order of 10−6. One can presume that the distance converges
to zero as ε converges to the critical value εb. We have detected that the critical parameter is

εb � 0.4632544711720

and that the corresponding maximal Lyapunov multiplier (the spectral radius of the transfer
operator) is Λb � 0.542306556. Figure 6 depicts more accurately the attractors and repellors
for the projective cocycle at the presumed critical value.

In section 6 we will present some quantitative regularities of the phenomenon, which we
have found empirically, as well as other phenomena.

3.3. Topological evidence of bundle collapse (I). An indirect proof that there is a bundle
collapse is the following.

Notice that when the cocycle has two continuous invariant bundles, it is reducible to a
constant diagonal matrix, since the external rotation is Diophantine [JS81].

In the continuation of the attracting torus, we observe that before the transition b, the
leading eigenvalue is negative and the other is positive. In particular, we have the following.

• For ε = 0.463, the torus is attracting and the cocycle is reducible to a constant diagonal
matrix

diag(−0.603430499529439903989, 0.165719167456701022933).

After the transition c reducibility is recovered, but the leading eigenvalue is positive. In
particular, we have the following.

• For ε = 0.530, the torus is attracting and the cocycle is reducible to a constant diagonal
matrix

diag(0.694546750046480781363,−0.143978789035162504966).

We emphasize that the calculations mentioned above are very reliable since reducibility
methods apply and the results can be validated using the methods in [HdlL06b]. Hence, we
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Figure 5. Attractor (red) and repellor (blue) of the projective cocycle of the attracting invariant curve for
the Hénon map.

are quite sure that from b to c in Figure 4 there is a change of topology/dynamics of the
invariant bundles.
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Figure 6. Slow (red) and fast (blue) directions before and after the transition of the lack of reducibility, and
the magnification of a very small region. The distance between the attractor and the repellor for ε = 0.463254
is Δ � 1.86 · 10−6.

We also observe that the maximal and minimal Lyapunov multipliers are different during
the continuation. If they were equal, they would be equal to

√|b| � 0.3162, which is not the
case (see Figure 1).

As a result, the torus cannot remain reducible during the whole continuation, but the
Lyapunov exponents cannot become close. The only possibility is that at some parameter
value the torus becomes nonreducible (hence there are no 1D invariant bundles) even if the
Lyapunov multipliers remain different.

Remark 3.2. Note that the argument above can only hope to show that there is a point in
the interval where reducibility fails but nevertheless the spectrum is not trivial. Topological
methods cannot hope to show that the transition is sharp—indeed, we do not expect it is
based on our numerics—and much less the quantitative regularities discussed in section 6.2.

We think that the argument above can be made rigorous. The only ingredients that we
need are that the index changes at the end of the interval and that the Lyapunov exponents
do not degenerate.
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Note that, given the validation results in [HdlL06b], to validate the results on the index,
all that we need to do is show that the invariance equations for the torus and for the bundles
are satisfied with enough accuracy that we can assess the sign of the averaged multipliers.
The calculations we have performed can routinely be transformed into interval calculations
[KSW96] and we certainly expect that the precision will be enough.

Since the Jacobian of the transformation is constant, the fact that the Lyapunov expo-
nents do not coincide can be established if we prove lower bounds for one of the Lyapunov
exponents. These lower bounds can be achieved by applying the method of [Her83] to the
finite approximation computed.

We certainly hope that the present detailed numerics inspire computer assisted proofs
and, of course, more rigorous studies.

Remark 3.3. The arguments above to show that there is a value of the parameter without
reducibility can be modified slightly to show that they do not rely on the fact that the rotation
is Diophantine.

Just notice that a normalization of an orientable bundle in S
1 × T, instead of P

1 × T,
produces two curves (S1 is a double covering of P

1). (If the bundle were nonorientable, we
would also double the base torus T.)

In the representation of the bundles in S
1 × T, for ε = 0.463 the slow bundle corresponds

to a 2-periodic curve, and the fast bundle corresponds to two fixed curves. Moreover, for ε =
0.530, the slow bundle corresponds to two fixed curves, and the fast bundle corresponds to a 2-
periodic curve. These two cases are homotopically nonequivalent. Hence, it is impossible that
the torus remains reducible throughout the continuation. We also note that this breakdown
in reducibility has to happen while the Lyapunov multipliers remain different.

Hence, the mechanism of bundle collapse is independent of the Diophantine properties of
the rotation. The above version of the argument applies to Liouville numbers.

We have observed the same mechanism with the external frequency ω = e/4 (with a rela-
tive distance less than 10% of the golden mean). This number has very different Diophantine
properties from those of the golden mean; in particular, it does not have a periodic continuous
fraction expansion. (The continued fraction expansion of e/4 is known explicitly and has
unbounded entries.)

4. Example 2: The rotating standard map. Our second example is the rotating standard
map. This is a quasi-periodic perturbation of the standard map [Chi79, Gre79], that is, a
symplectic (area preserving) map of the annulus T × R.

We will study the continuation of hyperbolic invariant tori, whose theory has been devel-
oped. Moreover, we will also study continuation of elliptic tori and the bifurcation of elliptic
tori. We think that it would be quite desirable to develop rigorous a posteriori estimates for
these cases. We will also describe another version of the bundle merging bifurcation, which
has some quantitative differences from the one studied in section 3.2.

4.1. Preliminaries and notation. The rotating standard map is given by

x̄ = x + y − s(x)(K + εc(θ)) (mod 1),

ȳ = y − s(x)(K + εc(θ)),

θ̄ = θ + ω (mod 1),

(27)



COMPUTATION OF INVARIANT TORI AND THEIR WHISKERS 171

where

s(x) =
1

2π
sin(2πx)(28)

is a 1-periodic odd function,

c(θ) = cos(2πθ)(29)

is a 1-periodic even function, and K and ε are positive parameters. We will refer to y, x as
the action-angle variables and ω as the external frequency.

So, the extended phase space is T × R × T. We have taken ω = τ − 1, where τ is the
largest root of the polynomial p(t) = t3 − t2 − t− 1. That is,

ω =
3

√
19

27
+

√
11

27
+

3

√
19

27
−

√
11

27
− 2

3
.

This choice of an irrational number is motivated by this number’s usefulness in the study of
2D KAM tori. See [Har98]. For our purposes, it is useful to check the properties when the
frequency is different from the golden mean. Note that the number above does not have a
periodic continued fraction expansion.

The rotating standard map is reversible (as is the standard map), since it is the composi-
tion F = I1◦I0 of two involutions I0, given by

x̄ = −x (mod 1),

ȳ = y − s(x)(K + εc(θ)),

θ̄ = −θ (mod 1),

and I1, given by

x̄ = −x + y (mod 1),

ȳ = y,

θ̄ = −θ + ω (mod 1).

As far as we know, the rotating standard map was introduced in [ACS91, ACS92], where
some properties of the map and existence of KAM tori were investigated. This example
was also studied in [Tom96], which used a higher dimensional extension of Greene’s criterion
[Gre79] to study the breakdown of a 2D invariant KAM torus. The thesis [Har98] contains a
study of the breakdown of the 2D KAM tori using variational principles.

The standard map, corresponding to ε = 0, is an area preserving map that has periodic
orbits of all rotation numbers. We say that the rotation number of an n-periodic orbit through
(x0, y0) is p/n if xn = x0 + p, yn = y0, where (xn, yn) = Fn(x0, y0) and F is the lift of the
standard map to R × R (that is, we think of x as a real variable instead of as an angle).

Analogously, we can define the rotation number of a n-periodic curve K0(θ) = (x0(θ), y0(θ))
of the rotating standard map as the rational number p/n such that

xn(θ) = x0(θ + nω) + p, yn(θ) = y0(θ + nω),



172 A. HARO AND R. DE LA LLAVE

where Kn(θ) = F (θ, n)(K0(θ)) = (xn(θ), yn(θ)) is the n-iterate of the torus K0.

Notice that the tori {x = 0, y = 0} and {x = 1
2 , y = 0} are invariant under the rotating

standard map. Their rotation numbers are both 0/1. If ε = 0, the torus {x = 0, y = 0}
corresponds to an elliptic fixed point if 0 < K < 4 and to a hyperbolic fixed point (with
reflection) if K > 4. It is parabolic if K = 4. The torus {x = 1

2 , y = 0} for ε = 0 corresponds
to a hyperbolic fixed point if K > 0.

Notice also that the torus {x = 0, y = 1
2} is a 2-periodic curve under the rotating standard

map, whose rotation number is 1/2. If ε = 0, it corresponds to an elliptic 2-periodic orbit if
K <

√
2 and to a hyperbolic 2-periodic orbit if K >

√
2.

In our numerical experiments that are described below, we have fixed K = 0.2 and changed
the forcing constant ε.

4.2. A 2-periodic normally hyperbolic torus. The simplest nontrivial periodic torus for
the rotating standard map with K > 0 is generated from ε = 0 by the hyperbolic periodic orbit
of rotation number 1/2. We also compute this 2-periodic saddle curve using the reducibility
method, and the results are displayed in Table 2 and Figure 7.

Once we have computed a 2-periodic saddle curve, we compute its stable and unstable
invariant manifolds. We have expanded them to order 30 and then we have globalized them.
Our programs produce 2D grids of those objects, which we display in Figure 8, for K = 0.2,
ε = 0.5. We have also made some slices of those objects, producing the familiar homoclinic
web. This is displayed in Figure 9. Keep in mind that these are slices of 2D objects in a 3D
space. Notice that the objects we produce are symmetric. This is due to the reversibility of
the rotating standard map.

4.3. Continuation of reducibility. In this section we will analyze the applicability of the
reducibility method to normally elliptic tori. Later, we will discuss some bifurcations that can
arise when the reducibility fails.

As a first example, we will consider the torus {x = 0, y = 0} of the rotating standard
map, which is invariant for all the values K, ε. The normal behavior is given by the cocycle

M(θ) =

(
1 − (K + ε cos(2πθ)) 1
− (K + ε cos(2πθ)) 1

)
,(30)

with rotation ω. So then, the reducibility method provides approximations of the reduced
matrices and the corresponding Floquet transformations.

This example has the advantage that the torus is fixed for all the values of the parameters,
and so then the only thing we have to do is study the cocycle (30). We will refer to it as the
standard cocycle. This example serves as a test and gives some insight about the general case,
and the effects that happen at breakdown of reducibility are easier to study. A continuation
of elliptic tori that are not fixed by the symmetry will be undertaken later in this section.

Remark 4.1. The standard cocycle (30) is equivalent to the almost Mathieu cocycle

A(θ) =

(
a− b cos(2πθ) −1

1 0

)
,(31)
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Figure 7. xy projection of a 2-periodic saddle curve for the rotating standard map (K = 0.20).

with rotation ω, where a = 2 −K, b = ε. In fact, M(θ)P = PA(θ), where P is the constant
antisymplectic matrix

(
1 0
1 −1

)
.

The almost Mathieu cocycle has called the attention of many authors, among them [CEY90,
BS82, Las94, AS82, AS83, DS83a, Eli01, Jit99, AK03, Pui04].

We have analyzed numerically the standard cocycle for K = 0.2, moving the parameter
ε. We have applied the reducibility method to reduce the linear cocycle. The problem of
reducibility has been considered in [Eli88, Pös89, JS92, Pui05]. There is a Cantor family
of parameters for which the cocycle is reducible and elliptic. There is also an open set of
parameters for which the cocycle is normally hyperbolic (and reducible). The results are
displayed in Table 3.

4.3.1. Detection of resonances in elliptic tori. We have observed that the program
implementing the reducibility method cannot continue beyond the critical value

εcrit � 0.0963488851723619376131.
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Figure 8. 3D view of the stable (blue) and unstable (red) manifolds of a hyperbolic 2-periodic circle for the
rotating standard map. The parameters are K = 0.2 and ε = 0.5, and the frequency of the forcing is ω = τ − 1
(see text for details).

The reason is that for such a value the rotation number γ of the cocycle (the argument of the
eigenvalue) and the external frequency ω, which are

γ � −0.504895542331356775420, ω � 0.83928675521416126683,

are very close to −1 : 1 resonance:
∣∣∣∣
γ

2π
− k1 + k2ω

2

∣∣∣∣ � 1.085821 10−9(32)

for k1 = −1, k2 = 1. It is not hard to show that, when there is a resonance, if there is a
nonlinear term, this provides an obstruction to reducibility. So, it is quite possible that there
is a dense set of parameter values for which reducibility—in the mathematical sense—fails.
On the other hand, we note that, when the order of the resonance is high, the interval shows
only on high order perturbation theory. Hence, it seems that the measure of the gaps except
those of resonances whose numerator k2 is small will be visible.

4.3.2. Analysis of the cocycle. We have computed the dominant Lyapunov multiplier
and the rotation number of the standard cocycle [BS98]. To do so, we have considered orbits
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Figure 9. Heteroclinic web associated with the hyperbolic 2-periodic circle. The section of the stable and
unstable manifolds is with θ = 0. Both of the lower figures are magnifications of the first one.

of length 108 of the cocycle (applied to a random vector). The results are displayed in the two
last columns of Table 3 (and agree with the computed eigenvalues in about 7 digits) and in
Figure 10. We note that just after the critical value εcrit, the maximal Lyapunov multiplier
is appreciably bigger than 1, and the rotation number is phase locked in the angle γ, so the
torus bifurcates into a normally hyperbolic torus.
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Remark 4.2. From [Her83], the maximal Lyapunov multiplier of the almost Mathieu co-
cycle (31) (and so of the standard cocycle (30)) is bounded from below by ε

2 . In fact, if the
almost Mathieu cocycle is not uniformly hyperbolic, then the maximal Lyapunov multiplier
is l(ε) = max(1, ε2) [BJ02]. See Figure 10, where we also display the lower bound l(ε).

We distinguish several regions in Figure 10. Notice that after the critical value, the
dominant Lyapunov multiplier is bigger than 1, so the torus is not going to be elliptic anymore.
In such a case, the spectrum of the transfer operator associated to the cocycle is going to be
either two circles or a fat annulus (notice that the radii are inverses of each other).

When the rotation number is phase locked then the spectrum is two circles and the cocycle
has stable and unstable invariant subbundles, so the torus is normally hyperbolic. (And the
type of resonance has to do with the index of the stable and unstable subbundles.)

In the regions where the rotation number is not phase locked (and the Lyapunov multiplier
is bigger than 1), the torus is nonuniformly hyperbolic. Notice that a nonuniformly hyperbolic
torus is destroyed by generic perturbations [Mn78], but in the present example the torus
survives because the perturbation vanishes on the torus.

We can confirm our expectations using the trick of projectivization described in section
2.2.1. The examples we display in Figure 11 correspond to the regions detected in Figure 10.

The following is an analysis of both Figure 10 and Figure 11.

• From ε = 0 to ε � 0.096 the torus is “almost” elliptic (there are small gaps in which
the torus loses its ellipticity). See Figure 11 for ε = 0.050 and ε = 0.095, where the
dynamics of the projective cocycle is “almost” ergodic and a strong resonance is born.

• From ε � 0.096 to ε � 2.345 the torus is normally hyperbolic. This happens for a
whole open interval that in this case is a big gap corresponding to a −1 : 1 resonance.
Moreover, the indices of the stable and unstable subbundles are 1

2 = k2
2 , where k2 = 1

in (32), and as a result those subbundles are nonorientable. See Figure 11 for ε = 0.100,
ε = 0.500, and ε = 1.000.

• From ε � 2.345 to ε � 2.697 there are two different behaviors that coexist: the torus
is normally hyperbolic in the small bumps in Figure 10, which are open intervals
(moreover, the unstable and stable bundles probably have a large index), and the
torus is nonuniformly hyperbolic in the complementary intervals. See Figure 11 for
ε = 0.250, where the attractor and repellor of the projective cocycle collapse.

• From ε � 2.697 to ε � 4.332 the torus is again normally hyperbolic for a large open
interval. The resonance is −2 : 2, and the invariant subbundles have index 1 = 2

2 , so
they are orientable. See Figure 11 for ε = 4.000.

• From ε � 4.332 to ε = 5.000, where we stop our analysis, we are again in a normally/
nonuniformly hyperbolic region. See Figure 11 for ε = 5.000.

To finish the analysis of the standard cocycle we come back to our starting point in this
section: the detection of a −1 : 1 resonance between the internal and normal frequencies that
prevent the continuation of the reducibility (notice that we enter in a region that, in a sense,
is “more reducible” than in the first elliptic region). We emphasize that we have detected this
phenomenon numerically because the resonance is very strong, producing a big gap. But it
occurs also in very small gaps. Numerical and rigorous results on these kinds of gaps and the
corresponding bifurcations appear in [BHJ+03] for Hamiltonian systems.
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Figure 10. Lyapunov multiplier and rotation number as functions of ε of the standard cocycle (30) with
ω = τ − 1, K = 0.2. The green function is a lower bound of the Lyapunov multiplier: l(ε) = max(1, ε

2
). The

rotation number has been computed with the Sturmian definition (19). We also display the average rotation
number (grey color) that produces incorrect estimates beyond ε � 3.829 � 4 −K.
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Figure 11. Attractor (red) and repellor (blue) of the projective standard cocycle with K = 0.2. This is
associated to the torus {x = 0, y = 0} that is invariant for the rotating standard map.
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Table 4
Continuation of reducibility and Floquet transformation of the torus {x = 0, y = 0} of the rotating standard

map for K = 0.2. We improve reducibility using rotating transformations, so we can cross the resonance −1 : 1
that appears in ε = εcrit � 0.0963488851723619376131.

Rotating standard map: K = 0.200. Torus {x = 0, y = 0}.
ε Eigenvalues S T NF

0.000 1.00000000000000000000 exp(±0.45102681179626244527i) 0.0e+00 0.0e+00 100
0.010 0.99999999999999999995 exp(±0.45132099187449060824i) 7.7e-20 6.9e-20 100
0.020 0.99999999999999999984 exp(±0.45221294897013966028i) 1.4e-19 1.0e-20 100
0.030 1.00000000000000000011 exp(±0.45373258632458500232i) 1.6e-19 9.3e-20 100
0.040 1.00000000000000000000 exp(±0.45593597154364472120i) 2.1e-19 1.5e-19 100
0.050 1.00000000000000000000 exp(±3.09561493159350098947i) 5.1e-10 3.2e-19 100
0.060 1.00000000000000000000 exp(±3.09953567303981773143i) 3.4e-19 2.3e-19 100
0.070 0.99999999999999999995 exp(±3.10468666836061660871i) 5.2e-19 2.5e-19 100
0.080 1.00000000000000000000 exp(±3.11168752182935715836i) 2.6e-19 3.0e-19 100
0.090 1.00000000000000000000 exp(±3.12245509887229756346i) 3.8e-19 5.1e-19 100
0.100 -0.985229910849008448355, -1.01499151516650933645 3.0e-19 2.7e-19 100
0.200 -0.908704733983905314765, -1.10046747045747389895 3.3e-19 3.6e-19 100
0.300 -0.859755912104609600457, -1.16312081827048418811 4.6e-19 3.2e-19 100
0.400 -0.819034502317305008415, -1.22094978559595102128 5.7e-19 2.2e-19 100
0.500 -0.784499412393390937147, -1.27469821417602958654 3.7e-19 2.5e-19 100
0.600 -0.755089133897168369623, -1.32434696131673477028 5.4e-19 4.7e-19 100
0.700 -0.729998333578531503093, -1.36986614078677530737 4.6e-19 3.4e-19 100
0.800 -0.708575796553274791698, -1.41128162274847651484 7.5e-19 3.1e-19 100
0.900 -0.690298554554738629245, -1.44864854982207986664 4.8e-19 3.7e-19 100
1.000 -0.674754590255442611413, -1.48202029958985364482 8.0e-19 2.9e-19 100
1.500 -0.629645514281034828278, -1.58819522623274312267 1.1e-16 7.8e-17 100
2.000 -0.638941822211735963705, -1.56508772041003652573 1.8e-09 1.1e-09 100
2.300 -0.721367120200611090905, -1.38625669509575938734 5.4e-08 2.4e-08 300

4.3.3. Bifurcations at resonance in elliptic tori. The reducibility method stops at the
resonance because the Floquet transformation is not well adapted to the topology of the stable
and unstable subbundles produced after the critical value εcrit. Nevertheless, we will see that
it is possible to continue the torus and its reducibility if we take into account that invariant
bundles can appear, and therefore the torus can become normally hyperbolic.

We have to take into account the somewhat unexpected phenomenon that the invariant
bundles generated by the resonance have an index which is related to the resonance. In
particular, they may be nonorientable.

The key idea is to use the rotating transformations of section 2.2.6. To apply such a
transformation it is not necessary to wait until the resonance is more evident (say, to values
very close to εcrit). In fact, our experiments suggest that it is better numerically to do this
transformation before the transition happens. In Table 4 we display the results when doing
the transformation for ε = 0.050, quite far from εcrit � 0.0963489.

We see that the method continues the reducibility of the normally hyperbolic torus, whose
cocycle has a spectrum composed by two circles, until there is a new transition near ε � 2.345.
Again, reducibility is lost and the method stops. Notice, however, that in this case, the torus
is nonuniformly normally hyperbolic. The spectrum grows and it is a full annulus enclosed by
two circles, and the Oseledec bundles are not continuous.
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Figure 12. Attractor (red) and repellor (blue) of the projective cocycle of the invariant torus {x = 0, y = 0}
of the rotating standard map with K = 0.2 and ε = 2.400.

Notice, moreover, that reducibility holds in the small bumps between 2.345 and 2.697, and
we can do a direct analysis by using projectivization. We can compute the invariant bundles
using the power method [HdlL05a] or by discretizing the transfer operator [Jor99].

4.3.4. Topological evidence of bundle collapse (II). The invariance of the index of the
bundles under homotopies has some consequences. By observing at some ends, we may con-
clude that something has happened in the middle.

For example, we observe that the torus is normally hyperbolic for ε = 2.400, with resonance
4 : −5, so its invariant manifolds have index −5

2 and are nonorientable (see Figure 12). Since
for ε = 2.340 the torus is normally hyperbolic and the invariant manifolds have index 1

2 , the
torus cannot be normally hyperbolic for all the values between ε = 2.340 and ε = 2.400. Since
the Lyapunov multiplier is bounded away from 1 (see Remark 4.2), the only possibility is that
the stable and unstable bundles merge at some values of the parameter ε between 2.340 and
2.400.

Notice also that the torus is again normally hyperbolic for ε = 0.4, and the index of the
invariant bundle in this case is 1, so that there are further transitions.
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4.4. Nonorientable whiskers generated at resonances. We note that the rotating trans-
formations introduced in section 2.2.6 lead to the existence of nontrivial invariant bundles in
the linearization of the invariant circle {x = 0, y = 0} in the standard map. In particular, we
have found cases in which those bundles are nonorientable.

As remarked before, the methods of this paper can compute invariant manifolds modeled
in these invariant bundles for the linearization.

Figure 13 shows the stable and unstable manifolds of the invariant torus {x = 0, y = 0}
for the rotating standard map, with K = 0.2, ε = 0.5.

4.5. Continuation of an invariant torus until breakdown. In this section we consider the
continuation of the elliptic 3-periodic orbit of the standard map with K = 0.2.

Using the reducibility method, we detect a strong resonance for the value

εcrit � 0.06078370936559205612,

for which the rotation number is

γ � −0.112219351279490344844.

In fact,

∣∣∣∣
γ

2π
− k1 + k23ω

2

∣∣∣∣ � 1.175787 10−9

for k1 = 5, k2 = −2, so the resonance is of the type 5 : −2. This suggests the transition to
a normally hyperbolic torus whose subbundles have index −2

2 = −1, so they are orientable.
We can cross the resonance and compute the unstable and stable subbundles of the normally
hyperbolic torus using the rotating transformation R2 (see section 2.2.6).

The results of the full continuation are displayed in Figure 14 (Lyapunov multipliers and
rotation number), Figure 15 (θx projection of the 3-periodic torus), and Figure 16 (dynamics
of the projective cocycle).

• From ε = 0 to ε � 0.061 the torus is elliptic (outside of small resonance intervals that
are not detected numerically with the continuation step 0.001), and the dynamics of
the projective cocycle is ergodic. See Figure 16 for ε = 0.050.

• From ε � 0.061 to ε � 0.117 the torus is normally hyperbolic and the invariant
subbundles have index −1. See Figure 16 for ε = 0.100. Moreover, the eigenvalues are
negative. For instance, for ε = 0.100, the eigenvalues are

−0.990944333, −1.0091384215.

• From ε � 0.117 to ε � 0.173 the torus is again elliptic. See Figure 16 for ε = 0.150.
• From ε � 0.173 to ε � 0.350 the torus is normally hyperbolic and the invariant

subbundles again have index −1. See Figure 16 for ε = 0.200, 0.250, 0.300, 0.350. The
eigenvalues are again negative. For instance, for ε = 0.200, the eigenvalues are

−0.963855575, −1.0374998344.
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Figure 13. 3D views of the stable (blue) and unstable (red) manifolds of the curve {x = 0, y = 0} for the
rotating standard map with κ = 0.2 and ε = 0.5. Both manifolds are nonorientable.

We observe also a similar phenomena to that in section 3.2. After the second strong
resonance (that we can continue with reducibility because we adapted the coordinates to the
topology already in the first resonance, and both of them are 5 : −2), the torus is a saddle-type
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Figure 14. Lyapunov multiplier and rotation number of the cocycle associated to a 3-periodic torus for the
rotating standard map, with K = 0.2.
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Figure 15. θx projection of a 3-periodic curve of the rotating standard map, K = 0.2.



COMPUTATION OF INVARIANT TORI AND THEIR WHISKERS 187

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
θ

α

π/4

ε = 0.050
π

π/2

3π/4

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

θ

α

π/4

ε = 0.100
π

π/2

3π/4

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
θ

α

π/4

ε = 0.150
π

π/2

3π/4

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

θ

α

π/4

ε = 0.200
π

π/2

3π/4

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
θ

α

π/4

ε = 0.250
π

π/2

3π/4

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

θ

α

π/4

ε = 0.300
π

π/2

3π/4

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
θ

α

π/4

ε = 0.350
π

π/2

3π/4

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

θ

α

π/4

ε = 0.372
π

π/2

3π/4

0

Figure 16. Attractor (red) and repellor (blue) of the projective cocycle associated to a 3-periodic torus of
the rotating standard map, K = 0.2.
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circle. But the unstable and the stable subbundles get closer and closer when increasing the
parameter ε.

We have been able to continue the torus and its reducibility until ε = 0.339. Since the
bundles start to fold a lot, they have to be approximated by Fourier expansions with about
10000 harmonics. Notice, however, that it suffices to use 250 harmonics to approximate the
invariant torus.

So, in this regime we have changed to use the full-matrix Newton method. We have
continued the torus until ε = 0.370, and the distance between the attractor and repellor of
the projective cocycle is of the order of thousandths (see Figure 16). However, the Lyapunov
multipliers remain far away from 1.

We can again presume that the stable and unstable bundles touch at a critical value near
ε = 0.370, implying loss of reducibility. See Figure 15 for ε = 0.370.

The difference from the example in section 3.2 is that in this case, the spectrum at the
collapse of the bundles is a fat annulus that contains the unit circle. So, certainly, the torus is
not normally hyperbolic. The theory of [Mn78] suggests that we should expect that the torus
breaks down. Certainly, we have found it impossible to continue the Newton method.

So, the continuation reaches ε = 0.377950, where the discretization of the torus has 1200
Fourier harmonics, and the invariance equation is solved up to an error � 10−9 (notice that
the large matrix in the Newton step is about 264 Mbytes). The torus looks rather irregular
and like it is about to break. See Figure 23. Moreover, the stable and unstable bundles are
extremely close. A more detailed study of the phenomenon pointed out here will be undertaken
in section 6.

In this example, since the torus seems to be smooth and reducible all the way to breakdown,
it is possible to make reliable computations reasonably close to breakdown. Recall that a
saddle torus is as smooth as the system [HdlL06b], and in this case it is analytic.

Notice, however, that the reducibility method fails because the bundles become so folded
that their approximations require very high order Fourier expansions. In a sense, reducibility
is much more sensitive to breakdown than the torus itself.

5. Example 3: A Lipschitz rotating standard map. In this section we present an example
in which the use of the reducibility method or the projection method is mandatory to compute
invariant tori with a high precision.

The example is a quasi-periodic perturbation of the standard map which is Lipschitz
but not C1. From the numerical point of view, the interest of this map is that the Fourier
coefficients of the parameterization of the torus decrease rather slowly with the index, and
it is, therefore, a good stress test for the efficiency of the methods. It can be considered as
a stand-in for the computation of higher dimensional invariant tori (these computations are
actively pursued).

The model we consider is similar to the rotating standard map (27), but the perturbation
is given by the 1-periodic and even function defined by

c(θ) =

{
1 + 4θ if −1

2 ≤ θ ≤ 0,
1 − 4θ if 0 ≤ θ ≤ 1

2
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in the interval [−1
2 ,

1
2 ]. The Fourier series of this Lipschitz function is

c(θ) =
8

π2

∑

m≥0

1

(2m + 1)2
cos(2π(2m + 1)θ).

Notice that the harmonic k = 2m+1 decreases as 1
k2 . Henceforth, to approximate c = c(θ)

by its Fourier series with an error smaller than, say, 10−8, we need an expansion of at least
104 harmonics. This means that to compute the invariant tori with this error, we need, at
least, to compute 4 · 104 coefficients.

The Newton method involves then solving linear systems of such a size at each step. Using
quadruple precision, the size of the real variables is 12 bytes, and a matrix of such a size is
about 18 Gbytes. So, the direct application of the Newton method is not feasible with a
personal computer from 2004.

The reducibility method involves small divisor equations, whose justification needs some
regularity to be solved at each step. Nevertheless, we can empirically use the numerical algo-
rithm of reducibility even in regions where the mathematical justification is not yet available.
We will obtain approximations of the stable and unstable subbundles that can be validated
by the rigorous results in [HdlL06b]. This is one example of a situation where these validation
results can be used to justify a posteriori numerical results obtained by algorithms that, by
themselves, do not have proofs of convergence.

We have again continued the saddle-type 2-periodic point of the standard map with K =
0.2 into a saddle-type invariant torus, when coupling with θ. The results are displayed in
Table 5 and Figure 17. In the computations we have used Fourier expansions with 5000
harmonics.

In order to check how the Fourier coefficients of the curve decrease, we have refined the
torus corresponding to ε = 0.2, computing the first 100000 harmonics. The harmonics decrease
of course very slowly, as can be checked in Figure 18. In fact, they decrease like 1

k2 , as should
be expected. Notice also the fine structure of the Fourier spectrum and its organization in
curved stripes. We have no explanation for this curious phenomenon, nor any guess on its
relevance.

6. The bundle merging scenario for breakdown of hyperbolicity and exponential di-
chotomies.

6.1. The bundle merging scenario and its consequences. In our previous studies of
the rotating Hénon map (see section 3.2) and the rotating standard map (see section 4.5)
we have encountered a possible scenario for the disappearance of exponential dichotomies
and, in particular, for the disappearance of normal hyperbolicity. In this section, we will
investigate the bundle merging in more detail and report some numerical regularities observed.
In particular, we will report that there are scaling laws with universal exponents. These
scaling relations were already reported in [HdlL06a]. We also mention the paper [JO05] which
qualitatively observes situations where the invariant bundles approach each other.

In the bundle merging scenario, the Lyapunov multipliers of the cocycle of the torus remain
different, but the bundles corresponding to them approach each other. One can conjecture
that, at a critical value, the separation between the invariant bundles disappears and the
collision is produced in a dense set of points.
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Figure 17. Continuation of the 2-periodic saddle curve for the C0 rotating standard map, K = 0.20.
Projection on the xy plane.

Note that the bundle merging scenario implies several consequences.

• Up to the critical value we have the following:
– The maximal and minimal Lyapunov multipliers are different from each other and

from 1.
– The spectrum consists of two circles, whose radii are the Lyapunov multipliers.
– The bundles associated to these circles are 1D because we are working with 2D

maps.
– The bundles are as smooth as the cocycle; in this case they are analytic.
– As a consequence, for the examples considered (in which the external rotation ω

is Diophantine), linearization is reducible to constants.
• As the parameter approaches the critical value, the following occur:

– The Lyapunov multipliers remain bounded away from each other and from 1.
– The two bundles get closer, and their minimum distance approaches zero.
– As a consequence, the bundles become more and more oscillatory. Even if they

remain analytic, the first derivatives become unbounded.
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Figure 18. log-log table of the 100000 Fourier modes of the x-component of the saddle-type 2-periodic
curve for the C0 rotating standard map, with K = 0.2, ε = 0.2. The errors are R = 3.9e-14, S = 1.5e-11,
T = 1.3e-11.

– Even if the spectrum of the transfer operator remains being circles that are far
apart, the spectral projections over the corresponding spectral subspaces have
norms that become unbounded. (Note that the norm of the spectral projections
is closely related to the minimum distance between the bundles.)

• At the breakdown and afterward, it is impossible to discern any continuous invariant
bundle.

– As a consequence, the spectrum of the transfer operator at the critical value (and
afterward) consists of a filled annulus. The inner and outer boundaries are circles
whose radii are the Lyapunov multipliers.

– The invariant bundles are not continuous. The Oseledec theorem [Ose68] asserts
that the bundles are defined in a set of full measure, and they are measurable.

Remark 6.1. At first sight it may seem paradoxical that the bundles approach each other
at some points but the Lyapunov multipliers remain different.

It is certainly true that, when the bundles are very close at some point, the Lyapunov
multipliers at a fixed time become very close. Nevertheless, remember that the Lyapunov
multipliers are obtained by taking the limit of the number of iterations tending to ∞ so that
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the proximity for finite time does not imply the proximity of the limits. (In other words, we
cannot exchange the limits of the parameters or the n → ∞ in the expresion of the time n
Lyapunov exponents.)

Note that the formula (16) is affected little by intervals of small length in which the
integrand takes the “wrong” value.

It is true that the computation of the Lyapunov exponent requires longer and longer times
to achieve a certain accuracy as we approach the critical value.

Remark 6.2. At the critical value of the parameter, the spectrum of the transfer operator
experiences a sudden growth and it is discontinuous as a set. It is well known that the spectrum
cannot suddenly decrease [Kat76], but in the same reference, we can find other examples with
sudden growth. This phenomenon of sudden growth of the spectrum is closely related to the
fact that the spectral projections become unbounded.

Remark 6.3. Notice also that, even if Oseledec bundles are not continuous at a critical
value, some kind of regularity could be expected (e.g., Whitney differentiability). This is
perhaps what is observed in Figures 5 and 6 (see also Figures 20 and 21). For studies on the
regularity of Oseledec bundles, see [Pes77], and for regularity of invariant graphs on forced
systems (that here correspond to the projectivization of invariant bundles), see [Sta99].

6.2. Quantitative regularities of bundle collapse. The observables we consider to mea-
sure the bundle collapse are the minimum distance between the bundles (Δ), which goes to
zero at the collapse for ε = εc, and the upper and lower Lyapunov multipliers (Λ±), which go
to critical values Λ± when ε goes to εc.

The most remarkable fact about this transition is that there seem to be some scaling
relations of these observables with exponents that are not affected by changes in the map.

More precisely, we formulate the following assertion.

Assertion 6.4. For an open set of families fε, we have the following.

The observables Δ and Λ± satisfy the asymptotics

Δε ∼ α(εc − ε)β, Λ±
ε ∼ Λ±

c + A±(εc − ε)B, ε � εc,(33)

where α, β,A±, B (and Λ±
c ) are fitting parameters.

We distinguish two cases:

(a) The Lyapunov multipliers do not straddle 1: β = 1, B = 0.5.
(b) The Lyapunov multipliers straddle 1: β = 1, B = 1.

We emphasize that in case (b) above the torus is (generically) destroyed, because the
stable and unstable bundles collapse. In case (a), if the torus is attracting, it survives after
the collapse of the fast and slow stable bundles in the critical value εc. Then, we can also make
estimates of the observables after this critical value. Our numerical computations suggest the
following.

Assertion 6.5. For an open set of families fε in case (a) above, we also have the approxi-
mations

Δε ≈ 0, Λ±
ε ≈ Λ±

c + Ā±(ε− εc)
B̄, ε � εc,(34)

where B̄ = 1.
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Remark 6.6. For comparison, we recall that known bifurcations—which have analogues
for quasi-periodic tori—have scaling relations. See [BHTB90]. The saddle node has β = 0.5,
B = 0.5, Λ±

c = 1, and the transcritical has β = 1, B = 1, Λ±
c = 1.

Notice, however, that, in the bifurcations considered in [BHTB90], the bundles remain
smooth. This is very different from what happens in the problems considered here.

Remark 6.7. We already noted that if the Lyapunov multipliers, whose associated bundles
collapse, do not straddle 1, then the torus continues being normally hyperbolic and survives
after the collapse. (In the example presented here, the torus is attracting. See section 3.)

If the Lyapunov multipliers do straddle 1, the torus is not normally hyperbolic at collapse,
and a generic perturbation destroys the torus [Mn78]. (See section 4.5.)

Hence, there is an important difference between both cases, which explains the different
scalings found.

Notice, however, that one can create an example in which a saddle torus survives after
the bundle collapse because the perturbation vanishes on the torus. (See section 4.3.) In this
case we found the scalings to be those in (a) of Assertion 6.4.

Remark 6.8. While Assertion 6.4 conjectures asymptotic formulas for the observables,
Assertion 6.5 gives only approximations. We also note that the numerics of Assertion 6.4 can
be validated using the well-developed theory of normally hyperbolic systems.

Notice, however, that it is not easy to assess the reliability of the calculations of Asser-
tion 6.5, since the exponential dichotomies have been broken. It seems quite possible that there
are gaps of parameter values where Δ, even smaller than the precision of the present compu-
tation, is nevertheless positive. A “big” gap [εc, εd] has been already observed in section 3.1.
See section 6.3.4 for other “small” gaps. One can conjecture that the fact that increasing the
precision reveals more structure will continue. This is consistent with the mathematical work
in [AK03].

6.2.1. Results for the rotating Hénon map. As evidence for Assertions 6.4 and 6.5, we
present some more detailed computations done in the quasi-periodic Hénon map (25), with
a = 0.68, b = 0.1, and ω = (

√
5 − 1)/2. Similar computations have been carried out for

some modifications of the map (changing parameters, adding terms, and even taking other
rotations—for example, ω = e/4).

Below is a description of the results of detailed calculations at the bifurcation (b) described
in section 3.1. Similar calculations have been performed for the bifurcations (c) and (d) in
section 3.1.

We have computed the observables Δ—minimum distance between the bundles—and Λ—
maximum Lyapunov multiplier—of the attracting circle for values of ε in [0.463240, 0.463270],
and fit parameters in (33), (34). We note that, in this case, since the circle is an attractor,
the computation can be done without using Fourier methods. It suffices to iterate the map to
compute the attractor up to round-off error precision. Once we have the attractor, we iterate
the projectivized version of the linearization (15) both forward and backward as indicated in
section 2.2.1.

We note that, in this case, the torus, being a uniform attractor, remains very smooth
(in fact, as smooth as the system, which in our case implies that the torus is analytic). The
calculation is done always in the situation where the torus is smooth and the calculation is
quite reliable. Then, the values are extrapolated.



COMPUTATION OF INVARIANT TORI AND THEIR WHISKERS 195

0.46324 0.463245 0.46325 0.463255 0.46326 0.463265 0.46327
ε

0

1e-05

2e-05

3e-05

4e-05

5e-05

6e-05

Δ

Δ(ε)

0.46324 0.463245 0.46325 0.463255 0.46326 0.463265 0.46327
ε

0.542

0.543

0.544

0.545

0.546

0.547

Λ

Λ(ε)

εc= 0.46325447112±1· 10−11
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β= 0.999979±2· 10−6

Λc= 0.5423122±5· 10−7

A= 1.015±1· 10−3

B= 0.5020±1· 10−4

Ā= −0.7409±6· 10−4

B̄= 1.00035±8· 10−5

Figure 19. Fits of Δ and Λ to (33), (34) for the transition b that is produced between ε = 0.463254 and
ε = 0.463255.

Table 6
Maximal Lyapunov multiplier of the attractor of the rotating Hénon map, and estimate of the error, for

different values of ε close to the critical value εc = εb. The computations have been done by direct iteration of
the cocycle on a vector 701408733 times, after a transient time of 100000 steps.

ε Λ Error

0.4632544710 0.5423194946536124 1.0e-13
0.4632544711 0.5423149288182757 1.0e-13
0.4632544712 0.5423065545078773 5.2e-10
0.4632544713 0.5423065555707195 5.8e-10
0.4632544714 0.5423065550474250 1.0e-09

The results of the fits are depicted in Figure 19. Notice that we can extrapolate the value
of the transition: εb � 0.4632544711. See Table 6 for further numerical evidence, that is, the
change of the accuracy in the computation of the Lyapunov multipliers. The attractors and
their bundles are represented in Figure 20. A magnification of the invariant bundles right
before collapse is depicted in Figure 21. Note that in Figure 21 we find a significant difference
by changing the parameter value of ε by just 10−6.

Among many other verifications of universality we have carried out, we present in Figure
22 an analogue of Figure 19 when ω = e/4. Note that even if e/4 is numerically close to
(
√

5 − 1)/2, its number theoretical properties are very different.

6.2.2. Results for the rotating standard map. We now discuss the phenomena that are
observed for the rotating standard map (27). The situation is somewhat different from the
situation discussed previously. One obvious difference is that the map is area preserving. Also,
since at collapse the spectrum of the linearization is a fat annulus that includes 1, we expect
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Figure 20. x-curve of an attracting torus and α-curves of its slow and fast directions, before and after
their collapse.

that the invariant circle disappears at collapse.
In section 4.5 we have continued with respect to ε a 3-periodic torus. The torus becomes

hyperbolic at ε � 0.173 and remains hyperbolic for larger values of ε.
The continuation reaches ε = 0.377950, where the torus looks rather irregular and about

to break, and the stable and unstable directions are extremely close. See Figure 23. Hence,
we conjecture that this is another case of bundle collapse. Of course, the irregularity of the
torus is in marked contrast with the situation for the rotating Hénon map discussed before.

We can explore the torus for values of ε close to this value. The results of fitting the
scaling laws in Assertion 6.4 are depicted in Figure 24. Notice that we produce an estimate
of the critical value in which the torus is destroyed: εc � 0.379696.

Compared with the phenomena studied in the rotating Hénon map, we find several differ-
ences. The most notable one is that the torus does not seem to persist (at least as a smooth
curve). Hence, there is no scaling relation after the bundle merging. Also we note that the
torus becomes more irregular.

From the computational point of view, since the projection and reducibility methods
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Figure 21. Zooms of the α-curves of Figure 20.
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Ā= 0.93±9· 10−2

B̄= 0.983±8· 10−3

Figure 22. Fits of Δ and Λ to (33), (34) for a bundle merging bifurcation in an attracting torus of the
rotating Hénon map with frequency ω = e/4, and a = 0.68, b = 0.1. The transition is produced between
ε = 0.628960 and ε = 0.628961.

become more problematic as we approach the critical value, we have to use the full-matrix
Newton method. Simple iteration is not possible because the torus is not attracting. As a
consequence, we can only explore values of ε which are farther apart from the critical value
than those allowed in the rotating Hénon map.

6.3. Some open questions. We conclude this article by mentioning several open questions
that arise from the computations here.
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Figure 23. x-curves of a 3-torus close to breakdown, and the α-curves of its unstable and stable directions.
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Figure 24. Fits of Δ and Λ to (33) near breakdown.

6.3.1. A renormalization group description. The existence of the scaling properties above
suggests that there could be a renormalization group explanation for the phenomena happen-
ing. Unfortunately, we have not been able to find a renormalization group transformation
which has a fixed point which explains the behavior observed. Nevertheless we point out
that renormalization of quasi-periodic cocycles has been considered in the literature in some-
what different contexts. For example, renormalization of Schödinger quasi-periodic cocyles
appears already in [Hof76]. Renormalization of quasi-periodic maps has been considered in
[OM03, MO00, MO04]. Renormalization of general cocycles of matrices and its relation with
reducibility was considered in [Ryc92]. Renormalization procedures for 2D cocycles play an
important role in [Kri99c, Kri01]. Nevertheless, the conclusions of later renormalizations are
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not formulated in terms of fixed points of an operator and they seem to be in regimes different
from the ones considered in this paper.

We think that developing a renormalization group explanation of the phenomena reported
here is a very interesting problem. We note, however, that in contrast with other renormal-
ization groups studied, the phenomenon seems to be independent of the rotation number.

6.3.2. Scaling exponents of the observables. The fact that the exponents found numer-
ically are close to being simple numbers makes us hopeful that perhaps there is a relatively
simple explanation. Nevertheless, since one has to deal with bundles that are becoming not
very smooth it is not clear that a simple normal form explanation works.

We think that exploring whether there is a simple explanation of the scaling behavior
reported here is a very interesting problem.

Remark 6.9. The square root behavior of the Lyapunov multiplier has also been observed
in a growth of spectrum phenomena similar to that described above for a rotating logistic map
that is a quasi-periodically forced noninvertible 1D map. In this case, the mechanism involves
the loss of invertibility of the cocycle of the attractor, and it is possible to do a normal form
analysis [JT05].

Besides the scaling properties reported in Assertions 6.4 and 6.5, it seems that there is a
host of other scaling properties to be observed in this scenario.

We are actively pursuing these numerical explorations, but it is clear that much more
needs to be done.

Of course, besides finding more observables that scale, an interesting problem is to find
the domain of universality of these relations.

6.3.3. Explicit models of cocycles exhibiting the bundle merging scenarios. The bun-
dle merging scenario is a property of the projective cocycle. Since the projective cocycle is
independent of multiplication of the linear cocycle by a constant, it superficially seems that
the distinction between the cocycle straddling 1 or not is meaningless.

On the other hand, we note that when the cocycle straddles 1, we expect that the torus
disappears and that, therefore, as we approach the critical value, the torus becomes more
oscillatory. Hence, the difference between the bundles straddling 1 or not is really a difference
between the projective cocycles becoming more oscillatory or not.

We think that it would be very interesting to develop explicit models of linear cocycles that
exhibit bundle merging without any reference to the underlying invariant torus. Given the
above observations, one can expect that the bundle merging with the spectrum straddling 1
will require cocycles with rather irregular matrices.

6.3.4. Abundance of gaps with exponential dichotomy. In the study of the rotating
Hénon map, we have encountered regions of the parameter space in which there are slow and
fast stable smooth invariant bundles (Δ > 0, reducible case) and others in which they are not
smooth (Δ = 0, nonreducible case). We have also found scaling relations in the transition
from one to the other case (see Assertions 6.4 and 6.5).

Notice that Δ > 0 holds in open sets of the parameter space. Even if we present numerical
evidence for Δ ≈ 0 in an open set of the parameter space (see Assertion 6.5), the theory in
[AK03] suggests that in fact Δ > 0 in small gaps of the parameter space that are missed by
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Figure 25. Some small gaps of reducibility. The observables Δ (left) and Λ (right) in two intervals of the
parameter ε for the Hénon map.

the numerical computation. Some of these gaps for the example in section 6.2.1 are shown in
Figure 25.

So, it would be very interesting to quantify the abundance of reducibility and nonreducibil-
ity in this context. It is quite plausible that reducibility holds in an open and dense subset of
parameter space, but its structure can be very complicated. On the other side, nonreducibility
could happen in a closed set of positive measure. (See [HP05] for a model in which this picture
holds.)

6.3.5. Existence of strange nonchaotic attractors. The global phenomena that happen
at e in section 3.1 are not well understood and they deserve a more detailed study. After
the transition e the attractor looks like a strange chaotic attractor (SCA). It seems that
this is related to the very poorly understood phenomena of SNAs, and in particular to the
so-called fractalization mechanism or route “torus→SNA→SCA.” (See [PNR01] for a review
of experiments in this field. See also [GFPS00, OWGF01].) There are some precise definitions
of SNA in the literature. See, for example, [Kan94, Kel96, WY01, WY02, BDV04].
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The theory in [HdlL06b] and the numerical experiments described here suggest that the
fractalization mechanism is in fact a route “torus→SCA” and that in this transition SNAs
are not created. Further detailed numerical experiments of this transition confirm this de-
scription. (See [BSV05, JT05] for similar studies on the rotating logistic map that is 1D and
noninvertible, [HdlL05b] for the rotating Hénon map, and [HS05] for a comprehensive study of
both cases.) But, so far, there are not rigorous explanations of the fractalization mechanism.

We also note that, at the critical value of bundle merging, the attractors and repellors for
the projectivization look like SNAs, as in the collision mechanism described in the literature
[PNR01]. We have obtained evidence in several examples that the collapses are really produced
based on topological arguments. Our interpretation is that the SNAs are the projectivization
of the Oseledec bundles that are measurable but not continuous after the collapse. It would
be quite interesting to decide whether the objects formed at the critical value of the bundle-
merging bifurcation fit the rigorous definitions of SNAs. (See [HP05] for the implication of
this mechanism in the existence of SNAs in Harper maps.)

Notice also that, in the experiments performed here, both mechanisms seem to be related.
That is, the collision mechanisms that happen at the level of the linearization of the dynamics
around the torus have a strong influence on the geometric behavior of the torus itself.

6.3.6. Extensions to other dynamical systems. We emphasize that the bundle merging
scenario is a dynamical/geometrical/functional mechanism that can be generalized to higher
dimensions, to other base dynamics, etc., that is, to general bundle maps (and their invariant
sections).

The linearization around an invariant section is a vector bundle map in a suitable vector
bundle (the normal bundle to the invariant section).

From the dynamical point of view, the mechanism is the progressive deterioration of the
exponential dichotomies in the linearization (the uniform constant C in (20) tends to infinity
in the collapse).

From the geometric point of view, it consists in the collapse of the invariant bundles in a
nonsmooth way.

From the functional analysis point of view, it consists in a sudden growth of the spectrum
of the transfer operator. This functional analysis behavior has different geometric implications
depending on whether the rates involved in the collapse straddle 1 or not.

It would be interesting to obtain scaling laws in these transitions for cases other than
rotations.

Extensions to fully coupled systems will be also very interesting.

After this paper was submitted, we became aware of [CLR06, CLR]. These papers con-
tain a study of some regions where the Hénon family loses hyperbolicity. They show that
the hyperbolicity may be lost even if the Lyapunov exponents of all invariant measures are
bounded away from zero. The reason is there are points where the invariant bundles become
close to each other. This is reminiscent of the bundle merging scenario discussed here. It
would be quite interesting to study whether the rigorous analysis of the above papers ap-
plies to the examples here. Conversely, it would be quite interesting to find out whether the
quantitative scaling laws found here apply to the internal tangencies. We also became aware
of [Bjerklov05, Bjerklov06], which study linear cocycles, find phenomena reminiscent of the
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bundle merging scenario, and are related to [HP05].
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[JS92] À. Jorba and C. Simó, On the reducibility of linear differential equations with quasiperiodic
coefficients, J. Differential Equations, 98 (1992), pp. 111–124.
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[OS87] A. Olvera and C. Simó, An obstruction method for the destruction of invariant curves, Phys.

D, 26 (1987), pp. 181–192.
[Ose68] V. I. Oseledec, A multiplicative ergodic theorem. Characteristic Lyapunov, exponents of dy-

namical systems, Trudy Moskov. Mat. Obšč., 19 (1968), pp. 179–210.
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Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999, pp. 223–241.

[Sta99] J. Stark, Regularity of invariant graphs for forced systems, Ergodic Theory Dynam. Systems,
19 (1999), pp. 155–199.

[Thi97] Ph. Thieullen, Ergodic reduction of random products of two-by-two matrices, J. Anal. Math.,
73 (1997), pp. 19–64.

http://spacelink.msfc.nasa.gov/NASA.Projects


COMPUTATION OF INVARIANT TORI AND THEIR WHISKERS 207

[Tom96] S. Tompaidis, Numerical study of invariant sets of a quasiperiodic perturbation of a symplectic
map, Experiment. Math., 5 (1996), pp. 211–230.

[Tru00] M. R. Trummer, Spectral methods in computing invariant tori, in Auckland Numerical Ordi-
nary Differential Equations (Auckland, 1998), Appl. Numer. Math., 34 (2–3) (2000), pp.
275–292.

[WR87] R. L. Warnock and R. D. Ruth, Invariant tori through direct solution of the Hamilton-Jacobi
equation, Phys. D, 26 (1987), pp. 1–36.

[WY01] Q. Wang and L.-S. Young, Strange attractors with one direction of instability, Comm. Math.
Phys., 218 (2001), pp. 1–97.

[WY02] Q. Wang and L.-S. Young, From invariant curves to strange attractors, Comm. Math. Phys.,
225 (2002), pp. 275–304.



SIAM J. APPLIED DYNAMICAL SYSTEMS c© 2007 Society for Industrial and Applied Mathematics
Vol. 6, No. 1, pp. 208–235

Some Canonical Bifurcations in the Swift–Hohenberg Equation∗

L. A. Peletier† and J. F. Williams‡

Abstract. We study the nature and stability of stationary solutions u(x) of the fourth order Swift–Hohenberg
equation on a bounded domain (0, L) with boundary conditions u = 0 and u′′ = 0 at x = 0 and
x = L. It is well known that as L increases, the set of stationary solutions becomes increasingly
complex. Numerical studies have exhibited two interesting types of structures in the bifurcation
diagram for (L, u). In this paper we demonstrate through a center manifold analysis how these
structures arise naturally near certain bifurcation points, and that there are no others. We also
analyze their stability properties.
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1. Introduction. In this paper we consider solutions of the Swift–Hohenberg equation

∂u

∂t
= α u −

(
1 +

∂2

∂x2

)2

u − u3, α ∈ R,(1.1)

on the cylindrical domain Q = (0, L) × R+ subject to the boundary conditions

u = 0 and
∂2u

∂x2
= 0 at x = 0, L.(1.2)

It is well known (see [1], [2], and [18, Chapter 9]) that (1.1) has an increasing number of
stationary solutions which satisfy the boundary conditions (1.2) as the length L of the domain
increases. The objective of this paper is to study the set of stationary solutions as it depends
on α and L. In particular, we focus on understanding certain complex but recurrent structures
in the bifurcation diagram, which were first observed in numerical studies.

In studies of pattern formation, the Swift–Hohenberg equation plays a central role. Pro-
posed in 1977 by Swift and Hohenberg [21] in connection with Rayleigh–Bénard convection,
it has since featured in a variety of problems, such as Taylor–Couette flow [14], [19] and the
study of lasers [15]. For further references we mention the surveys given in [8] and [9] and the
recent review [3].
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We view the Swift–Hohenberg equation as a model equation for a large class of higher
order parabolic model equations arising in a wide range of applications, such as the extended
Fisher–Kolmogorov equation in statistical mechanics [10], [22], and a sixth order equation
introduced by Caginalp and Fife in phase field models [4], [11]. Many of the phenomena
observed here for the Swift–Hohenberg equation are found in the dynamics of such equations
as well [2], [5], [6], [7] and [18].

The Swift–Hohenberg equation is interesting from the point of view of pattern formation,
because of its many qualitatively different stable equilibrium solutions. This raises the ques-
tion, which of these equilibrium solutions will be selected as time tends to infinity, and how
this selection depends on the parameters α and L involved in the problem.

We study the Cauchy–Dirichlet problem for the Swift–Hohenberg equation on the cylinder
Q = (0, L) × R+ with boundary conditions (1.2). Thus, writing (1.1) in a more conventional
form, we consider the problem

⎧
⎪⎨

⎪⎩

ut = −uxxxx − 2uxx − (1 − α)u − f(u) for 0 < x < L, t > 0,

u = 0 and uxx = 0 at x = 0, L, t > 0,

u(x, 0) = u0(x) for 0 < x < L,

(1.3)

where we consider nonlinearities f(u) which are either stabilizing or destabilizing. We shall
assume that f is a smooth function, and that f(s) = o(s) as s → 0. As typical examples of
such functions we choose

f(s) = s3 (stabilizing) or f(s) = −s3 + s5 (destabilizing).(1.4)

The boundary conditions have been chosen so that solutions can be extended as periodic
functions on R. The initial function u0 is a smooth function that vanishes at x = 0 and
x = L. In most of this article we will assume that u0 is symmetric with respect to the center
of the domain; i.e.,

u0(L − x) = u0(x) for 0 < x < L.(1.5)

Note that this assumption implies that the solution remains symmetric for all t. It is motivated
by the fact that it increases the set of lengths L for which the trivial solution is globally stable
[16], [17].

Problem (1.3) is a gradient system with corresponding Lyapunov functional

J(u; L) =
1

L

∫ L

0

{
1

2
(u′′)2 − (u′)2 +

1 − α

2
u2 + F (u)

}
dx,(1.6)

where F ′(s) = f(s) and F (0) = 0. This means (cf. [13]) that if the stationary solutions of
problem (1.3) are isolated, then u(x, t) tends to one of these solutions as t → ∞. In other
words, for every x ∈ (0, L),

u(x, t) → v(x) as t → ∞,(1.7)



210 L. A. PELETIER AND J. F. WILLIAMS

where v(x) is a solution of the two-point boundary value problem

{
viv + 2v′′ + (1 − α)v + f(v) = 0 for 0 < x < L,

v = 0 and v′′ = 0 at x = 0, L.
(1.8)

For the stabilizing case it is known that if α ≤ 0, then problem (1.3) has the trivial solution
only (cf. Chapter 9 of [18]), and hence, for every x ∈ (0, L),

u(x, t) → 0 as t → ∞.

For both cases the situation is much more complex when α > 0, and, depending on the
value of α and L, there may be very many stationary profiles to choose from. In this article
we make a start with answering the question of which of these profiles is chosen.

In [16], [17] a series of numerical simulations was carried out on the Swift–Hohenberg
equation in order to gain insight into the different types of limiting behaviors and the effect of
the parameters α and L on the final profile that is selected. One of the striking observations
was that for values of α smaller than, say, 1

4 , critical lengths L1 and L2 could be identified such

that the solution converged to one type of limit for L1 = π/
√

1 +
√

α < L < L2 = π/
√

1 −√
α

and to another when 3L1 < L < 3L2, provided that the intervals [L1, L2], [3L1, 3L2], and
[5L1, 5L2] are disjunct. In between, for L ∈ [L2, 3L1] and for L ∈ [3L2, 5L1] the trivial
solution proved globally stable.

When the above intervals overlapped, the simulations were not very revealing. This moti-
vated us to carry out a numerical study of solution branches of the stationary problem (1.8).
In Figure 1 we present a result of such a study for α = 0.65. It reveals interesting qualitatively
new structures in the intersections of the intervals, which are quite robust under changes of α.
We see that loop-type branches bifurcate from the trivial solution at L = nL1 and L = nL2,
n = 1, 3, 5, . . . . But in addition we see the following:

(A) comparable—nontrivial—structures in the intersection of the intervals [L1, L2] and
[3L1, 3L2], and in the intersection of the intervals [3L1, 3L2] and [9L1, 9L2],

(B) pairs of branches which connect the loop-type branch bifurcating from 5L1 to the ones
from 3L1 and from 7L1.

A dynamic exploration of this behavior is presented in the movie linked from Figure 2, which
traces out the stable behavior of (1.1)–(1.2) for evolving L.

In this paper we analyze these structures by means of a center manifold analysis carried
out when, for instance, 3L1 ≈ L2 and the intervals [L1, L2] and [3L1, 3L2] slightly overlap.

We shall show that when nL1 ≈ mL2 and the intervals (mL1, mL2) and (nL1, nL2) slightly
overlap for certain odd integers m and n, then two types of structures may be distinguished,

(i) when n = 3m we obtain the structure shown in Figure 3(left), and
(ii) when n �= 3m we obtain the structure shown in Figure 3(right),

and these are the only two possible structures. In addition, only if m = 1 and n = 3 is the
dimension of the unstable manifold Xu equal to zero. In all other cases it is positive.

The plan of the paper is the following. First, in section 2, we recall some results about the
stability properties of the linearized Swift–Hohenberg equation. Then, in section 3, we discuss
stationary solutions in the limit as α → 0. In section 4, we turn to the first characteristic



BIFURCATIONS IN THE SWIFT–HOHENBERG EQUATION 211

0 4 8 12 16 20 24
0

0.1

0.2

0.3

0.4

L

||u
|| 22

6.8 6.9 7.0 7.1
0

0.005

0.01

0.015

0.02

0.025

L

||u
|| 22

20.4 20.6 20.8 21.0 21.2 21.4 21.6
0

0.005

0.01

0.015

0.02

0.025

L

||u
|| 22

Figure 1. Global bifurcation diagram when α = 0.65.

solution set when 3L1 ≈ L2, and in section 5, we generalize the analysis to the situation when
nL1 ≈ mL2. In section 6, we compute the Lyapunov functions for the solutions found in
sections 4 and 5 and examine which of the solutions is the global minimizer, given a value
of L. Finally, in section 7, we apply the techniques used in the previous sections to the
Swift–Hohenberg equation with the destabilizing quintic nonlinearity: f(s) = −s3 + s5.

2. The linearized Swift–Hohenberg equation. In this section we recall some properties
of the linear problem associated with problem (1.3):

⎧
⎪⎨

⎪⎩

ut = −uxxxx − 2uxx − (1 − α)u for 0 < x < L, t > 0,

u = 0 and uxx = 0 at x = 0, L, t > 0,

u(x, 0) = u0(x) for 0 < x < L.

(2.1)

The stability of the zero solution to (2.1) is determined by examining the ansatz u(x, t) =
ϕ(x)e−λt. This leads to the eigenvalue problem

{
ϕ(iv) + 2ϕ′′ + (1 − α)ϕ = λϕ for 0 < x < L,

ϕ = 0 and ϕ′′ = 0 at x = 0, L.
(2.2)

The eigenvalues λn and the eigenfunctions ϕn are given by

λn = λn(L) = P
(nπ

L

)
and ϕn(x) =

√
2 sin

(nπx

L

)
,(2.3)
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Figure 2. Animation of a PDE simulation with time-dependent length L = 2 + 0.01t and α = 0.65. Top:
The solid line is the bifurcation diagram from Figure 1; the dotted line is sampled from the PDE computation.
Bottom: The solution corresponding to the × above. Clicking on the above image displays the accompanying
animation (64723 01.mpg [1.81MB]).
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Figure 3. Detail of bifurcation diagrams when [L1, L2] and [3L1, 3L2] overlap and α = 0.75 (left), and
when [3L1, 3L2] and [5L1, 5L2] overlap and α = 0.32 (right).

where P (ξ) is the symbol of the operator on the left-hand side of (2.2),

P (ξ) = (ξ2 − 1)2 − α,

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/64723_01.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/64723_01.mpg
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Figure 4. L2-norms of stable solutions as a function of L. In the left figure α = 1/4, while in the right
α = 5/8. Notice that as α increases further, the two solution branches come together at the base line. They
meet when α = α∗

1 = 16/25.

and the eigenfunctions have been normalized so that

(ϕm, ϕn)
def
=

1

L

∫ L

0
ϕm(x)ϕn(x) dx = 1 if m = n.

What is interesting about this equation is that, given α ∈ (0, 1) small enough, there
are domain lengths for which the zero solution is stable and others for which it is not. Let
α ∈ (0, 1). Then P (ξ) has two zeros ξ± (0 < ξ− < ξ+), so that P < 0 on (ξ−, ξ+) and P > 0
on (0, ξ−) ∪ (ξ+,∞). This implies that

λn(L) < 0 when L ∈ (nL1, nL2),

where L1 = π/ξ+ and L2 = π/ξ−; i.e.,

L1 =
π

√
1 +

√
α

and L2 =
π

√
1 −√

α
.

This phenomenon is exhibited in Figure 4. Here we have solved the Cauchy–Dirichlet
problem (1.3) numerically for α = 1/4 and α = 5/8 and randomly chosen initial data. The
L2-norm of the limiting solution v(x) is plotted against the domain length, clearly showing
regions when the zero solution is or is not stable. Details of the numerical simulations are
discussed in Appendix B.

In order to analyze the solution branches on the (L, u)-plane, we vary α so that two critical
domain lengths coalesce:

Case I: L2 − L1 ↘ 0 and Case II: 3L1 − L2 ↘ 0.
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The first case arises when α → 0. Here we will formally construct the solutions in this limit
to describe the branch of solutions connecting L1 and L2 as depicted in Figure 4.

The second case arises when

α ↘ α∗
1

def
=

16

25
and L∗

1 = 3L1(α
∗
1) = L2(α

∗
1) = π

√
5.

In [16], [17] the local shape near L = L1 and L = L2 of this diagram was determined.
Specifically, the following results were established.

Theorem 2.1. Let α > 0. There exists a unique branch in the (L, u)-plane of nontrivial
solutions of problem (1.3), which emanates from the trivial solution at L1. Its local behavior
is given by

‖u‖2 ∼ 8

3π

√
α(1 +

√
α)3/2(L − L1) as L ↘ L1.

Theorem 2.2. Let 0 < α < 1. There exists a unique branch in the (L, u)-plane of nontrivial
solutions of problem (1.3), which emanates from the trivial solution at L2. Its local behavior
is given by

‖u‖2 ∼ 8

3π

√
α(1 −√

α)3/2(L2 − L) as L ↗ L2.

Here ‖u‖2 = (1/L)
∫ L
0 u2(x) dx.

It is our present interest to understand the full time-dependent problem near those values
of α and L where these bifurcation points approximately coalesce.

We have the following center manifold theorem.
Theorem 2.3. Suppose that α = α∗

1 and so 3L1 = L2. Then if L = 3L1,
(a) problem (1.3) has a two-dimensional center manifold Xc about the trivial solution

which is spanned by ϕ1 and ϕ3;
(b) the dimension of the unstable manifold about the zero solution, Xu, is zero.
Proof. If we extend problem (1.3) to include αt = 0, and linearize about u(x, t) = 0 and

α = α∗
1, we obtain the system

⎧
⎪⎨

⎪⎩

ut = −uxxxx − 2uxx − (1 − α)u for 0 < x < L, t > 0,

u = 0 and uxx = 0 at x = 0, L, t > 0,

αt = 0 for t > 0.

(2.4)

The eigenfunctions and eigenvalues of problem (2.4) are given by (2.3). Since α has been
chosen such that 3L1 = L2 and L = 3L1, it follows that

λ1(L) = 0 and λ3(L) = 0.

A simple calculation shows that

λn =

((
n√
5

)2

− 1

)2

− 16

25
=

n2

5

(
n2

25
− 2

)
+

9

25
> 0 for n = 5, 7, . . .

so that all the eigenvalues, starting from λ5, are positive. Therefore, (i) there exists a two-
dimensional center manifold for this value α = α∗

1 which is spanned by ϕ1 and ϕ3, and (ii) the
unstable manifold has dimension zero.

By smoothness this manifold persists for small changes in α and L [20].
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3. Stationary solutions in the limit as α → 0+. In this section we construct asymptotic
expressions for nontrivial stationary solutions of problem (1.3) in the limit as α → 0+ when the
nonlinearity is cubic, i.e., when it is given by f(s) = s3. Thus, we seek to describe nontrivial
solutions of the problem

{
viv + 2v′′ + (1 − α)v + v3 = 0 for 0 < x < L,

v = 0 and v′′ = 0 at x = 0, L.
(3.1)

We choose L ∈ (nL1, nL2), where n is an arbitrary positive integer, so that a nontrivial solution
is known to exist, and we choose α so small that the intervals [nL1, nL2] and [(n + 2)L1,
(n + 2)L2] are disjoint. This is the case when α < α∗

n, where

α∗
n =

4(n + 1)2

(n2 + 2n + 2)2
.

It will be convenient to rescale the spatial variable so that the domain (0, L) maps onto the
fixed domain (0, 1). Thus, we set

y = Lx and w(y) = v(x).

We then find that problem (3.1) becomes
{

wiv + 2L2w′′ + L4
(
(1 − α)w + w3

)
= 0 for 0 < x < 1,

v = 0, v′′ = 0 at x = 0, 1.
(3.2)

We are interested in the situation that α → 0+. The existence of branches bifurcating from
L1 and L2 is established in Theorems 2.1 and 2.2. These local results show that as L → L+

1

and L → L−
2 the solution scales like

√
α. We therefore seek an expansion of w(y) in a series

of the form

w(y) ∼ α1/2w1(y) + αw2(y) + α3/2w3(y) + α2w4(y) + · · · .(3.3)

We introduce a scaling factor δ ∈ [0, 1], write

L = nπL1 + nπδ(L2 − L1) = nπ{L1 + δLgap}, 0 ≤ δ ≤ 1,

and expand L in the limit as α → 0+. A simple computation shows that

L1(α) =
π

√
1 +

√
α

= π

(
1 − 1

2
α1/2 +

3

8
α − 5

16
α3/2 + · · ·

)

and

L2(α) =
π

√
1 −√

α
= π

(
1 +

1

2
α1/2 +

3

8
α +

5

16
α3/2 + · · ·

)
,

so that

Lgap(α)
def
= L2(α) − L1(α) ∼ π

(
α1/2 +

5

8
α3/2 + · · ·

)
as α → 0+.
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Therefore as α → 0+ we have

L(α) = nπ

{
1 +

1

2
(2δ − 1)α1/2 +

3

8
α +

5

16
(2δ − 1)α3/2 + · · ·

}
.(3.4)

We now expand (3.2), using (3.3) and (3.4), in terms of powers of α1/2, and equate the
coefficients of α1/2, α, α3/2, and α2 equal to zero. We then obtain the equations

O(α1/2) : L1w1 = 0,

O(α) : L1w2 + L2w1 = 0,

O(α3/2) : L1w3 + L2w2 + L3(w1) + n4π4w3
1 = 0,

O(α2) : L1w4 + L2w3 + L3w2 + L4w1 + n4π4{3w2
1w2 + 2(2δ − 1)w3

1} = 0,

where

L1z
def
= ziv + 2n2π2z′′ + n4π4z,

L2z
def
= 2n2π2(2δ − 1)(z′′ + n2π2z),

L3z
def
= 2n2π2{1 − δ(1 − δ)}z′′ + n4π4{2 − 6δ(1 − δ)}z,

L4z
def
= 2n2π2(2δ − 1)

(
z′′ + n2π2{2 − δ(1 − δ)}z) .

The functions wj(y), j = 1, 2, 3, 4, . . . , all need to satisfy the boundary conditions of problem
(3.2):

wj(y) = 0 and w′′
j (y) = 0 at y = 0, 1.

This means that

w1(y) = γ1 sin(nπy),

where γ1 still needs to be determined. Since L2w1 = 0, the equation for w2 reduces to
L1w2 = 0, so that

w2(y) = γ2 sin(nπy)

as well, and γ2 must also be determined. To fix γ1 we enforce the solvability condition for the
equation for w3:

(w1,L1w3) = −(w1,L2w2 + L3w1 + n4π4w3
1) = 0,

where (·, ·) is the standard inner product in L2(0, 1). Since L2 is self-adjoint and L2w1 = 0,
this condition reduces to

(w1,L3w1 + n4π4w3
1) = 0,

which yields

γ1(δ) =
4√
3

√
δ(1 − δ) with δ ∈ [0, 1].(3.5)
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Figure 5. Comparison of the numerical and asymptotic structures of the branches for α = 10−3, 10−2 on
the left and α = 5 · 10−2 and 10−1 on the right.

To determine γ2 we use the solvability condition for the problem for the w4 term in the
expansion. This yields the condition

(w1,L3w2 + L4w1 + n4π4{3w2
1w2 + 2(2δ − 1)w3

1}) = 0,

from which we derive γ2. The first two terms of the expansion are thus found to be

w(y; δ) =
√

δ(1 − δ)

(
4√
3

√
α + α

√
3 (1 − 2δ)

)
sin(nπy) + · · · .(3.6)

A comparison of the branch predicted by this formula with numerical computations is shown
in Figure 5.

The stability of the solutions on this branch is easily computed by setting

u(x, t) � c(t)
√

αv1(x) + · · · , v1(x) = γ1 sin
(nπx

L

)
.

Clearly one asymptotic solution of the full time-dependent PDE is c(t) = γ1. Projecting this
solution onto the local center manifold Xc = span{sin(nπx/L)} and expanding to leading
order in α leads to

ċ = −1

8
c
{
3c2 − 16δ(1 − δ)

}
.(3.7)

Linearizing this equation about c(t) = γ1 + d(t) for small d yields

ḋ = −4δ(1 − δ)d,

from which we conclude that this solution is stable for admissible δ. This comes as no surprise,
as it is precisely in this interval that the zero solution is unstable.

The construction described above involves an interval (nL1, nL2), which is disjunct from
((n+2)L1, (n+2)L2). In sections 4 and 5 we consider what happens when these two intervals
overlap, albeit slightly, and we investigate the dynamics on a two-dimensional center manifold.
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4. Stationary solutions in the limit as α → α∗
1. In this section we focus on the situation

when the branch which connects the branchpoints at L1 and L2 overlaps with the branch
which connects 3L1 and 3L2. As we saw in the introduction, this will be the case when
α > α∗

1. Numerical studies suggest that the set of stationary solutions then can become quite
complex. In this section we analyze this set when the bifurcation points at L2 and 3L1 are
close together, i.e., when α = α∗

1 + ε and ε is positive and small.
As we have seen in Theorem 2.3, when α = α∗

1 then problem (1.7) has a two-dimensional
center manifold Xc about the trivial solution

Xc = span {ϕ1, ϕ3} = {sin (xπ/L) , sin (3xπ/L)} .

In our analysis we shall fix α close to α∗
1 and use L as a bifurcation parameter taking values

close to L∗
1 = L2(α

∗
1).

To determine the dynamics on the space Xc we write

u(x, t) = a(t)ϕ1(x) + b(t)ϕ3(x)

and project the differential equation onto Xc:

1

L

∫ L

0
{ut + uxxxx + 2uxx + (1 − α)u + u3}ϕ1 dx = 0,

1

L

∫ L

0
{ut + uxxxx + 2uxx + (1 − α)u + u3}ϕ3 dx = 0.

This yields a pair of differential equations for a(t) and b(t):
⎧
⎪⎪⎨

⎪⎪⎩

ȧ = −P
(π

L

)
a − 3

2
a3 +

3

2
a2b − 3ab2,

ḃ = −P

(
3π

L

)
b +

1

2
a3 − 3a2b − 3

2
b3,

(4.1)

where dots denote differentiation with respect to t.
Because the original equation is a gradient system, the reduced system is one as well. The

corresponding Lyapunov functional (the projection of (1.6) onto Xc) is given by

V (a, b) =
1

2
P
(π

L

)
a2 +

1

2
P

(
3π

L

)
b2 +

3

8
a4 − 1

2
a3b +

3

2
a2b2 +

3

8
b4.(4.2)

Plainly,

ȧ = −Va(a, b) and ḃ = −Vb(a, b),

where subscripts denote partial differentiation, and

dV

dt
= Va ȧ + Vb ḃ = −(V 2

a + V 2
b ) ≤ 0.

Thus, the function V (a, b) decreases along orbits.
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We will consider the structure and stability of the set of stationary solutions of the system
(4.1). They are defined by the pair of equations

Va(a, b) = 0 and Vb(a, b) = 0.

This solution set contains at least three distinct branches: (i) the trivial state, (ii) a branch
bifurcating from the bifurcation point at 3L1, and (iii) a branch emanating from L2. The
existence of these branches was established in [17], but there the structure was only described
in the limit as ‖u‖ → 0. However, because of the center manifold structure near L∗

1 = 3L1 = L2

at α∗
1, we see that these branches persist under small changes in α and L near the first

bifurcation point (u, L) = (0, L∗
1). It is their local structure and stability that we now wish to

investigate.
We fix

α = α∗
1 + ε, ε > 0.

Then 3L1 < L2 and we write L, which serves as a bifurcation parameter, as

L = 3L1 + δLgap, where Lgap = L2 − 3L1, δ ∈ R.

Note that Lgap > 0 since 3L1 < L2 in this range of α. The parameter δ positions the length
L with respect to the interval (3L1, L2) so that δ = 0 corresponds with 3L1, and δ = 1
corresponds with L2. In what follows we shall describe the set of stationary solutions of (4.1)
in the (δ, u)-space, where u = (a, b), and discuss their stability properties.

Plainly, Lgap(ε) → 0 as ε → 0. To obtain a more precise estimate, we expand 3L1 and L2

in powers of ε. This yields

3L1 =
3π

√
1 +

√
α∗

1 + ε
= π

√
5

{
1 − 25

144
ε + O(ε2)

}
as ε → 0,

and

L2 =
π

√
1 −√

α∗
1 + ε

= π
√

5

{
1 +

25

16
ε + O(ε2)

}
as ε → 0.

Therefore

Lgap(ε) =
125

72
π
√

5 ε + O(ε2) as ε → 0.

Based on the natural balance of terms in (4.1) we rescale the variables according to

(a, b) �→ √
ε(a, b), t �→ 1

ε
t.(4.3)

Using this rescaling and expanding (4.1) to O(ε), we obtain the leading order problem
⎧
⎪⎪⎨

⎪⎪⎩

ȧ = g1(a, b)
def
= a

{
10

9
(1 − δ) − 3

2
a2 +

3

2
ab − 3b2

}
,

ḃ = g2(a, b)
def
= 10δb +

1

2
a3 − 3a2b − 3

2
b3.

(4.4)

Any solution of the system (4.4) recovers a solution to (4.1) to O(ε2).
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4.1. Stationary solutions. The stationary solutions of the system (4.4) are the points
where the null clines Γ1 and Γ2, defined by

Γi = {(a, b) : gi(a, b) = 0} for i = 1, 2,(4.5)

intersect. Plainly, Γ1 consists of two components:

Γ
(1)
1 = {(a, b) : a = 0} and Γ

(2)
1 =

{
(a, b) :

3

2
a2 − 3

2
ab + 3b2 =

10

9
(1 − δ)

}
,

and

Γ2 =

{
(a, b) :

1

2
a3 − 3a2b − 3

2
b3 + 10δb = 0

}
.

Note that both Γ1 and Γ2 are invariant under the transformation (a, b) → (−a,−b); i.e., they
are symmetric with respect to the origin. In what follows we shall at times discuss only the
null clines in the first and the second quadrant, since the structure there will be duplicated
in the third and the fourth quadrant.

We immediately see that the intersection of Γ
(1)
1 and Γ2 consists of two points in the

(a, b)-plane:

O = (0, 0) for δ ∈ R and P =

(

0,

√
20δ

3

)

for δ ≥ 0.(4.6)

The first point yields the branch of trivial solutions, and the second point yields the branch of
stationary solutions of the system (4.4) which emanates from 3L1, as described in [16] and [17].
It undergoes no bifurcation as α increases through α∗

1.
It is the third branch, the one which emanates from L2, for which a is not identically zero,

and which corresponds to the points of intersection of Γ
(2)
1 and Γ2, that we now concentrate

on. We see that for any δ < 1 the null cline Γ
(2)
1 is an ellipse in the (a, b)-plane around the

origin, and that Γ2 defines a continuous curve connecting (0, 0) to the point at infinity. Thus,
for any δ < 1 there is always at least one stationary solution of the system (4.4). In Figure 6
we show the null clines Γ1 and Γ2 for δ = 0.025 (left), δ = 0.1 (middle), and δ = 0.2 (right).

The graphs of Γ
(2)
1 and Γ2 suggest that there are three critical values of δ: δ1 < δ2 < δ3 in

the interval (0, 1) such that

• if 0 < δ < δ1, then Γ
(2)
1 ∩ Γ2 consists of one point in the first quadrant, which we

denote by A(δ), and one point, −A(δ), in the third quadrant.
When δ increases and passes through δ1, two additional points of intersection appear in the
second quadrant, and two appear in the fourth quadrant:

• if δ1 < δ < δ2, then Γ
(2)
1 ∩ Γ2 consists of two points in the second quadrant, which we

denote by B(δ) and C(δ), and one point, A(δ), in the first quadrant. Symmetrically
located with respect to the origin, there are points −A(δ), −B(δ), and −C(δ) in the
lower half-plane.

When δ increases, B(δ) moves to the b-axis and crosses it at δ2, so that
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Figure 6. Plots of Γ
(1)
1 and Γ

(2)
1 (dashed) and Γ2 (solid) for δ = 0.025, δ = 0.1, and δ = 0.2.

• if δ2 < δ < δ3, then Γ
(2)
1 ∩ Γ2 consists of the origin, one point C(δ) in the second

quadrant, and two points, A(δ) and B(δ), in the first quadrant. Symmetrically located
with respect to the origin, there are points −A(δ), −B(δ), and −C(δ) in the lower
half-plane.

When δ = δ3, the points A(δ) and B(δ) coalesce to a point in the first quadrant and subse-
quently disappear, so that

• if δ3 < δ < 1, then Γ
(2)
1 ∩ Γ2 consists of one point, C(δ), in the second quadrant and

one point, −C(δ), in the fourth quadrant.
Remark. The points B(δ) and C(δ) move together as δ → δ+

1 , and the points B(δ) and
A(δ) move together as δ → δ−2 .

In Appendix A we prove all these statements. There we find that

δ1 = 0.050785 . . . , δ2 = 0.052631 . . . , and δ3 = 0.15191 . . . .

4.2. Stability. The stability of the stationary solutions obtained above can easily be es-
tablished by means of an analysis of the vector field of the system (4.4).

As a first observation, we note that Γ
(1)
1 = {(a, b) : a = 0} is an invariant set. This set

contains three stationary points: the points P and −P as well as the origin O. Within this
set, the origin is a repellor and the points ±P are both attractors. Thus, the origin is always
unstable.

To discuss the nontrivial stationary solutions, we consider the four ranges of δ-values:
(0, δ1), (δ1, δ2), (δ2, δ3), and (δ3, 1) in succession. Graphs of orbits in the ranges (0, δ1), (δ2, δ3),
and (δ3, 1) are shown in Figure 7.
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Figure 7. Connecting orbits in the phase plane when δ = 0.025 ∈ (0, δ1), δ = 0.1 ∈ (δ2, δ3), and δ = 0.2 ∈
(δ3, 1).

The range 0 < δ < δ1. We have four nontrivial stationary points: ±P and ±A. By
symmetry the characters of ±P and ±A are the same:

– Both P and −P are saddles: their stable manifold is Γ
(1)
1 , and their unstable manifold

is perpendicular to the b-axis. Therefore, both P and −P are unstable.
– The points A and −A are both stable nodes.

The range δ1 < δ < δ2. We have four nontrivial stationary points, P , A, B, and C in the
upper half-plane, and their symmetric images −P , −A, −B, and −C in the lower half-plane.

– The points ±A and ±B are stable nodes.
– The points ±P and ±C are saddles and hence unstable.

The range δ2 < δ < δ3. We have nontrivial stationary points, P , A, B, and C in the upper
half-plane and their symmetric images −P , −A, −B, and −C in the lower half-plane.

– The points ±P and ±A and their symmetric images are stable nodes.
– The points B and C and their symmetric images are saddles and hence unstable.

The range δ3 < δ < 1. We have four nontrivial stationary points: ±P and ±C.

– The points ±P are stable nodes.
– The points ±C are saddles.

When we translate these results to the solution branches in the (L, u)-plane, we obtain
the following description:

• The branch emanating from the point (3L1, 0) starts at δ = 0 and corresponds to the point
P in the phase plane.

– For 0 < δ < δ2 the branch is unstable.
– For δ2 < δ < 1 it is stable.

• The branch emanating from the point (L2, 0) starts at δ = 1 and corresponds successively
to the points C, B, and A in the phase plane.
• For δ1 < δ < 1 the branch corresponds to C, and it is unstable. At δ1 the branch bends
back and passes through a saddle-node bifurcation (note that the local maximum near a = 0
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Figure 8. Stability of solution branches.

of Γ2 occurs for a < 0). This part of the branch corresponds to the point B and is stable for
δ1 < δ < δ2, i.e., until it intersects with the branch which emanates from (3L1, 0). Continuing
beyond δ2, it becomes unstable, until at δ3 it bends back again through a saddle-node bifurcation.
Then, for 0 < δ < δ3 the branch corresponds to the point A, and it is stable again.

The stability properties of the different pieces of the branches are indicated in Figure 8.

5. Further bifurcation points. In this section we study structures of bifurcation curves in
the (L, u)-plane when higher order bifurcation points (nearly) coincide, i.e., when there exists
an α∗ ∈ (0, 1) and positive integers m and n such that

nL1(α
∗) = mL2(α

∗).(5.1)

Since L1 < L2 it follows that m < n. Throughout we consider only odd integers. It is readily
verified that (5.1) occurs when

α∗ = α∗
m,n

def
=

(
n2 − m2

n2 + m2

)2

.(5.2)

As a first observation we note that when n = 3m, (5.1) becomes 3L1(α
∗) = L2(α

∗), so
that α∗ = α∗

1, and we return to the structure described in section 4. In Figure 9, in which
5L1 ≈ 3L2, we see a different type of structure. This type of connecting branch will be the
main focus in this section.

Let us generalize the center manifold theorem, Theorem 2.3, from section 2 to this situa-
tion.

Theorem 5.1. Suppose that (5.1) holds for some α∗ ∈ (0, 1) and for odd integers m and n.
Then, if L = nL∗

1, the following hold:
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Figure 9. Global bifurcation diagram when α = 0.24 and 5L1 ≈ 3L2.

(a) There exists a two-dimensional center manifold Xc spanned by the eigenfunctions ϕm

and ϕn.
(b) If n = m + 2� for � ≥ 1, then the dimension of the unstable manifold Xu is equal to

� − 1.
Proof. Since we have chosen L such that L = nL1(α

∗) = mL2(α
∗), it follows that

λm(L) = 0 and λn(L) = 0.

Remembering that λk(L) = P (kπ/L), we therefore have

P (ξ) = 0 for ξ = ξm and ξ = ξn, where ξk =
kπ

L
.

Given the properties of the function P (ξ), we see immediately that

P (ξ) > 0 for ξ ∈ (0, ξm) ∪ (ξn,∞)

and

P (ξ) < 0 for ξ ∈ (ξm, ξn).

Since ξn = ξm + (2lπ/L), this implies that

λk(L) = P (ξk) < 0 for k = 1, 2, . . . , � − 1,

so that the dimension of the unstable manifold is equal to � − 1.
Remark. We note that the dimension of Xu is positive, precisely when there is a bifurcation

point inside an interval (nL1, nL2). Thus while we can construct the local bifurcation diagram
for any bifurcation point, only those which occur at α∗

1 are related to stable dynamics.
We now extend the calculations of section 3 to the general case. Projecting the Swift–

Hohenberg equation onto the space Xc = span{ϕm, ϕn} and writing

u(x, t) = a(t)ϕm(x) + b(t)ϕn(x),
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we obtain the system

⎧
⎪⎨

⎪⎩

ȧ = −P
(mπ

L

)
a − 3

2
a3 − 3ab2 +

3

2
a2b(ϕ3m, ϕn),

ḃ = −P
(nπ

L

)
b − 3a2b − 3

2
b3 +

1

2
a3(ϕ3m, ϕn),

(5.3)

where we have used the fact that

(ϕ3
m, ϕn) = −1

2
(ϕ3m, ϕn) and (ϕ2

m, ϕ2
n) = 1.

We note that when 3m = n we retrieve the system (4.1) in section 4, and we obtain the
same structure, albeit scaled by a factor m.

If 3m �= n, the inner products in (5.3) vanish and we obtain the new system

⎧
⎪⎨

⎪⎩

ȧ = −P
(mπ

L

)
a − 3

2
a3 − 3ab2,

ḃ = −P
(nπ

L

)
b − 3a2b − 3

2
b3.

(5.4)

Next, we increase α by ε; i.e., we set α = α∗
m,n + ε (ε > 0). Then the bifurcation points

nL1(α) and mL2(α) move apart. As in section 4, we write

L = L∗
m,n + δLgap,

where now

L∗
m,n = nL1(α

∗) = π

√
m2 + n2

2
and Lgap =

π

8
√

2

(n2 + m2)7/2

n2m2(n2 − m2)
ε + O(ε2),

and

L = L∗
m,n + δLgap = L∗

m,n

{
1 +

ε

8

(n2 + m2)2

n2(n2 − m2)

(
m2 + n2

m2
δ − 1

)
+ O(ε2)

}
.

Rescaling the variables as in (4.3) and expanding P
(

mπ
L

)
and P

(
nπ
L

)
into powers of ε as

before then leads to the system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ȧ = a

{
n2 + m2

n2
(1 − δ) − 3

2
a2 − 3b2

}
,

ḃ = b

{
n2 + m2

m2
δ − 3a2 − 3

2
b2

}
.

(5.5)

5.1. Stationary solutions. The null clines of the system (5.3) are two ellipses, as well as
the two axes:

Γ1 = Γ
(1)
1 ∪ Γ

(2)
1 , Γ2 = Γ

(1)
2 ∪ Γ

(2)
2 ,
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Figure 10. Plots of Γ
(2)
1 and Γ

(2)
2 for δ = 0.04, δ = 0.1, and δ = 0.2.

where

Γ
(1)
1 = {(a, b) : a = 0} and Γ

(2)
1 =

{
(a, b) : a2 + 2b2 =

2

3

n2 + m2

n2
(1 − δ)

}

and

Γ
(1)
2 = {(a, b) : b = 0} and Γ

(2)
2 =

{
(a, b) : 2a2 + b2 =

2

3

n2 + m2

m2
δ

}
.

They are shown in Figure 10.
We see that for all δ ∈ (0, 1) the set Γ1 ∩ Γ2 contains the origin as well as the points P

and −P and Q and −Q, where

P (δ) =

(

0,

√
2(n2 + m2)

3m2
δ

)

and Q(δ) =

(√
2(n2 + m2)

3n2
(1 − δ), 0

)

.

The points ±P correspond to the branch which bifurcates at nL1, and the points ±Q corre-
spond to the branch which bifurcates at mL2. These solutions are the only ones for 0 < δ < δ1

and for δ2 < δ < 1, where

δ1 =
m2

m2 + 2n2
and δ2 =

2m2

2m2 + n2
.

At δ1 and δ2 branches of solutions bifurcate from ±P and ±Q, and for δ1 < δ < δ2 we
have four additional solutions. We denote them by ±A and ±B, where

A(δ) = K
(√

(m2 + 2n2)δ − m2,
√

2m2 − (2m2 + n2)δ
)

,
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Figure 11. Comparison of the asymptotic and numerical bifurcation diagrams. Dashed lines are asymptotic
solutions, solid are numerical. Left: m = 3 and n = 5. Right: m = 5 and n = 7.

where K = (1/(3mn))
√

2(m2 + n2) and

B(δ) = K
(
−
√

(m2 + 2n2)δ − m2,
√

2m2 − (2m2 + n2)δ
)

.

5.2. Stability. A stability analysis of these solutions such as presented in section 4 shows
the following:
If 0 < δ < δ1, then

– P and −P are saddles and hence unstable.
– Q and −Q are stable nodes.

If δ1 < δ < δ2, then
– P and −P and Q and −Q are all stable nodes.
– A and −A and B and −B are saddles and unstable.

If δ2 < δ < 1, then
– P and −P are stable nodes.
– Q and −Q are saddles and unstable.

Let us finally translate these results to the bifurcation picture in the (L, ‖u‖2)-diagram.
For convenience we denote the branch which bifurcates at nL1 by C1 and the branch which
bifurcates at mL2 by C2.

• The branch C1 corresponds to the point P ; it is unstable for 0 < δ < δ1 and stable for
δ1 < δ < 1.

• The branch C2 corresponds to the point Q; it is unstable for δ2 < δ < 1 and stable for
0 < δ < δ2.

• There are secondary bifurcations from C1 and C2 at, respectively, δ1 and δ2. These
branch points are connected by a branch C3 which spans (δ1, δ2). The branch C3 is
unstable.

A comparison of these structures with numerical computations is presented in Figure 11.
Note that

‖u‖2 = a2 + b2,

so that the branch C3 becomes
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‖u‖2 =
2

9

m2 + n2

m2n2

{
m2 + (n2 − m2)δ

}
, δ1 ≤ δ ≤ δ2;

i.e., C3 is a straight line in the (L, ‖u‖2)-plane (see Figure 11).

6. Global minimizers. In sections 4 and 5 we have computed solutions of problem (1.3) in
the center manifold Xc of the trivial solutions at certain critical lengths, whenever mL1 ≈ nL2

and mL1 < nL2 for some odd integers m and n. The same analysis also yielded the stability
properties of these solutions in Xc.

Since problem (1.3) is a gradient system, it is interesting to know which of these solutions
is the global minimizer. In this section we determine which of the solutions that we obtained
in Xc is the global minimizer in Xc, given any value of δ ∈ [0, 1]. To this end we compute
the value of the Lyapunov functional V (a, b) along the solution branches in the two structures
discussed in the previous sections, the one we find when n = 3m and the one we find when
n �= 3m. We discuss the two structures in succession.

Case I: n = 3m. We recall from section 4 that in this case the Lyapunov functional
V (a, b) associated with problem (4.1) is given by

V (a, b) =
1

2
P
(π

L

)
a2 +

1

2
P

(
3π

L

)
b2 +

3

8
a4 − 1

2
a3b +

3

2
a2b2 +

3

8
b4.(6.1)

We set α = α∗
1 + ε, carry out the scaling

(a, b) �→ √
ε(a, b), t → 1

ε
t, and V (a, b) → 1

ε
V (a, b),

and expand P
(

π
L

)
and P

(
3π
L

)
. This yields for the scaled Lyapunov functional

V (a, b) = −20

9
(1 − δ)a2 − 20δb2 +

3

8
a4 − 1

2
a3b +

3

2
a2b2 +

3

8
b4.(6.2)

In Figure 12 we show graphs of the Lyapunov functional J(u; L) (numerically computed) and
of V (a, b) along the solution branches near 3L1, when 3L1 ≈ L2.

Figure 12. Solution branches (left) and scaled Lyapunov function V along the branches (right) when m = 1
and n = 3.
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Figure 13. Solution branches (left) and scaled Lyapunov function V along the branches (right) when m = 3
and n = 5.

Case II: n �= 3m. Proceeding as in Case I, we find that the scaled Lyapunov function
V (a, b) is now given by

V (a, b) = −n2 + m2

2n2
(1 − δ)a2 − n2 + m2

2m2
δb2 +

3

8
a4 +

3

2
a2b2 +

3

8
b4.(6.3)

In Figure 13 we show graphs of the Lyapunov functional J(u; L) (numerically computed) and
of V (a, b) along the solution branches near 5L1, when 5L1 ≈ 3L2.

7. The quintic Swift–Hohenberg equation. In this section we expand the analysis of
the previous sections to the Swift–Hohenberg equation in which the cubic term u3 has been
replaced by the quintic polynomial −u3 + u5. Specifically, we consider the following initial-
boundary value problem:

⎧
⎪⎨

⎪⎩

ut = −uxxxx − 2uxx − (1 − α)u + u3 − u5 for 0 < x < L, t > 0,

u = 0 and uxx = 0 at x = 0, L, t > 0,

u(x, 0) = u0(x) for 0 < x < L.

(7.1)

As for the Swift–Hohenberg equation, the linearized version of problem (7.1) is problem (2.1),
which has been studied in detail in section 2. We find the same critical lengths L1 and L2

and the same eigenvalues λn and eigenfunctions ϕn. Solution branches bifurcate from the
points (L, u) = (nLk, 0) (k = 1, 2) for every n ≥ 1. However, whereas in the Swift–Hohenberg
equation the bifurcations at (nL1, 0) are supercritical and subcritical at (nL2, 0), here they
are subcritical at (nL1, 0) and supercritical and at (nL2, 0). Proceeding as in [17], we can find
the local behavior at (L1, 0) and (L2, 0), as follows.

Theorem 7.1. Let α > 0. There exists a unique branch in the (L, u)-plane of nontrivial
solutions of problem (7.1) which emanates from the trivial solution at L1. Its local behavior
is given by

‖u‖2 ∼ 8

3π

√
α(1 +

√
α)3/2(L1 − L) as L ↗ L1.
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Figure 14. Sample bifurcation diagrams for destabilizing nonlinearity. Notice that here the branches em-
anate from L1 and L2 in the opposite direction from that in the stabilizing case. Left: α = .42. Middle: α = .49.
Right: Detail of α = .49, showing the same local behavior as constructed in section 4.

Theorem 7.2. Let 0 < α < 1. There exists a unique branch in the (L, u)-plane of nontrivial
solutions of problem (7.1) which emanates from the trivial solution at L2. Its local behavior
is given by

‖u‖2 ∼ 8

3π

√
α(1 −√

α)3/2(L2 − L) as L ↘ L2.

In Figure 14 we show two global bifurcation diagrams, one for α = 0.42 and one for
α = 0.49, in which these properties clearly show up. We also see the characteristic structure
when 3L1 ≈ L2, which we studied in sections 4 and 6. However, here it “flipped over.”

Because the solution branches bifurcating from the points (kL1, 0) and (kL2, 0) now point
in the opposite direction from the one in the stabilizing case we need to fix α < α∗

m,n to ensure
that nL1 > mL2. Thus, in order to study the solution set when 3L1 ≈ L2, we write

α = α∗
1 − ε for ε > 0,

and put

L = 3L1 + δLgap, where Lgap = L2 − 3L1.

Note that now Lgap < 0. Rescaling the equations as in sections 4 and 5, we now obtain the
O(ε) system

⎧
⎪⎪⎨

⎪⎪⎩

ȧ = −a

{
10

9
(1 − δ) − 3

2
a2 +

3

2
ab − 3b2

}
,

ḃ = −10δb − 1

2
a3 + 3a2b +

3

2
b3

(7.2)

when n = 3m. Reversing time and setting t = −τ , we obtain system (4.4), where the dots
now denote differentiation with respect to τ .
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It is evident that for every δ ∈ [0, 1] the family of stationary solutions is the same as that
of (4.4), but, because L now decreases when δ increases, the bifurcation picture is the mirror
image of the one in section 4.

If n �= 3m, the analysis is similar to that in section 5.
Finally, because all the nontrivial equilibrium solutions of (4.4) are either stable nodes or

saddles, the equilibrium solutions of (7.2) are all unstable nodes or saddles, and therefore all
unstable. It is easily seen that the origin (a, b) = (0, 0) is now a stable node.

8. Conclusions. The bifurcation diagram of the classical Swift–Hohenberg equation (1.1)
with parameter α ∈ (0, 1), defined on a bounded domain (0, L) with boundary conditions
u = 0 and u′′ = 0, is characterized by an infinite sequence of loop-type branches Γm which
connect pairs of bifurcation points {mL1, mL2}, m = 1, 2, 3, . . . , at which they bifurcate from
the trivial solution u = 0. The critical lengths are given by L1 = 1√

1+
√

α
and L2 = 1√

1−√
α

and depend on the value of the parameter α ∈ (0, 1).
We have exhibited numerical results for even solutions, which show that the solution

branches Γn are connected through secondary bifurcations, involving complex well-defined
structures. Only two distinct types of such structures were observed:

1. those which connect Γn and Γm, where n = 3m, and
2. those which connect Γn and Γm, where n �= 3m.

The qualitative properties of the structures around these secondary bifurcations were found
to be very robust under perturbations of the parameters α and L.

By means of a center-manifold analysis these secondary bifurcations were analyzed when
the distance between the points nL1(α) and mL2(α) is small, for instance, for values of α
when

3L1(α) < L2(α) and L2(α) − 3L1(α) � L2(α).

These conditions are satisfied if α = α∗
1 + ε, where α∗

1 = 16/25 and ε > 0 is small.
In this center-manifold analysis (i) the two types of secondary bifurcations and their

complex structures were exactly retrieved, and (ii) the existence of only two types of such
structures could be explained.

The stability properties of the solutions on these structures was also determined by means
of the center-manifold analysis. It was found that all connecting structures are unstable, except
the one involving Γ1 and Γ3, which has stable as well as unstable segments. In particular, it
was found that there exists an interval [�1, �2] ⊂ (3L1, L2) such that if L ∈ (�1, �2), then there
exist two stable stationary solutions.

It will be interesting to see how robust the structures found in this paper are when we
turn to different systems.

Appendix A. Additional algebraic details. In order to prove the results of section 4 it

will be convenient to express the null clines Γ
(2)
1 and Γ2 in terms of polar coordinates, writing

a = r cos(θ) and b = r sin(θ).(A.1)

By symmetry this is possible if the ray

Rτ = {(a, b) : b = τa, b > 0}, τ ∈ R,
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intersects each null cline at most at one point and is never tangent to one of the null clines.
This is clearly the case for Γ2, which is an ellipse.

In fact, it is also the case for Γ
(2)
1 . Suppose to the contrary that for some τ0 the ray Rτ0

is tangent to Γ
(2)
1 at the point (a0, b0). Then, at (a0, b0) we have (dropping the subscript “0”)

a3 − 6a2b − 3b3 = 20δb and b = τa,

so that

a2(1 − 6τ − 3t3) = 20δτ,(A.2)

as well as

3a2 − 12ab − 6a2τ − 9b2τ = 20δτ.

Because Γ
(2)
1 and Rτ are tangent, we also have

3a2(1 − 6τ − 3τ3) = 20δτ.(A.3)

It follows that 1 − 6τ − 3τ3 = 0, so that τ = τ∗ def
= 0.16444 . . . . This would imply that δ = 0,

a contradiction.
As a corollary we conclude by continuity that Rτ intersects Γ

(2)
1 at most at one point.

Thus, we can write Γ
(2)
1 as r1(θ) for θ0 < θ < π, where θ0 will be determined later, and

Γ2 as r2(θ) for 0 < θ < π. Using the change of variable (A.1) in (A.2) and (A.3), we obtain
the following equations:

20δ sin(θ) + r2
1F (θ) = 0 and

20

27
(1 − δ) = r2

2G(θ), 0 < θ < π,(A.4)

where

F (θ) = cos3(θ) − 6 cos2(θ) sin(θ) − 3 sin3(θ)

and

G(θ) = cos2(θ) − cos(θ) sin(θ) + 2 sin2(θ).

It follows from the equations in (A.4) that θ needs to be so restricted that F (θ) < 0 and
G(θ) > 0. When we divide F (θ) by sin3(θ), the first condition can be expressed as

cot3(θ) − 6 cot2(θ) − 3 < 0 =⇒ −∞ < cot(θ) < 1/τ∗,

so that θ ∈ (θ∗, π), where θ∗ = cot−1(1/τ∗). Because

G(θ) =

(
cos(θ) − 1

2
sin(θ)

)2

+
7

4
sin2(θ) > 0 for all θ ∈ [0, 2π),

the second condition poses no restriction on θ.
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Thus,

r2
1(θ) = −20δ

sin(θ)

F (θ)
and r2

2(θ) =
20

27
(1 − δ)

1

G(θ)
.(A.5)

At the points where the null clines intersect we have r1 = r2, so that

−20δ
sin(θ)

F (θ)
=

20

27
(1 − δ)

1

G(θ)
,

or

sin(θ)G(θ) + γF (θ) = 0, γ =
1 − δ

27δ
.(A.6)

If we divide by sin3(θ) and write x = cot(θ), we obtain the cubic polynomial equation

H(x; γ)
def
= x2 − x + 2 + γ(x3 − 6x2 − 3) = 0, −∞ < t < 1/τ∗.(A.7)

Plainly,

H ′(x; γ) = 2x − 1 − γ(3x2 − 12x) and H ′′(x; γ) = 2 − γ(6x − 12).

Thus H ′(x; γ) = 0 if x ∈ {ξ−, ξ+}, where

ξ± =
1

3γ

(
6γ − 1 ±

√
(1 − 6γ)2 + 3γ

)
.

It is easily verified that

H ′′(ξ−; γ) < 0 and H ′′(ξ+; γ) > 0.

Therefore (A.7) will have three zeros if H(ξ+; γ) < 0 < H(ξ−; γ), two zeros if H(ξ−; γ) = 0
or H(ξ+; γ) = 0, and one zero if either H(ξ−; γ) < 0 or H(ξ+; γ) > 0. These conditions can
easily be translated into conditions on γ. An elementary computation yields the values

γ1 = 0.69224 . . . → δ1 = 0.050785 . . .

and

γ3 = 0.206767 . . . → δ3 = 0.15191 . . . ,

and that the null clines Γ
(2)
1 and Γ2 intersect at three points when δ ∈ (δ1, δ3). At δ = δ2, one

of these critical point lies on the b-axis, i.e., θ = π/2. Then x = cot(θ) = 0, and we deduce
from (A.7) that γ = 2/3 and hence δ2 = 0.05263158 . . . .

Appendix B. Numerical approximation. In this paper we have used a continuation pack-
age for Matlab called MATCONT [12] for the computation of all bifurcation diagrams. This
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solves the algebraic system of equations corresponding to the finite difference approximation
to the ODE problem. Continuation is then done via pseudoarclength parametrization.

The fourth derivative is approximated with a five point stencil, and the second derivative
with a three point stencil. Because of the symmetry properties of the solutions, the numerical
problem was solved on x ∈ [0, L/2] with the boundary conditions

u′(−L/2) = u′′′(−L/2) = 0 and u′(L/2) = u′′′(L/2) = 0.

Derivatives at the boundary are approximated with ghost points.
Because continuation is being done with respect to the interval length the spatial grid

spacing changes along the branches. In all cases the number of grid points N was chosen such
that the grid spacing h satisfied h = L/{2(N − 1)} < 1/10.
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Abstract. We investigate the effect of spatially localized inhomogeneities on a spatially homogeneous oscillation
in a reaction-diffusion system. In dimension up to two, we find sources and contact defects, that
is, the inhomogeneity may either send out phase waves or act as a weak sink. We show that
small inhomogeneities cannot act as sources in more than two space dimensions. We also derive
asymptotics for wavenumbers and group velocities in the far field. The results are established
rigorously for radially symmetric inhomogeneities in reaction-diffusion systems, and for arbitrary
inhomogeneities in a modulation equation approximation.
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1. Oscillatory reaction-diffusion systems.

1.1. Introduction. We are interested in patterns that arise in dissipative spatially ex-
tended systems far from equilibrium. The arguably simplest nonequilibrium pattern in a
dynamical system is a periodic orbit. Periodic orbits are ubiquitous in dynamical systems,
a fact which is partly justified by their robustness. Indeed, when studying ordinary differ-
ential equations or partial differential equations posed on bounded domains, periodic orbits
are typically robust: the trivial Floquet multiplier associated with the phase of the oscillation
is algebraically simple, and for any small perturbation of the system, one will find a nearby
periodic orbit with similar frequency.

Spatially extended large systems of oscillators have attracted attention in the physical and
mathematical literature in many contexts. A classical prominent example is the Belousov–
Zhabotinsky reaction, a reaction-diffusion system where the chemical concentrations undergo
a relaxation-type oscillation which can be sustained for many cycles; see, for example, [25, 9].
Other examples include biological systems such as cardiac tissue [24], neural systems [23], and
ecological systems [3].

When studying such large systems, in unbounded or in large domains, two interrelated
issues complicate the concept of a robust oscillation.

First, robustness turns out to be a delicate issue on a technical level. In large domains,
the fixed point problem for the Poincaré map is ill-conditioned due to clusters of eigenvalues
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Figure 1. Schematic space-time plots of the four types of coherent structures that were studied in [17]. The
vertical brown bar denotes the location of a defect, where the pattern is not necessarily close to the wave trains.
Blue and green lines denote lines of constant phase in the oscillation, with in- and outgoing group velocities,
respectively. Sources (i) are isolated, they occur for discrete sets of asymptotic wavenumbers k±, and group
velocities point away from the center. Sinks (ii) come in two-parameter families, group velocities point towards
the center, and asymptotic wavenumbers can be prescribed. For transmission defects (iii), group velocities point
in the same direction, k+k− > 0; only the wavenumber with ingoing group velocity can be prescribed; the
wavenumber with outgoing group velocity is selected. For contact defects (iv), the group velocities vanish at
infinity. Asymptotic wavenumbers are typically equal.

of the linearization near the neutral phase mode; in unbounded domains, the neutral phase
mode is even embedded into a continuum of spectrum; see section 1.3 below. The spatial
diffusive coupling is responsible for this lack of separation between slow phase modes and the
fast normal modes near the periodic orbit, since it covers a full band of possible exponential
relaxation rates. As a consequence, it is often not obvious whether periodic orbits are robust
under changes of system parameters!

Second, periodic orbits come in very different spatial flavors: spatially homogeneous os-
cillations, plane waves, target patterns, and spiral waves, to name but a few. A perturbation
theory for spatially extended systems should be able to distinguish between those different
types of periodic solutions.

Wave trains, the simplest nonhomogeneous periodic solutions, are solutions where the
phase Φ of the oscillation varies periodically in both time and space. Associated with this
variation of the phase is the group velocity cg of a wave train: small spatially localized varia-
tions of the phase Φ(t = 0) = Φ0(x) are simply advected to leading order, Φ(t, x) = Φ0(x−cgt).
Wave trains come in one-parameter families with parameter k, the wavenumber of the spa-
tial variation of the phase. In [17], more general time-periodic solutions of reaction-diffusion
systems posed on x ∈ R were classified according to their limiting behavior at x = ±∞.
In addition to periodicity, the crucial assumption was convergence to wave trains in the far
field. Such solutions, time-periodic and asymptotic to wave trains, were referred to as defects
or coherent structures. The crucial property of such solutions turned out to be the sign of
the group velocities at the wave trains at ±∞: physically, they determine the direction in
which perturbations are transported, away or towards the center of the coherent structure;
mathematically, they determine Fredholm indices of the linearized period map close to the
trivial multiplier 1, and hence give multiplicity results. In summary, the physically relevant
“shape,” as determined by the group velocities, determines mathematical robustness and mul-
tiplicity properties; see Figure 1 for a short summary of the results, connecting transport and
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multiplicity properties.
The simplest scenario, where the different types of coherent structures emerge, is when a

spatially extended system with a spatially homogeneous oscillation is perturbed by introduc-
ing a spatially localized inhomogeneity. It was noted in [17] that wave trains may nucleate at
the small inhomogeneity, leading to sources. We pick up this example in this article and study
the case of space dimensions two and higher. Our main results characterize the existence of
coherent structures, that is, time-periodic solutions which converge to wave trains as |x| → ∞
for small inhomogeneities. We exhibit a dichotomy similar to the one-dimensional case, be-
tween sources, where group velocities point away from the inhomogeneity in the far field, and
contact defects, where group velocities point towards the inhomogeneity but converge to zero
as |x| → ∞. In space dimensions less than or equal to two, either sources or contact defects bi-
furcate, and we give expansions for wavenumbers and group velocities in terms of the strength
of the inhomogeneity. In space dimensions larger than two, one finds contact defects only for
small inhomogeneities. We prove our results for general reaction-diffusion systems in the case
of radially symmetric inhomogeneities. We also formally derive a viscous eikonal equation, for
which we prove existence and expansions in the general case, without radial symmetry.

In the remainder of this first section, we will set the scene and explain our main results. The
basic setup of oscillations, wave trains, and group velocities is given in section 1.2; we define
and characterize coherent structures in section 1.3; we give our main results in section 1.4;
and we conclude with an outline of the remainder of this article.

1.2. Oscillations, wave trains, and modulations. As a prototype for nonequilibrium spa-
tially extended systems, we consider reaction-diffusion systems

ut = D�u + f(u),(1.1)

u ∈ R
N , D = diag (dj) > 0, f ∈ C

∞, in x ∈ R
n. We assume the existence of an asymptotically

stable spatially homogeneous oscillation. The following list of assumptions roughly states that
the spectrum of the period map of (1.1), linearized at a periodic solution, is as stable as
possible: it is strictly contained in the unit circle up to a curve of spectrum touching the
unit circle at λ = 1 with a quadratic tangency. More precisely, we assume that there exists a
solution u(t, x) = u∗(−ω∗t) = u∗(2π − ω∗t) to (1.1), and we define

Lku = −Dk2u + ω∗uτ + f ′(u∗(τ))u, Lk : D(L) = H1
per(0, 2π) → L2(0, 2π).(1.2)

For stability, we assume that
(i) specLk ∩ {λ �= 0 mod iω∗, Reλ ≥ 0} = ∅;
(ii) specLk ∩ {Reλ ≥ 0} = ∅ for k �= 0;
(iii) λ = 0 is algebraically simple as an eigenvalue of specL0;
(iv) the curve of eigenvalues λ(k) to Lk with λ(0) = 0 satisfies d = −λ′′(0) > 0.
Examples of such oscillations include all stable periodic solutions to the pure kinetics

ut = f(u) if the diffusion matrix is the identity (or close to the identity), an assumption that
is typically satisfied for reactions in solvent. It also includes the example of small amplitude
oscillations whenever the Benjamin–Feir stability criterion on sideband instability is satisfied.
The chemical oscillations observed in the Belousov–Zhabotinsky reaction provide a prominent
experimental example.
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Stable homogeneous oscillations are accompanied by a family of wave trains u∗(k · x−ωt;
|k|), which solve

|k|2Du′′ + ωu′ + f(u) = 0.(1.3)

It is not difficult to see that there exists a smooth family of such 2π-periodic wave train
solutions u∗(·; |k|), with ω given as a function of the parameter k. We refer to this dependence
ω = Ω(k) as the nonlinear dispersion relation. Note that due to isotropy of our medium, Ω(k)
is merely a function of |k|. Also note that we slightly abuse notation, writing u∗(·) = u∗(·, 0)
for the spatially homogeneous oscillations. We define the group velocity of a wave train u∗(·; k)
via

cg(k) = ∇Ω(k).(1.4)

Again, by isotropy,

cg(k) = |cg(k)| k|k| .

We emphasize that the existence of wave trains already shows that homogeneous oscillations
are not isolated in phase space, and any robustness result needs to take the occurrence of
families of solutions into account.

More general solutions can be found by varying the wavenumber of the wave trains on
slow spatio-temporal scales. Inserting the ansatz

u(t, x) = u∗(−ω∗t− Φ(T,X); εΦX), X = εx, T = ε2t,(1.5)

into (1.1), we find at order ε2 a viscous eikonal equation

ΦT = dΔXΦ − 1

2
Ω′′(0)|ΦX |2;(1.6)

see, for instance, [5]. In particular, the nonlinear dispersion relation can be interpreted as a
nonlinear flux in a transport equation, and cg provides precisely the speed of characteristic
transport. The viscosity d is defined in item (iv) of our list of linear stability assumptions.

1.3. Inhomogeneities and coherent structures. Our interest here is in the effect of small
inhomogeneities in the medium on the oscillations. We therefore consider

ut = D�u + f(u) + εg(x, u)(1.7)

for ε small, with g ∈ C∞ smooth and localized, |g(x, u)| = O(|x|−2−β) for |x| → ∞ and some
β > 0.

One may be tempted to analyze this perturbation problem in a large ball of radius L and
Neumann boundary conditions, for instance, rather than in unbounded domains. In this case,
the Poincaré map possesses an asymptotically stable fixed point which can be readily seen to
persist for small values of ε. The validity of this regular perturbation argument in a bounded
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Figure 2. Bifurcation diagram for small inhomogeneities in one-dimensional media. Sources exist for
positive ε with emitted wavenumbers k± ∼ ±ε. Contact defects exist for ε < 0. The sector between sources and
contact defects is filled with transmission defects; see section 3.2.

domain, however, is restricted to ε = O(L−2) at best, since the trivial Floquet exponent is
isolated in the spectrum of the period map by a gap of this size only in a large domain.

Our goal in this article is to describe patterns resulting from the introduction of inho-
mogeneities using perturbation theory in the presence of essential spectrum in unbounded
domains. The idealization of the domain as the entire space has the additional advantage of
characterizing the resulting patterns by their asymptotic profile in the limit |x| → ∞.

We distinguish solutions to the inhomogeneous reaction-diffusion system in terms of their
transport properties at infinity. In one space dimension, this task was carried out in a sys-
tematic fashion in [17]. We borrow some of the terminology from there and generalize to the
multidimensional case next. In [17], we say a solution uc(x, t) to the (possibly inhomogeneous)
reaction-diffusion system is a coherent structure if uc is

• time-periodic: uc(x, t + 2π
ωc

) = uc(x, t) for some ωc > 0;
• localized : there are k± such that |uc(x, t)−u∗(k±x−ωct−ϕ(x); k±)| → 0 for x → ±∞,

uniformly in t, for some ϕ(x) with ϕ′(x) → 0.

Note that “localized” does not refer to decay, but rather implies convergence as x → ±∞
towards wave trains with certain asymptotic wavenumbers k±. We can then classify coherent
structures according to the group velocity cg(k±) at these asymptotic wave trains. We say uc

is a

• source if cg(k−) < 0 < cg(k+);
• sink if cg(k−) > 0 > cg(k+);
• contact defect if cg(k−) = 0 = cg(k+);
• transmission defect if cg(k−) · cg(k+) > 0.

Note that the reflection symmetry of the equation and the uniqueness of the family of wave
trains solving (1.3) imply that Ω(k) = Ω(−k). The time periodicity of coherent structures
implies Ω(k+) = Ω(k−) = ωc, which typically, for example if Ω′′(0) �= 0, implies that |k−| =
|k+|. In [17, section 6.5], we showed that for small inhomogeneities there is a dichotomy
between the existence of sources and contact defects. A schematic bifurcation diagram is
shown in Figure 2. The analysis was outlined in [17], but we include a sketch in section 3.2
here for the convenience of the reader.

In case of radially symmetric defects, the classification is readily adapted. We call a
radially symmetric solution uc(r, t) a coherent structure if uc is
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• time-periodic: uc(t + 2π
ωc
, r) = uc(t, r) for some ωc > 0;

• localized : there exists k such that |uc(r, t) − u∗(kr − ωct − ϕ(r); k)| → 0 for r → ∞,
uniformly in t, and ϕ′(r) → 0.

The classification in this radial multidimensional case is somewhat more restrictive: we say
uc is a

• source if cg(k) > 0;
• sink if cg(k) < 0;
• contact defect if cg(k) = 0.

1.4. Main results: Radially symmetric inhomogeneities. Our main technical results de-
scribe coherent structures in spatially homogeneous oscillations generated by radially sym-
metric inhomogeneities in reaction-diffusion systems. A formal perturbation theory for the
periodic solution u∗ would isolate the time-derivative u′∗ as the kernel in the fixed point
equation for the linearized period map (1.1). Similarly, one finds a unique bounded solution
uad(−ω∗t) to the adjoint linearized kinetics, ut = −f ′(u∗)Tu. We assume that uad is normal-
ized such that

∫
(uad(τ), u′∗(τ))dτ = 1, where (·, ·) denotes the scalar product in R

N . Since
our perturbation is dependent on x, we would like to use these eigenfunctions to carry out
a perturbation theory in L2(Rn) or BC0(Rn), say. If the linearized operator were Fredholm,
one would proceed with Lyapunov–Schmidt reduction: one evaluates the perturbation on the
kernel and projects it back onto the kernel by taking the scalar product with the kernel of the
adjoint, and by then normalizing with the scalar product between kernel and cokernel. This
procedure fails at the first step: since u′∗ is not localized as a function of x, the linearization
is not Fredholm; see, for example, [19, Lemma 6.4]. One may still formally continue to derive
an expansion for a perturbed periodic solution by projecting the perturbation, evaluated in
the periodic solution, onto the kernel, using the adjoint kernel. However, the fact that the
space-time L2(S1 × R

n)-scalar product between uad and u′∗ diverges indicates strongly that
the formal results obtained in this fashion will not be valid.

Nevertheless, we define the Melnikov-type coefficient

M = (Vol(Sn−1))−1

∫

x

∫

τ
(uad(τ), g(|x|, u∗(τ))) dτdx =

∫ ∞

0

∫

τ
(uad(τ), g(r, u∗(τ))) dτrn−1dr,

(1.8)

which precisely represents the projection of the perturbation on the kernel. As we will see,
this coefficient is the essential ingredient to our main result. Our result is stated for radially
symmetric solutions, and we therefore may consider the space dimension as a continuous
parameter, n ≥ 1. The theorem describes coherent structures close to the homogeneous
oscillation, for ε small. Close here refers to the existence of an appropriate δ0, small, and
φ = φ(x) such that

sup
x

|∇φ(x)| < δ0, sup
x

|u(t, x) − u∗(−ω∗t + φ(x))|H1
t
< δ0,(1.9)

where H1
t refers to the H1-norm with respect to the variable t ∈ [0, 2π/ω∗].

Notation. We denote by O(y) and o(y) the Landau symbols for functions h which vanish
at y = 0 and which satisfy |h/y| ≤ C for some C > 0 and limy→0 |h/y| = 0, respectively. We
write oy(1) for functions which converge to zero as y → 0.
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Theorem 1.1. Consider the reaction-diffusion system (1.7) with ε small in space dimension
n ≤ 2.

First assume that εMΩ′′(0) > 0. Then there exists a constant ĉ with ĉΩ′′(0) > 0 such that
for all ε > 0 sufficiently small there exists a unique source with emitted wavenumber

k(ε) = ĉ|Mε| 1
2−n (1 + oε(1)) for n < 2,

k(ε) = ĉe−
2d

Ω′′Mε (1 + oε(1)) for n = 2.(1.10)

In particular, the group velocity in the far field points outward.
Next assume that εMΩ′′(0) < 0. Then there exists a constant ĉ with ĉΩ′′(0) < 0 such

that for all ε sufficiently small there exists a unique contact defect; that is, the asymptotic
wavenumber is k = 0. At large but finite distances from the center, we have the wavenumber
asymptotics

k =
1

r
(ĉ + o1/r(1)), n < 2 and r � log ε, k =

|εM |
|εM |r log r + r

(ĉ + o1/r(1)), n = 2.

In particular, the group velocity converges to zero in the far field, but it is pointing inward at
large finite r. There also exists a family of sinks with wavenumbers close to 0 for all small ε.
There do not exist sources close to the homogeneous oscillations.

In space dimension n > 2 there exists a unique branch of contact defects and accompanying
sinks, with wavenumber asymptotics

k(r, ε) =
Mε

rn−1
(ĉ + o1/r(1)), n > 2,

for an appropriate constant ĉ �= 0. There do not exist sources regardless of the sign of
εMΩ′′(0).

Remark 1.2. Note that the phase φ(r) =
∫ r
0 k(s)ds diverges for contact defects for n ≤ 2,

logarithmically in one space dimension, and very weakly, ϕ ∼ log log r in two space dimensions.
In higher space dimensions, the phase converges. In particular, the target sources or target
sinks created by inhomogeneities in three space dimensions will have only a finite number of
rings, moving outward or inward, depending on the sign of εMΩ′′(0).

The proof of the theorem will occupy section 2. Coherent structures solve a degenerate
elliptic PDE in x, t, with periodic boundary conditions in t and somewhat intricate boundary
conditions at |x| = ∞. The main difficulty stems from the boundary conditions at infinity,
which require the solution to be pointwise in x close to a homogeneous oscillation u∗(·+φ) for
some shift φ(x), where the function φ and its asymptotics as |x| → ∞ are to be determined
as part of the analysis.

We illustrate the main result with numerical simulations. Figure 3 shows snapshots of
the dynamics of an oscillatory system in the presence of a localized inhomogeneity. The color
coding reflects values of the v-component in Barkley’s FitzHugh–Nagumo model

ut = Δu +
1

μ
u(1 − u)

(
u− v + b

a

)
, vt = Δv + u− v +

ε

1 + |x/3|2(1.11)

with parameters a = 0.3, b = −0.45, μ = 0.095 on Ω = {|xj | ≤ 90}. The convergence to the
final state is much faster in the case of a source.
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Figure 3. Plotted are time snapshots of the inhibitor concentrations v(x) of (1.11). From left to right, a
spatially irregular initial condition (first) evolves into a homogeneous oscillation after time T = 100 (second)
in a homogeneous medium. The next two pictures show how the same initial condition has evolved into a
contact defect, ε = −0.2, and a source, ε = 0.2. The last picture shows the radially symmetric contact defect,
which forms from a homogeneous initial condition, ε = −0.2. Simulations based on ez-spiral [2]. Click-
ing on the above images displays the accompanying movies (66695 01.mpg [10.3MB], 66695 02.mpg [10.4MB],
66695 03.mpg [12.9MB], and 66695 04.mpg [1.5MB]) of the time evolution.

1.5. Outline. The remainder of this article is organized as follows. We introduce spatial
dynamics and prove Theorem 1.1 in section 2. We rely on an ill-posed dynamical systems
formulation, inspired by [8, 20]. The main difficulty is the analysis of an ODE in the far field,
which possesses a highly degenerate equilibrium. We unfold the degeneracy using geometric
blow-up methods; see [18, 11] for a recent account. We then discuss coherent structures which
are not necessarily radially symmetric. We therefore derive a viscous eikonal equation that
approximates the reaction-diffusion dynamics and discuss shapes of coherent structures in this
approximation; see section 3. This discussion largely relies on the Hopf–Cole transformation,
which links coherent structures in the eikonal equation to eigenfunctions of Schrödinger op-
erators. We show that coherent structures still are approximately radial in the far field. We
conclude section 3.3 with a discussion of moving inhomogeneities. Main results here again
rely on the Hopf–Cole transformation. Coherent structures show more complicated nonradial
patterns such as sonic cones and diffusive profiles. We conclude with a discussion in section 4,
including a summary of results, discussion of topological and quantitative classifications of
defects, and a note on asymptotic stability.

The results on reaction-diffusion systems, Theorem 1.1, are new. Some of the results on
modulation equations in section 3 appear to be folklore. We refer to [22] and the references
therein for related results and an overview of the experiments. We include this discussion of
inhomogeneities in the eikonal approximation since it allows for a comparison with our main
technical result, Theorem 1.1, and for extensions to nonsymmetric settings.

2. Radial dynamics. In this section, we prove Theorem 1.1. Coherent structures solve

−ωuτ = Durr +
n− 1

r
ur + f(u) + εg(r, u), τ ∈ R mod 2πZ, r ≥ 0,

which we can (formally) rewrite as an abstract first-order differential equation in the radius r,

ur = v,

vr = −n− 1

r
v −D−1 (ω∂τu + f(u) + εg(r, u)) .(2.1)

We consider (2.1) on the Hilbert space X = H
1/2
per (0, 2π) × L2

per(0, 2π). The unbounded prin-
cipal part of the right-hand side of (2.1) defines a closed operator with domain of definition

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66695_01.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66695_02.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66695_03.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66695_04.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66695_01.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66695_02.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66695_03.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66695_04.mpg
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X1 = H1
per(0, 2π) ×H

1/2
per (0, 2π). We say that (u, v)(r, τ) is a solution to (2.1) on J ⊂ R+ if

(u, v)(r, ·) is in C0(J,X) ∩C1(Int(J), X) ∩C0(Int(J), X1). Note that the domain reflects the
expected parabolic regularity with two derivatives in x or one derivative in t; see [8, 20] and
[15, Lemma 3.1] for a simple computation justifying this choice of norms.

Note that (2.1) is invariant under the time shift Tφ : (u, v)(r, ·) �→ (u, v)(r, · + φ), which
therefore maps solutions to solutions.

The differential equation (2.1) is ill-posed as a dynamical system, as its principal part
amounts to solving the heat equation as an initial-value problem “sideways” in r.

Our strategy for the proof now consists of several steps. We construct manifolds of bounded
solutions close to (u∗(·+ ϕ), 0) for r ∈ [0, R], W cu− (Step 1), and for r ∈ [R,∞], W cs

+ (Step 2).
We then show that these two manifolds intersect transversely along (u∗(· + ϕ), 0) (Step 3).
In Step 4, we construct a two-dimensional manifold W c

+ that contains this intersection, and
we compute the vector field on this manifold in Step 5. Steps 6 and 7 are concerned with
an analysis of this vector field, in particular tracking the points on W c

+ that yield contact
defects, sources, or sinks in r ≥ R. The analysis involves a geometric blow-up construction,
Step 6, and a Dulac map analysis, Step 7. In Step 8, we locate those points in W c

+ which yield
bounded solutions on [0, R] to leading order in ε. In the final Step 9, we match these bounded
solutions on [0, R] with conditions for sources, sinks, and contact defects inside of W c

+.

The general strategy is reminiscent of [20], where radially symmetric and time-periodic
patterns have been studied close to a time- and space-independent equilibrium of the reaction-
diffusion system. We will encounter some additional difficulties in the far field, which are
similar to the difficulties arising in the study of one-dimensional contact defects; see [17, 18].

Step 1: Construction of W cu− .

Proposition 2.1. For all R > 0 there exists a smooth manifold

W cu
− =

⋃

0<r≤R

W cu
− (r) × {r} ⊂ X × R+

such that W cu− (r) contains precisely all functions (u(r), v(r)) which are boundary values to
bounded solutions of (2.1) on (0, r], close to (u∗(·+φ), 0) in X for some φ ∈ R. The manifold
is invariant under the action of the temporal shifts Tϕ on X, and depends smoothly on ω
and ε. Moreover, the map from solutions to boundary values is a smooth diffeomorphism,
equivariant with respect to Tϕ.

Proof. The proof is the same as in [20, Proposition 4.7].

Step 2: Construction of W cs
+ . We now turn to a description of the bounded solutions at

r = ∞. We therefore introduce α = 1/r and rewrite (2.1) as

ur = v,

vr = −(n− 1)αv −D−1

(
ω∂τu + f(u) + εg

(
1

α
, u

))
,

αr = −α2.(2.2)

Note that the decay assumption on g implies that g = O(α2+β) ∈ C2 for α ≥ 0. In α = 0,
there is a circle of equilibria u = u∗(· + ϕ), v = 0. We are interested in solutions that stay in
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a vicinity of this circle for all α small. We therefore consider the linearization in one of these
equilibria:

ur = v,

vr = −D−1
(
ω∗∂τu + f ′(u∗)

)
,

αr = 0.(2.3)

This system can be written in the short form u′′ = −D−1L0u, so that the spectrum of the right-
hand-side operator in (2.3) is given by the square root of the spectrum of −D−1L0 (and the
zero eigenvalue from the equation for α). In particular, there is no purely imaginary spectrum
outside of zero since D−1L0u = γ2u for some γ �= 0 violates our stability assumption (ii). All
other eigenvalues come in pairs (ν,−ν) by reversibility. The zero eigenvalue is geometrically
simple, with kernel spanned by (u′∗, 0), again by the stability assumption. Then (0, u′∗) provides
an obvious generalized eigenfunction. The quadratic expansion of the dispersion relation
guarantees that the algebraic multiplicity is not larger than two; see [20].

We therefore have a 2 + 1-dimensional center eigenspace Ec consisting of the generalized
kernel, and infinite-dimensional stable and unstable eigenspaces Es/u.

Proposition 2.2 (W cs
+ ). There exists a smooth center-stable manifold to the circle of equi-

libria (u∗(· + ϕ), 0) at α = 0, tangent to Ec ⊕Es. Moreover, there is a local smooth semiflow
Φr on W cs

+ , and all solutions that stay in a neighborhood of the circle of equilibria for all
positive r ≥ R are trajectories to this semiflow on W cs

+ . Finally, the center-stable manifold is
invariant, and the flow is equivariant with respect to the action of the symmetry group Tϕ.

Proof. The proof is analogous to [17, Theorem 3] and will be omitted here.

Step 3: Intersecting W cu− and W cs
+ . By construction, the circle of equilibria at (u∗(·+ϕ), 0)

belongs to the intersection of W cs
+ and W cu− .

Proposition 2.3. The manifolds W cs
+ and W cu− intersect transversely along (u∗(·+ϕ), 0) in

X at any fixed, finite r ∈ (0,∞). The intersection W c is a circle, smoothly depending on ω,
ε, and r.

Proof. We show that tangent spaces intersect transversely along a one-dimensional sub-
space. Since the intersection necessarily contains the circle (u∗(τ + ϕ), 0) at ε = 0, ω = ω∗,
this suffices to prove the theorem via Lyapunov–Schmidt reduction.

Transversality is encoded in the immersion map

ι : T∗W cu
− (r) × T∗W cs

+ (r) → X, (ucu
− (r),ucs

+(r)) �→ ucu
− (r) − ucs

+(r),

where u
cu/cs
± = (u, v) solve the linearized equation

ur = v,

vr = −n− 1

r
v −D−1L0u.(2.4)

Transverse intersection along a one-dimensional manifold is equivalent to ι being Fredholm of
index one with minimal one-dimensional kernel. From [20, 16], we know that ι is Fredholm
and the Fredholm index is given by the relative Morse index at +∞. In order to compute the
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relative Morse index, we compare the equation to the linearized equation

ur = v,

vr = −n− 1

r
v −D−1L0u + λu,

with spectral parameter λ. For λ > 0, this equation possesses an exponential dichotomy; the
immersion map ι is Fredholm of index 0. In the limit λ = 0, there is a double center eigen-
value, which we incorporated in the stable direction T∗W cs

+ . For small positive λ, these two
eigenvalues split in opposite directions. In other words, T∗W cs

+ is enlarged by one dimension
compared to the hyperbolic Fredholm index 0 situation at λ > 0. A bordering lemma then
shows that ι is Fredholm of index 1. It remains to show that the intersection is transverse,
that is, that the kernel of ι is minimal one-dimensional.

We can block-diagonalize (2.4) by splitting off the one-dimensional kernel of D−1L0 with
the associated spectral projection. In this center subspace, we find the unique bounded so-
lution u = u′∗(τ), v = 0. Any linearly independent solution will exhibit a singularity at
r = 0: indeed, solutions solve u′′ + n−1

r u′ = 0, with singularity r2−n, n �= 2, and log r,
n = 2, for any nonconstant solution. In the complement, any solution in the intersection
would need to be exponentially localized at infinity. Any element in the kernel of ι in this
hyperbolic component would therefore yield an exponentially localized solution to the system
DΔu + f ′(u∗(τ))u + ω∗∂τu = 0. In particular, the Fourier transform û(k, τ) of this exponen-
tially localized solution would be smooth in Fourier space and contribute to the kernel of Lk.
Since all Lk with k �= 0 are invertible by assumption, this implies û ≡ 0 and concludes the
proof.

Step 4: Extending the intersection—W c
+. The intersection W c typically crosses the bound-

ary of W cs
+ for r → ∞; that is, solutions do not stay close to u∗ for r → ∞ for arbitrary

parameters ε and ω. The construction of the center-stable manifold W cs
+ incorporates all so-

lutions with mild growth. In order to single out the solutions that actually stay bounded as
r → ∞, we will analyze the flow in the center direction at r = ∞ more carefully. We therefore
construct a center manifold W c

+ ⊂ W cs
+ , which is tangent to Ec at r = ∞ and contains W c.

Proposition 2.4. There exists a 2 + 1-dimensional smooth center-manifold near the circle
of equilibria (u(· + ϕ), 0) at α = 0, which is tangent to Ec and contains all solutions that are
bounded on (0,∞),

W c ⊂ W c
+ ⊂ W cs

+ ,

for sufficiently large r.
Proof. The proof is analogous to [20, Theorems 3.7, 4.8].
Step 5: The vector field on W c

+. Invariance of W c
+ together with the condition on tangency

allows us to compute the Taylor expansion of the reduced vector field. We denote eigenvectors
and adjoint eigenvectors in the generalized kernel by

e0 = (u′∗, 0), e1 = (0, u′∗), e∗0 = (Duad, 0), e∗1 = (0, Duad),

where L∗
0uad = 0, and we normalize (Duad, u

′∗) = 1, so that (ei, e
∗
j ) = δij . We introduce

coordinates on the center manifold by parameterizing the tangent bundle of the circle of
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equilibria with θ, the symmetry action, and κ:

(u, v) = (u′∗(· + θ), 0) + κe1(· + θ) + ψ[κ](· + θ),

where ψ denotes the (symmetry-invariant) graph of the center manifold, (e∗j (·), ψ(·))) = 0. The
equation on the center manifold is independent of θ, by symmetry, and it therefore suffices to
track the κ- and α = 1/r-dependence of the vector field. A straightforward expansion shows
that we necessarily recover the phase diffusion equation (1.6) at second order:

d(κ′ + (n− 1)ακ) = (ω − ω∗) +
1

2
Ω′′(0)κ2 + o(|κ|2 + |α|2) + O(|ω − ω∗|(|κ|2| + |α|2)),

α′ = −α2.(2.5)

The ε-dependent terms contribute only to the higher-order terms because of the rapid decay
of g.

Step 6: Geometric blow-up. The vector field on W c
+ possesses a doubly degenerate equi-

librium at α = κ = 0: the linearization at this equilibrium vanishes, and leading-order terms
are quadratic in α and κ. This degeneracy is unfolded by the parameter ω. Varying ω, the
equilibrium undergoes a saddle-node bifurcation inside α = 0. It turns out that we are inter-
ested in connections to the unstable equilibrium in this saddle-node bifurcation. In order to
track its stable manifold, we invoke a desingularization method, the geometric blow-up [6, 11].
In fact, the system on the center manifold is similar to the system studied in [18], to which we
will refer for more details on the construction. The similarity to the eigenvalue problem for the
n-dimensional Laplacian in [18] comes as no surprise, as the formal eikonal long-wavelength
approximation is conjugate to the linear heat equation via the Hopf–Cole transformation.

We briefly summarize the blow-up construction from [18]. To leading order, the system
(2.5) is homogeneous, quadratic, with variables (κ, α, δ) ∈ R

3, once we set ω−ω∗ = ±dδ2. We
introduce polar coordinates R+ × S2 �→ R

3, thus blowing up the origin into a 2-sphere, and
then introduce local coordinates corresponding to stereographic projections. More explicitly,
these coordinates are

α1 = α, κ1 =
κ

α
, δ1 =

δ

α
;

α2 =
α

δ
, κ2 =

κ

δ
, δ2 = δ.

In the new coordinates, after rescaling time with the Euler multipliers α1 and δ2, respectively,
the equations read

κ′1 = −(n− 2)κ1 +
Ω′′

2d
κ2

1 ± δ2
1 + oα1(1),

α′
1 = −α1,

δ′1 = δ1,

and

κ′2 = −(n− 1)α2κ2 +
Ω′′

2d
κ2

2 ± 1 + oδ2(1),

α′
2 = −α2

2,

δ′2 = 0.
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In the following, we will assume Ω′′ > 0 and choose the “-”-sign in the two equations. The
other case is completely analogous. We depict the phase portrait in this rescaled time in
Figure 4. Note that, with the convention Ω′′ > 0, the equilibria with κ > 0 correspond to
asymptotically positive outward pointing group velocity, and connections to those equilibria
are the sources we are seeking.

Step 7: The Dulac map. The stable manifold of the family of saddles in the 2-chart can be
continued into the 1-chart until it enters the section α = 1/R. Its location in this section can
be computed as follows. The stable manifold enters a neighborhood of the singular equilibrium
κ1 = δ1 = α1 = 0 along the weak unstable (or center) direction from the negative κ direction.
It will leave the neighborhood of this equilibrium along the stable α-direction. We start by
computing the transition map for the approximation

κ′1 =
Ω′′

2d
κ2

1, α′
1 = −α, δ′1 = δ1, n = 2, or

κ′1 = −(n− 2)κ1, α′
1 = −α, δ′1 = δ1, n < 2.

In the section κ1 = m, m > 0 small, the distance of the stable manifold from the singular
sphere can be expanded as αin = cαδ + O(δ2). We want to compute the location of this
manifold after passage near the singular equilibrium, when it hits the section α1 = m. Since
the flow in the direction of α1 is linear, we find the time of flight as T = log δ + O(1), with
error terms smooth in δ. In order to compute the κ1-coordinate after time T , we need to
compute the flow ΦT in the κ-direction, with initial condition κ1 = m. We find

ΦT (m) = e−(n−2)Tm for n < 2,

ΦT (m) =
1

1
m − Ω′′

2d T
for n = 2,

which gives

κ1 = ΦT (m) = δ2−nm + O(δ2(2−n)) for n < 2,

κ1 = ΦT (m) = − 2d

Ω′′ log δ
+ O

(
1

(log δ)2

)
for n = 2.(2.6)

In order to estimate the influence of the error terms, we set κ1 = κ∗1 + κ̂1, where κ∗1 is the
above approximation, with the exact initial conditions κ̂1(t = T ) = 0. A straightforward fixed
point argument then shows that

κ̂1(t) = O(t−2) for n = 2, κ̂1(t) = O(e−(2−n+β)|t|) for n < 2.

This shows that the expansions (2.6) are valid for the full system incorporating the error
terms, as well.

Step 8: The Melnikov integral. In order to conclude the construction, we have to match the
stable manifold of the asymptotic wave train with the shooting manifold W cu− . At ε = 0, W cu−
intersects W cs

+ transversely along W c ⊂ W c
+. It is therefore sufficient to compute the location

of W cu− ∩W c
+ and then propagate the solution to α = 0. To leading order in δ, the location of
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Figure 4. The connecting orbits between r = 0 and the 1-chart and from the 1-chart to the 2-chart, for
n > 2 (top), n = 2 (middle), and n < 2 (bottom). The entering trajectory in δ1 = 0, α1 > 0 is obtained from
matching with the region r ≤ R. We set Ω′′/2d = 1 in all cases.



250 RICHARD KOLLÁR AND ARND SCHEEL

W c remains unchanged, since δ enters the equation only at quadratic order. To leading order
in ε, the location can be computed by solving the variational problem following the standard
procedure in heteroclinic bifurcations as follows. We denote by Φ(ρ, σ) the evolution operator
to the linearized equation

uρ = eρv,

vρ = −(n− 1)v − eρD−1L0u,(2.7)

which can be readily constructed using the exponential dichotomies at r = ∞ and r ∼ 0.
Similarly, we can define the adjoint operator Φ∗(ρ, σ) as the solution to

uρ = eρL∗
0D

−1v,

vρ = −eρu + (n− 1)v.(2.8)

We are interested in the location ∂εκ−(R), the derivative of the manifold W c in the direction
of e1, which is found by taking the scalar product of the perturbation, integrated along the
linearized flow, with e∗1,

∂εκ−(R) =

〈

e∗1,
∫ eR

−∞
Φ(eR, σ)eσ(0,−D−1∂εg(e

σ, u∗; 0))dσ

〉

= −
∫ eR

−∞
〈Φ∗(eR, σ)e∗1, (0, D

−1∂εg(e
σ, u∗; 0))eσ〉dσ.

An explicit computation shows that

Φ∗(eR, σ)e∗1 = (0, e(n−1)σDuad),

which then gives

∂εκ−(R) = −
∫ eR

−∞
〈Duad, D

−1∂εg〉enσdσ

= −
∫ R

0
〈uad, ∂εg〉rn−1dr

= −(Vol (Sn−1))−1

∫

Rn

∫ 2π

0
(uad(τ), ∂εg(|x|, u∗(τ); 0))dτdx + o1/R(1).

Step 9: Matching core and far field. We first consider the case of space dimension n > 2.
At δ = 0, the heteroclinic given by u∗(τ) connects to a sink in the singular blow-up chart.
The connection is therefore robust under ε-perturbations, yielding a robust family of contact
defects, asymptotic wavenumber zero. Unfolding in δ, a simple transitivity lemma shows
that orbits pass near the equilibrium κ1 = 0 in the singular chart and then connect to the
sink in the 2-chart, corresponding to sinks with asymptotically negative group velocity in the
reaction-diffusion system. We will derive expansions for the wavenumber below, which will
then prove Theorem 1.1 in the case n > 2.
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In the case n ≤ 2, the heteroclinic connects to a saddle and the above Melnikov analysis
shows that turning on ε actually breaks the connection. For ∂εκ−(R) > 0, we find a connection
to the sink κ1 = 0 in the 1-chart, thus yielding contact defects. Again, nonzero values of δ
yield connections to the sink in the 2-chart, thereby accompanying sinks in the full reaction-
diffusion system. In the case ∂εκ−(R) < 0, we find an intersection with the stable manifold
of the saddle in the 2-chart, whose location at α = 1/R is κ = Mε + O(ε2). We match
this expansion with the expansion (2.6) from the singular chart and solve for δ2−n or e−1/δ,
respectively, with the implicit function theorem. We find the expansion

δ = c∗|Mε|1/(2−n)(1 + oε(1)) for n < 2,

δ = c∗e−
2d

Ω′′Mε (1 + oε(1)) for n = 2,(2.9)

for some constants c∗ with c∗Ω′′ > 0. Next, we replace δ by k, using the relations ω−ω∗ = δ2

and ω − ω∗ = Ω′′k2/2 + O(k4), so that

k = ĉ(Mε)1/(2−n)(1 + oε(1)) for n < 2,

k = ĉe−
2d

Ω′′Mε (1 + oε(1)) for n = 2.(2.10)

This proves the existence of sources in the case n ≤ 2 and the expansion for the asymptotic
wavenumber. Again, there are also accompanying sinks with asymptotic wavenumbers |k| >
|ksource(ε)|. This proves existence and asymptotics for sources in Theorem 1.1 in the case
n ≤ 2.

The existence and asymptotics for contact defects, κ = 0, are simpler. The connection is
robust in the 1-chart, with asymptotics

κ1 → 2d(2 − n)

Ω′′ , n < 2, κ1 ∼ 1

log r + (εM)−1
, n = 2, and κ1 ∼ r2−n, n > 2,

which leads to wavenumber asymptotics

k ∼ 2d(2 − n)

Ω′′r
, n < 2, k ∼ εM

εMr log r + r
, n = 2, and k ∼ Mεr1−n, n > 2.

Remark 2.5. The analysis presented here simplifies considerably when studying systems
with a gauge symmetry, such as λ − ω systems or Ginzburg–Landau equations. The gauge
symmetry in these systems is represented as an action T of the circle group φ ∈ S1, so that
u is a solution if and only if Tφu is. The simplest periodic solutions then are equilibria with
respect to this action, u(t, x) = Tkx−ω(k)tu∗(k). Coherent structures can be found as solutions
of the form u(t, x) = T−ωtu∗(x), so that u∗ satisfies a (time-independent) elliptic equation
with a free parameter ω. In the radially symmetric case, this reduces the problem to an
ordinary differential equation; see [10] for an analysis of such a problem. For nonradially
symmetric inhomogeneities, the resulting time-independent PDE problem is similar to the
radially symmetric case, without gauge symmetry, that we analyzed here.
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3. The eikonal approximation. In this section, we derive the viscous eikonal equation
formally from the reaction-diffusion system and analyze profiles of coherent structures in
this approximation. We find results similar to the results in Theorem 1.1, and we are able
to discuss nonradially symmetric inhomogeneities, and the effect of moving inhomogeneities.
The results differ from the results in the previous section since they assume a particular spatial
scaling of the inhomogeneity for small amplitude ε. This special scaling is consistent with the
modulation ansatz, albeit not typical in a given system. We also emphasize that this formal
approach yields flat e−1/ε-expansions, while the approximation itself is correct only to order
ε2. It is therefore not clear at all why these formal results give asymptotics similar to the ones
that we rigorously obtained in the previous section.

3.1. Stationary nonsymmetric inhomogeneities. We consider

ut = D�u + f(u) + ε2g(εx, u),(3.1)

with ε small. We follow the derivation in [5, section 4.3], where the computations are shown
for a wave train with nonzero spatial wave number. We substitute the ansatz (1.5),

u(t, x) = u∗(Φ(T,X) − ωt; ε∇XΦ(T,X)) + ε2u1(−ωt, T,X), X = εx, T = ε2t,(3.2)

into (1.7) and expand in powers of ε. At order ε2, we find after a short computation

ΦTu
′
∗ − ΔXΦDu′∗ − |∇XΦ|2Du′′∗ − g(X,u∗) = L0u1(x).(3.3)

Solvability requires that the left-hand side of (3.3) belong to the range of L0. We denote by uad

the kernel of the L2-adjoint of L0 with normalization (uad, u
′∗) = 1. After some calculations,

this solvability condition turns out to be equivalent to

ΦT = dΔXΦ − 1

2
Ω′′|∇XΦ|2 + Ḡ(X),(3.4)

where

Ḡ(X) =

∫ 2π

0
(g(X,u∗(ζ)), uad(ζ)) dζ;

see also [5] for a similar expansion. The Hopf–Cole transformation

A = eaΦ, a = − 2d

Ω′′ ,

linearizes the eikonal equation so that we find

AT = dΔA + Ḡ(X)A.(3.5)

Coherent structures are solutions with ΦT = −ω, which is equivalent to AT = −ωA. They
therefore correspond to eigenfunctions of the Schrödinger eigenvalue problem

−ωA = dΔA + Ḡ(X)A.(3.6)
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For n = 1, 2, expansions on the leading eigenvalue have been derived in many contexts,
going back to Landau [12] and Simon [21]. For instance, for d = 1, [21, Theorem 3.4] states
that

ω ∼ e
− 4π∫

Ḡ(3.7)

for small
∫
G, which agrees with our expansion in Theorem 1.1. To see this, replace ω ∼ Ω′′k2

in (3.7), solve for k, and recall that M =
∫
G/Vol(S1) =

∫
G/2π.

From a phenomenological viewpoint, we are most interested in the asymptotics of the
wavenumber in the far field, that is, in ∇Φ(X) as X → ∞. In the Schrödinger formulation,
this amounts to computing decay and growth properties of the eigenfunction in the far field.
For instance, assume that an eigenfunction A possesses exponential asymptotics e−γ|x| for
some γ ∈ R. We can then infer phase asymptotics for Φ = 1

a logA,

Φ ∼ 1

2d
Ω′′γ|x|,

and hence sign k = sign Ω′′γ. In particular, exponential decay generates outward group ve-
locities, and exponential growth inward group velocities. The exponential localization of
eigenfunctions outside of the essential spectrum yields sources in the eikonal equation.

For n > 2 the nonexistence of eigenvalues (point spectrum) for small potential follows
readily from Hardy’s inequality [13], which states that for any f with f ′ integrable,

∫ ∞

0

∣∣∣∣
f(x)

x

∣∣∣∣

p

dx <

(
p

p− 1

)p ∫ ∞

0
|f ′(x)|pdx.

Indeed, for n = 3, say, and Ḡ radial, the symmetric form associated with the elliptic operator
is positive whenever Ḡ < d

4r2
,

∫

R3

(d|∇A|2 − Ḡ(x)A2)|x|2dx ≥ 4πd

∫ ∞

0

(
r2A2

r −
1

4
A2

)
dr,

and by Hardy’s inequality

∫ ∞

0
r2A2

rdr =

∫ ∞

0

(
(rA)2r −A2 − (A2)′r

)
dr =

∫ ∞

0
(rA)2rdr ≥

∫ ∞

0

1

4
A2dr.(3.8)

Note, however, that in the scaling used to derive the eikonal approximation, Ḡ need not be
small. In particular, potentials which are small in amplitude but long-range in the sense
imposed by the scaling can create sources.

The following result appears to be standard, but we were unable to locate a good reference
and therefore include a proof in the appendix.

Proposition 3.1. Consider the eigenvalue problem (3.6) in R
2 with d = 1 and smooth po-

tential Ḡ with

|Ḡ(r, ϕ))| + |∂rḠ(r, ϕ)| + |∂ϕḠ(r, ϕ))| = O(r−1−β)
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in polar coordinates, as r = |x| → ∞, for some β > 0. Let u ∈ C2 be a positive eigenfunction
to an eigenvalue ω = −γ2 < 0.

We then have the following renormalized asymptotics with Ã(r, ϕ) =
√
reγrA(r, ϕ):

|Ã(r, ·) − Ã∞(·)|H1 → 0

for some Ã∞(·) ∈ H1
per(0, 2π), Ã∞ �= 0.

There is a tremendous amount of literature on decay properties of solutions to elliptic
equations; see, for instance, the early references [1] for upper bounds and [4, Theorem 3.2] for
lower bounds. The decay properties for Ḡ needed here are weaker than the decay properties
in the analysis of small potentials. For instance, long-range potentials, Ḡ ∼ |x|−1−β, β < 1,
create infinitely many bound states, while the short-range potentials from Theorem 1.1 create
a unique bound state at small amplitude. The proposition states that the long range of the
potential does not influence the decay rate of the eigenfunction at leading order.

We expect that contact defects are highly nonunique in the nonradially symmetric case:
we expect an infinite-dimensional manifold, corresponding to different asymptotic azimuthal
profiles. Asymptotics for this situation do not appear to be well understood.

From Proposition 3.1, we can conclude that level lines of the phase are corrections to
increasingly large circles. Rings sent out by the sources do not converge to circles, and the
deviation will remain O(1). Indeed, in the far field, level sets of the phase Φ = logA = C
solve

log Ã∞(ϕ) + γr +
1

2
log r = C,

so that with the formal inverse h(γr + 1
2 log r) = r, we have the asymptotic parametrization

r = h(C − log Ã∞(ϕ)) of level sets. Since h′ ∼ 1/γ for large r, r will not be constant on level
sets if Ã∞ is not constant.

Note, however, that the wavenumber does converge to kx/|x|, since azimuthal gradients
decay as 1/|x|.

3.2. Transmission, sinks, and contacts. Deviating from our primary focus on higher-
dimensional coherent structures, we recall results on transmission defects in one-dimensional
media from [17], preparing for the analysis of moving inhomogeneities in the next section. Our
interest is in the response of the inhomogeneity to incoming wave trains. A fairly complete
answer can be provided in one space dimension.

We start with the viscous eikonal equation, d = 1, Ω′′ = 1, and a localized inhomogeneity,

−ω = Φxx − 1

2
Φ2
x + εG(x),(3.9)

which we write as a nonautonomous first-order ODE,

Φx = k, kx = −ω +
1

2
k2 − εG(x).

Note that the equation for k is independent of Φ and can therefore be solved independently,

kx = −ω +
1

2
k2 − εG(x).(3.10)
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At x = ±∞, the inhomogeneity disappears, and we find

kx = −ω +
1

2
k2.

This equation possesses equilibria k = ±√
2ω for ω > 0 corresponding to the planar wave

trains, equilibria k = 0 for ω = 0 corresponding to the homogeneous oscillations, and no
bounded solutions for ω < 0. As a consequence, bounded solutions to (3.10) exist only for
ω ≥ 0. As x → +∞, there exists a unique solution which converges to k =

√
2ω. All other

bounded solutions converge to k = −√
2ω.

Let W s
+ = (−∞, k∗+) be the set of initial values to (3.10) at x = 0 which converge to k =

−√
2ω for x → ∞, the slice of the stable manifold at x = 0. The solution with k(x = 0) = k∗+

then converges to k =
√

2ω. Analogously, we define W u− = (k∗−,+∞) as the set of initial
values that converge to k =

√
2ω for x → −∞, so that k(x = 0) = k∗− is the unique initial

value to the solution which converges to k = −√
2ω for x = −∞. We set γ =

√
2ω ≥ 0. It is

not difficult to see that

k∗+ = γ − ε

∫ ∞

0
G + O(ε2 + γ2), k∗− = −γ + ε

∫ 0

−∞
G + O(ε2 + γ2).(3.11)

We find bounded solutions whenever k∗+ − k∗− ≥ 0, that is, when

2γ ≥ ε

∫ ∞

−∞
G + O(ε2).(3.12)

If ε
∫
G < 0, bounded solutions exist for all values of γ. If ε

∫
G > 0, bounded solutions exist

only for γ ≥ ε
∫
G/2. The phase portrait in extended phase space is as depicted in Figure 5.

The construction of the bifurcation diagram can be adapted to the case where G(x) = o(1/x),
when the decay of G exceeds the decay of k, using a variation-of-constant formula. From the
heteroclinic bifurcation picture in Figure 5, one can readily infer the bifurcation diagram in
Figure 2.

We close with a short phenomenological interpretation of these findings. For ε < 0,
incoming waves with wavenumber k∞ are transmitted across the inhomogeneity with a phase
jump −ε

∫
G/k. For ε > 0, the incoming waves are transmitted as long as their wavenumber

is large enough, so that waves emitted by the source are pushed towards the inhomogeneity.
When the wavenumber of the incoming waves is less than or equal to the emitted wavenumber,
an interface between the incoming waves and the waves emitted by the source is pushed away
from the inhomogeneity, so that the final state is the pure source. The latter scenario is
the building block of the situation in two space dimensions, which we will address next in
section 3.3.

An interesting question arises when trying to understand this bifurcation from a path-
following point of view. Sources, as codimension-one heteroclinic orbits, are robust and can
be followed in parameters such as ε. While global path-following results for heteroclinic orbits
are not available, one can still try to continue the source ad hoc through ε = 0. The natural
continuation becomes apparent in the dual picture of eigenvalues of Schrödinger operators:
the eigenvalue corresponding to the source disappears in the essential spectrum. It can, how-
ever, be continued as a zero of the analytic continuation of the pointwise resolvent, or the
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Φx
Φ

ε>0

ε<0

x=- 8 x=+ 8

Φx
Φ

Φ-profile

Φx

ε>0x=- 8 x=+ 8

ΦxΦ-profile

Φx

ε>0x=- 8 x=+ 8
ΦxΦ-profiles

Figure 5. Schematic picture of the existence of sources and sinks in the eikonal approximation for small
potentials. Phase portraits are in the phase space of wavenumber (vertical) and physical space (horizontal and
compactified). Phase is irrelevant and suppressed. In the first picture, we find contact defects; in the second,
sources; and in the last picture, sinks and transmission defects, constructed from sources and sinks.

scattering function for ε < 0. It then corresponds to a resonance pole, exhibiting pure expo-
nential growth. In the ODE bifurcation picture for the eikonal equation, these resonance poles
correspond to a heteroclinic connection between strong unstable and strong stable manifolds.
The corresponding sinks separate two different kinds of sinks. For the first, regular type, with
large enough incoming wavenumber, the wavenumber decreases monotonically along the sink.
Sending in smaller wavenumbers, the profile changes to a nonmonotone profile, where wave-
numbers (and therefore group velocities) increase in magnitude while approaching the sink,
before they decrease close to the sink and change sign. The maximal wavenumber attained
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by those sinks is the one selected by the resonance pole. In this sense, even though the source
disappeared, the ghost of the source still selects a wavenumber in an intermediate range!

3.3. Moving sources—Conical and diffusive shock profiles. We now consider the case
of a moving inhomogeneity or, equivalently, the system

ut = D�u + cεux1 + f(u) + ε2g(εx, u),(3.13)

where x = (x1, y) ∈ R × R
n−1. With (1.5), we find the eikonal equation in a comoving frame

ΦT = dΔXΦ + cΦX1 −
1

2
Ω′′|∇XΦ|2 + Ḡ(X),(3.14)

with X = (X1, Y ) = ε(x1, y) and T = ε2t. The transformations

Ψ = Φ + bx1, b =
c

Ω′′ , and A = eaΨ, a = − 2d

Ω′′ ,(3.15)

give

AT = dΔA− c2

2Ω′′A + Ḡ(X)A.(3.16)

Coherent structures again correspond to eigenfunctions of the self-adjoint Schrödinger eigen-
value problem

−ωA = dΔA− c2

2Ω′′A + Ḡ(X)A.(3.17)

If we adjust the frequency for the Doppler shift ω̂ := ω− c2

2Ω′′ , we recover the eigenvalue problem
from the previous section. In particular, Proposition 3.1 gives wavenumber asymptotics

∇Φ = γ
x

|x| − be1 + O

(
1

|x|
)
,

where γ =
√−ω̂, b was defined in (3.15), and e1 ∈ R

n denotes the unit vector in the direction
of x1. Level lines are radial where the phase gradient is perpendicular to x, that is, when
γ− b(e1, x/|x|) = 0. This gives the typical sonic cone with opening angle ϑ = arccos(γ/b); see
also the numerical simulations in Figure 6 below.

A more typical scenario would be a source moving with speed c = O(1),

ut = D�u + cux1 + f(u) + ε2g(ε2x1, εy, u).(3.18)

We insert the ansatz

u(t, x) = u∗(Φ(T,X) − ωt; ε∇XΦ(T,X)) + ε2u1(−ωt, T,X), X = (ε2x1, εy), T = ε2t,

(3.19)

and find

ΦT = dΔY Φ + cΦX1 −
1

2
Ω′′|∇Y Φ|2 + Ḡ(X1, Y ).(3.20)
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Transforming

A = eaΦ, a = − 2d

Ω′′ ,

linearizes the equation, which results in

AT = dΔY A + cAX1 + Ḡ(X1, Y )A.

Coherent structures are solutions to the heat equation

−cAX1 = dΔY A + ωA + Ḡ(X1, Y )A.

Removing the exponential growth e−ωX1/c, induced again by a Doppler shift, and rescaling Y
and X1, we find

AX1 = ΔY A + Ḡ(X1, Y )A.

We focus on solutions with decay of the superimposed wavenumber, that is, decay of ∇(logA),
as X1 → −∞. This is equivalent to the shooting condition in the analysis of the preceding
section, where we imposed a wavenumber k at −∞ and deduced wavenumber and phase jump
at +∞. Such solutions can be written in the form A = 1 + B for a localized B, which solves
the fixed point equation

B(X1, ·) =

∫ X1

−∞

(
T (X1 − x1)Ḡ(x1, ·)(1 + B(x1, ·))

)
dx1.

Here, T (ξ) is the heat semigroup, given as a convolution operator

(T (ξ)f)(y) =
1√
4πξ

∫

R

e
− (y−y′)2

4ξ f(y′)dy′.

It is easy to see that localization of Ḡ, for instance, Ḡ ∈ L1, implies that there exists a unique
solution B such that B decays as X1 → −∞. For X1 → +∞, this unique solution will
approach a self-similar solution to the heat equation with asymptotics

B(X1, Y ) = B∗
1√

4πX1
e
− Y 2

4X1 (1 + o1/X1
(1))

in L1 ∩ L∞. In particular, level lines are close to parabolas, Y 2 − 1
2X1 logX1 = const. as

X1 → ∞. We note that these results should be valid only in an intermediate regime until
the next-order correction in the derivation of the modulation equation becomes relevant. We
therefore expect a crossover at a finite, but large, distance from a parabola to the conical
sector described in section 3.1.

The simulations in Figure 6 confirm these predictions in the setting of a reaction-diffusion
system with a homogeneous oscillation. In particular, we observe the conical and parabolic
profile for weak and strong drift, respectively.
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Figure 6. Simulations of (1.11), ε = 0.2, with parameters from the introduction; the horizontal drift is
c = 1.34 (left) and c = 2.68 (right). Plotted is the asymptotic state when starting with a spatially homogeneous
initial condition. Clicking on the above images displays the accompanying movies (66695 05.mpg [1.7MB] and
66695 06.mpg [1.5MB]) of the time evolution.

4. Discussion.

4.1. Summary. We proposed to study inhomogeneities in oscillatory media as an example
for the creation and annihilation of coherent structures. Motivated by the one-dimensional
case, we emphasized group velocities in the far field as the primary characteristic. In the
examples we found we were able to compute these group velocities. In the simplest radial
case, group velocities are radial, and coherent structures are either sources, sinks, or contact
structures. In two (or fewer) space dimensions, small inhomogeneities can create sources.
Contact defects are always weak sinks, and group velocities at finite but large distance point
inward. In more than two space dimensions, small inhomogeneities create weak sources or
sinks, with group velocities converging to zero in the far field. In fact, the phase jump between
the center and infinity is finite, so that typically only a finite number of rings are observed
in physical space. Our study of moving inhomogeneities revealed more subtle effects. Group
velocities may point outward only in a sector and inward along the complement. In analogy
to the one-dimensional situation, we would refer to these structures as transmission defects,
since waves both enter and leave a fixed neighborhood of the defect.

4.2. Fluxes. Instead of retaining only the sign of (cg, x/|x|), that is, inward versus outward
transport, we may look at the group velocity as a map from Sn−1 to R

n, on large centered
spheres. In most of our cases, this map converges as the size of the sphere tends to infinity.
There are then various ways to extract quantitative information from this map in order to
characterize the coherent structures. For instance, we may define the net flux J associated
with the phase of a coherent structure Φ as

J(Φ) = lim
R→∞

(Rn−1Vol (Sn−1))−1

∫

|x|=R
j(x)dσ with j(x) =

(
cg(x),

x

|x|
)
,

where σ is the (n − 1)-dimensional Lebesgue surface element on |x| = R ⊂ R
n. In addition

to the distinction between sources, J > 0, contact defects, J = 0, and sinks, J < 0, J also
retains the strength of the source, and thus J ∼ ε in one space dimension and J ∼ e−1/ε in two
space dimensions, where we have neglected normalizing constants. This can be readily seen
from our main results on the expansion for the wavenumber k in the far field. Indeed, cg ∼ k

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66695_05.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66695_06.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66695_05.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66695_06.mpg
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since ω ∼ k2, which immediately gives the expansion using Theorem 1.1 in the radial case
and Proposition 3.1 in the case of the eikonal approximation; see also the remark at the end
of section 3.1. As a limit, J does not retain the correction terms which distinguish between
weak sources and sinks. For the transmission defects that we discussed in the case of slowly
moving sources, the mean drift cancels in the integral so that we are lead to interpreting the
case εM > 0 as a source rather than a transmission defect: transmission in the horizontal
direction is superimposed by a source term, visible in particular in the vertical direction.
For inhomogeneities moving with finite speed, it is not difficult to see that the limit actually
vanishes: group velocities generated by the inhomogeneity decay almost everywhere.

4.3. Degrees. A more phenomenological classification would look at constant level lines
of Φ, or u, directly. We showed that level lines are expanding circles, with bounded and
converging correction terms in case of anisotropic inhomogeneities. In case of moving inho-
mogeneities, we found cones and parabolas in the far field. Level lines need not form closed
curves, as the case of spiral waves illustrates. In our case, however, it is not difficult to see
that spirals cannot form. Indeed, one can define the topological degree of the defect as the
degree iphase of the phase as a map from a large circle into a circle [25]. Since the phase is
everywhere defined in our case of weak inhomogeneities, this map extends to a map from the
disc into the circle so that the degree vanishes. Note that fluxes do not distinguish between
target patterns and spiral waves, while the topological degree does not distinguish between
sources and sinks. Another degree igrad would be the Brouwer degree of cg. If j > 0 pointwise
(source), then igrad = 1, and if j < 0 pointwise, then igrad = −1, regardless of iphase. For a
plane wave, igrad = 0. Note, however, that igrad need not be defined for all coherent structures,
since group velocities may vanish even in the far field.

4.4. Stability. Using the methods employed to prove existence, one can also track eigen-
values of the linearization. We conjecture that all coherent structures discussed here are stable.
In the eikonal approximation, this can be seen after a Cole–Hopf transformation: solutions to
the heat equation with source term approach the eigenfunction with the largest eigenvalue,
exponentially when there is a spectral gap. For the reaction-diffusion systems, we expect that
the methods developed in section 2 should give spectral stability. We are not aware of non-
linear stability proofs for sources in reaction-diffusion system; see, however, [7] for a related
result for a transmission defect.

5. Appendix. We prove Proposition 3.1. Our proof follows the ideas outlined in section 2,
setting up a dynamical systems framework where asymptotics are a consequence of expansions
on stable and unstable manifolds. We rewrite (3.6) as

Arr +
1

r
Ar +

1

r2
Aϕϕ + G(r, ϕ)A− γ2A = 0, ω = −γ2

in the form

Ar = MB,

Br = MA− γ2

r
M−2B −M−1GA,(5.1)
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where M is the unbounded self-adjoint operator

M =

√

− 1

r2
∂ϕϕ + γ2 ≥ γ,

and A,B ∈ L2(S1). We set w± = A ± B. Since M is self-adjoint and positive, and the
correction terms are bounded as operators, with norm O(r−1), by the assumptions on Ḡ, this
equation possesses an exponential dichotomy [14]: there is Ψ(r) : L2 → L2, Ψ = O(r−1),
so that any solution that is bounded as r → ∞ satisfies w+ = Ψw−. We end up with an
evolution equation for w− which describes the asymptotics of any bounded solution:

w′
− = L−(r)w−, L− = −M + N , with N bounded, N = −γ2

2r
M−2 + O(r−(1+β)).

We start analyzing the asymptotics neglecting the bounded O(r−(1+β))-terms contained in N .
The truncated equation is diagonal in Fourier modes w− =

∑
k∈Z

wke
ikϕ,

(wk
−)′ = Lk

−w
k
−, Lk

− = −γ − 1

2r
+ O(r−(1+β)).

We next set wk :=
√
reγrwk− and find

w′
k =

(

γ −
√

k2

r2
+ γ2

)

wk +
k2

2r(k2 + γ2r2)
wk + O(r−(1+β)w),

or more briefly,

w′
k =

1

r2
ϕ

(
1

r
; k

)
wk + O

(
r−(1+β)w

)
.

Error terms are coupling all wk but are uniformly bounded as operators on �2. Since the
right-hand side is O(r−(1+β)), we can introduce the compactified time variable τ = −1/(βrβ)
and find

ẇk = τ1−βϕ(τ ; k)wk + O(w).

More precisely, we have

ϕ(τ ; k) = τ1−β(γ −
√

γ2 + τ2k2) + τ
k

2(k2τ2 + γ2)
+ O

(
τ−(1+β)G

(
−1

τ

))
.

Here we assume β ≤ 1 without loss of generality. The flow map from a fixed time τ = −1/r0

to τ = 0 is readily verified to be bounded (and actually differentiable in r0), using the explicit
representation in Fourier modes and a variation-of-constant formula. This provides us with
the desired limiting profile w, and, substituting back, with asymptotics for w−, w+, u, and
v. The gradient estimates readily follow from the same argument, carried out in the space �12,
with

∑
k |wk|2|k|2 < ∞.

Acknowledgments. A. Scheel acknowledges discussions with D. Aronson and O. Zeitouni
on properties of Schrödinger operators.
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Patterns and Features of Families of Traveling Waves in Large-Scale Neuronal
Networks∗
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Abstract. We study traveling wave solutions of a system of integro-differential equations which describe the ac-
tivity of large-scale networks of excitatory neurons on spatially extended domains. The independent
variables are the activity level u of a population of excitatory neurons, which have long range con-
nections, and a recovery variable v. We have found a critical value of the parameter β (β∗ > 0) that
appears in the equation for v, at which the eigenvalues of the linearization of the system around the
rest state (u, v) = (0, 0) change from real to complex. In contrast to previous studies which analyzed
properties of traveling waves when the eigenvalues are real, we examine the range β > β∗, where
the eigenvalues are complex. In this case we show that there is a range of parameters over which
families of wave fronts and 1-pulse and more general N-pulse waves can coexist as stable solutions.
In two space dimensions our numerical experiments show how single-ring and multiring waves form
in response to a Gaussian-shaped stimulus. With a spatially invariant coupling function, outwardly
propagating waves can be periodically produced when a ring-shaped wave receives an appropriately
timed perturbation. When the coupling is inhomogeneous the periodic production of waves eventu-
ally breaks down, and a stable one-armed rotating spiral wave emerges and fills the entire domain.
It is noteworthy that all of these phenomena can be initiated at any point in the medium, that they
are not driven by an underlying time dependent periodic pacemaker, and that they do not depend
on the persistent or periodic presence of an external input.
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1. Introduction. Functional behavior of the central nervous system includes such diverse
phenomena as information processing from different receptor zones, sleep, and the control
of vital autonomic functions [16, 28, 29, 38, 52]. These processes require coordination be-
tween ensembles of cells organized into large-scale spatially extended neuronal networks. The
physical laws that govern the behavior of large-scale networks are different from those for a
system consisting of small numbers of cells [14, 26, 33, 53]. Considerable attention has been
given to the study of traveling waves of activity in spatially extended neuronal networks. This
includes both experimental [4, 5, 6, 10, 18, 23, 32, 35, 36, 43, 45, 47, 51, 55] and theoretical
[1, 2, 12, 13, 17, 19, 20, 22, 24, 25, 31, 37, 38, 40, 54, 56] studies.

In this paper we investigate properties of traveling wave solutions of the excitable spatially
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extended neuronal field model

∂u(x, t)

∂t
= −u(x, t) − v(x, t) +

∫ ∞

−∞
w(x − x′)f(u(x′, t) − θ)dx′,

∂v(x, t)

∂t
= ε(βu(x, t) − v(x, t)).

(1.1)

Systems of this form were introduced by Pinto and Ermentrout [40] to model the spread of
excitation waves in slices of brain cortex in which synaptic inhibition is pharmacologically
blocked [8, 10, 30, 55]. The variable u denotes the activity level of the population of excita-
tory neurons with long-range connections. The equation for v represents a negative feedback
recovery mechanism in which “the negative feedback could represent spike frequency adap-
tation, synaptic depression or some other process that limits excitation of the network” [40].
The coupling function w is positive, continuous, and integrable. The firing rate function f is
nonnegative and sigmoidal-shaped. The parameters ε and β are positive and control the rate
of change of v; θ is a positive constant which denotes the threshold level for u. In order to
allow for comparison of our results with those of previous studies, we follow [2, 19, 40, 46] and
assume for simplicity that the coupling and firing rate functions are

w(x) =
1

2
e−|x| and f(u − θ) = H(u − θ) ∀x, u ∈ R,(1.2)

where H is the Heaviside function defined by

H(u − θ) =

{
1 ∀u ≥ θ,

0 ∀u < θ.
(1.3)

Pinto and Ermentrout investigated the existence of 1-pulse traveling waves in parameter
regimes such that the linearization of (1.1) around the rest state (u, v) = (0, 0) has real
eigenvalues. Recently, Richardson, Schiff, and Gluckman [46] made use of these results in
their study of the effects of electric fields on 1-pulse traveling waves in mammalian cortex.
The existence and stability of solutions for more general couplings has also been studied
[12, 42, 48].

In this paper we extend the results described above and analyze traveling waves in pa-
rameter regimes where the linearization of the system around the rest state has complex
eigenvalues. In particular, when ε > 0 the eigenvalues of the linearization change from real to

complex as β passes through the critical value β∗ = (ε−1)2

4ε from below. We focus our attention
on the range 0 < ε < 1 and β > β∗, and find that the dynamics of (1.1) are richer than in
the real eigenvalue case. Furthermore, these dynamics closely resemble electrophysiological
phenomena observed in clinical and experimental studies [38]. Our specific aims and results
are summarized below.

I. In one space dimension (sections 2–5) we study families of wave fronts and 1-pulse and
more general N-pulse traveling waves. There is a range of parameters where these different
types of waves can coexist as stable solutions. Our analysis explains why multipulse waves
are expected to exist only in the complex eigenvalue regime. Because the eigenvalues are now
complex, technical difficulties arise which make existence proofs more challenging than in the
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real eigenvalue case. These difficulties lead to several open problems which will be stated as
we proceed.

II. We extend our investigation to two space dimensions in section 6. In analogy with the
one dimensional case, we study both single- and multipulse traveling waves. Classical in vivo
experiments showed that such waves exist in feline cortex [4, 5, 6], and recently they have
been discovered also in the intact brain of freely moving mice [18]. They have also been found
in both tangential and coronal brain slice experiments [30, 55]. Our numerical experiments
will show how single- and multiring waves form and propagate outward from a point of initial
stimulus. When an appropriately timed stimulus breaks one of these rings, a new solution
emerges which periodically emits ring-shaped waves. When the coupling is inhomogeneous we
will see how the periodic production of outwardly propagating waves eventually breaks down
and the solution evolves into a stable one-armed spiral wave which fills the entire domain.

III. Conclusions and directions for future research are given in section 7. The appendix
(section 8) contains an analysis of asymptotic behavior of solutions in the real eigenvalue
regime.

2. Traveling waves. In this section we begin our study of traveling wave solutions of
(1.1). These have the form (u, v) = (U(z), V (z)), where z = x + ct, and satisfy

cU ′(z) = −U − V +

∫ ∞

−∞
w(z − z′)H(U(z′) − θ)dz′,

cV ′(z) = ε(βU − V ),

(2.1)

where w(z − z′) = 1
2e−|z−z′|. It is easily verified that (2.1) is equivalent to

c2U ′′ + c(1 + ε)U ′ + ε(β + 1)U = c
d

dz

∫ ∞

−∞
w(z − z′)H(U − θ)dz′ + ε

∫ ∞

−∞
w(z − z′)H(U − θ)dz′.

(2.2)

Linearizing (2.2) around the rest state U = 0, we obtain

c2U ′′ + c(1 + ε)U ′ + ε(β + 1)U = 0.(2.3)

Following [42], we assume without loss of generality that c ≥ 0. When c > 0 the eigenvalues
associated with (2.3) are

μ± =
λ±

c
=

−(ε + 1) ± i
√

4βε − (ε − 1)2

2c
.(2.4)

We restrict our attention to the regime 0 < ε < 1. From this and (2.4) it follows that

μ± are real ⇐⇒ 0 < β ≤ β∗ =
(ε − 1)2

4ε
.(2.5)

For real eigenvalues, properties of traveling waves were examined in [2, 19, 20, 40, 42, 46].
Here we extend these results and study traveling waves when μ± are complex. When c > 0
we will make use of the quantities

α = Re(μ±) =
−(ε + 1)

2c
< 0 and γ = Im(μ±) =

√
4εβ − (ε − 1)2

2c
> 0.(2.6)
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When μ± are complex, underlying oscillatory terms lead to technical difficulties which make
rigorous existence proofs especially challenging. These difficulties suggest several open prob-
lems which will be discussed as we proceed.

Our investigation indicates that stable traveling waves exist when

0 < ε < 1, 0 < θ < min

(
2ε

(ε + 1)2
,

1

4(ε + 1)

)
, β > β∗ =

(ε − 1)2

4ε
.(2.7)

The first two sets of inequalities in (2.7) are mild restrictions which allow technical arguments
to be completed, and the third inequality means that μ± are complex. Throughout the
paper we perform numerical experiments for parameters which satisfy (2.7). An important
implication of (2.7) is that

β∗ =
(ε − 1)2

4ε
<

1

2θ
− 1.(2.8)

For example, in section 3 we will see that a branch of wave fronts comes into existence at the
critical value β = 1

2θ − 1. In our analysis of 1-pulse traveling waves in section 4 it is shown
that infinitely many wave speeds are possible at this same value of β. More general N-pulses
are described in section 5.

3. Wave fronts. In this section we analyze properties of wave front solutions when the
eigenvalues μ± are complex. These solutions satisfy

c2U ′′ + c(1 + ε)U ′ + ε(β + 1)U = c
d

dz

∫ ∞

0
w(z − z′)dz′ + ε

∫ ∞

0
w(z − z′)dz′,(3.1)

where c > 0, and

⎧
⎪⎪⎨

⎪⎪⎩

U(z) < θ ∀z < 0,
(U(z), U ′(z)) → (0, 0) as z → −∞,
U(0) = θ, U(z) > θ ∀z > 0,
U ′(z) → 0 as z → ∞.

(3.2)

Thus far we do not have a complete proof of existence of wave fronts when μ± are complex.
However, a combination of analysis and numerical experiments suggests that two branches of
solutions exist. To understand how these results are obtained we devote the remainder of this
section to the following:

A. Analysis of solutions on (−∞, 0].
B. Analysis of solutions on (0,∞).
C. Numerical evidence for the existence of two branches of solutions.
D. Open problems.

A. Analysis of solutions on (−∞, 0]. To begin we recall that w(x) = 1
2e−|x|. Then (3.1)

becomes

c2U ′′ + c(1 + ε)U ′ + ε(β + 1)U = g(z),(3.3)
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where

g(z) =

{
.5(c + ε)ez ∀z ≤ 0,

.5(c − ε)e−z + ε if z > 0.
(3.4)

On (−∞, 0] the general solution of (3.3) is

U0(z) = b1e
αz cos(γz) + b2e

αz sin(γz) + P0(z),(3.5)

where b1 and b2 are constants, and P0(z) is the particular solution

P0(z) =
.5(ε + c)

c2 + (1 + ε)c + ε(β + 1)
ez ∀z ≤ 0.(3.6)

The oscillatory terms b1e
αz cos(γz) and b2e

αz sin(γz) in (3.5) are due to μ± being complex.
Recall from (2.6) that α = Re(μ±) < 0. Thus, to satisfy the condition U0(−∞) = U ′

0(−∞) =
0, we conclude that b1 = b2 = 0, and (3.5)–(3.6) reduce to

U0(z) =
.5(ε + c)

c2 + (1 + ε)c + ε(β + 1)
ez ∀z ≤ 0.(3.7)

Substituting the condition U0(0) = θ into (3.7) gives the algebraic equation

.5(ε + c)

c2 + (1 + ε)c + ε(β + 1)
= θ.(3.8)

It follows from (3.7)–(3.8) that

U0(z) = θez ∀z ≤ 0.(3.9)

Note that (U0(−∞), U ′
0(−∞)) = (0, 0), as required by (3.2). Furthermore, U0(z) has no

oscillatory component and is strictly increasing on (−∞, 0] (Figure 1, left panel).

.14
U

θ

z0 5

U0

U1

4 4215 β

4
c

2

0

c2

c1

Figure 1. Left panel: U0 and U1 when ε = θ = .1, β = 4, and c = c1. Right panel: Wave speeds c1 and
c2 versus β when (ε, θ) = (.1, .1) (see (3.12)). Note that the positive branch of c1 begins at the critical value
β = 1

2θ
− 1 = 4. The two branches meet at β ≈ 42 where the functions c1 and c2 become complex.
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B. Analysis of solutions on (0,∞). When z > 0 the first step in analyzing solutions is
to solve (3.8) for wave speed c. This gives the two values (Figure 1, right panel)

c1 =
.5 − θ(ε + 1) −

√
(.5 − θ(1 + ε))2 − 4εθ (θ(β + 1) − .5)

2θ
,(3.10)

c2 =
.5 − θ(ε + 1) +

√
(.5 − θ(1 + ε))2 − 4εθ (θ(β + 1) − .5)

2θ
.(3.11)

Recall from (2.7) that 0 < ε < 1 and 0 < θ < 1
4(ε+1) . This and (3.10)–(3.11) imply that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c1 < 0 and c2 > 0 if β∗ < β < 1
2θ − 1,

c1 = 0 and c2 > 0 if β = 1
2θ − 1,

0 < c1 ≤ c2 if 1
2θ − 1 < β ≤ 1

2θ − 1 + 1
4εθ2 (.5 − θ(1 + ε))2 ,

c1 and c2 are complex if β > 1
2θ − 1 + 1

4εθ2 (.5 − θ(1 + ε))2 .

(3.12)

When z > 0 the solution of (3.3) is

U1 = k1e
αz cos(γz) + k2e

αz sin(γz) + P1(z),(3.13)

where α < 0 and γ > 0 are defined in (2.6), and P1(z) is the particular solution

P1(z) =
.5(c − ε)

c2 − (1 + ε)c + ε(β + 1)
e−z +

1

β + 1
.(3.14)

To preserve continuity at z = 0 we require that (U1(0), U ′
1(0)) = (U0(0), U ′

0(0)). This and
(3.13)–(3.14) show that k1 and k2 are uniquely defined by

k1 = θ − P1(0) and k2 =
1

γ

(
θ(1 − α) − P1

′(0) + αP1(0)
)
.(3.15)

To complete the proof that a solution satisfies all of the conditions in (3.2) for a traveling
wave front we need to show that U1(z) (Figure 1, left panel) satisfies

U1(z) > θ ∀z > 0 and lim
z→∞U ′

1(z) = 0.(3.16)

C. Numerical evidence for the existence of two branches of solutions. Our numerical
experiments suggest that conditions (3.16) are satisfied along two branches of solutions (see
Figure 2). The lower branch Γ−

0 corresponds to c = c1, and the upper branch Γ+
0 corresponds

to c = c2. Below we describe existence and stability properties of solutions along each branch.
The lower branch. When c = c1 it follows from (3.13), (3.14), and (3.15) that

U1(z) = k1e
αz cos(γz) + k2e

αz sin(γz) +
.5(c1 − ε)

(c1)2 − (1 + ε)c1 + ε(β + 1)
e−z +

1

β + 1
∀z > 0.

(3.17)
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Γ0
+

c

Γ0
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(6.45,3.83)

β∗ 2θ
1 11 θ 1

.14
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θ

z
0 5

β=4

β=9
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U

θ
z

0 24

β=6

β0=6.45

Figure 2. Upper panel: Γ−
0 and Γ+

0 when (ε, θ) = (.1, .1). The horizontal axis gives β values, and the
vertical axis represents the wave speed c. The eigenvalues μ± become complex at β∗ = 2.025. Lower left:
solutions on Γ−

0 at its endpoints β = 1
2θ

− 1 = 4 and β = 1
θ
− 1 = 9. The solution at β = 4 is the stationary

solution defined in (3.21). Lower right: solutions on Γ+
0 at β = 6 and β = 6.45 The solution at β = 6 is a

wave front solution since it remains above θ on (0,∞). The solution at β = 6.45 is not a wave front since
it is tangent to U = θ at z ≈ 24. When β > 6.45 the functions dip below θ and therefore cannot be wave
fronts. Thus, Γ+

0 ends at β = 6.45. Clicking on the top image displays the accompanying movie (66638 01.mpg
[1.7MB]) showing wave formation when β = 6.45.

If U1(z) > θ ∀z > 0, then (3.17) implies that U ′
1(z) → 0 as z → ∞, and therefore (3.16) holds.

Thus, it is sufficient to show that

U1(z) > θ ∀z > 0.(3.18)

However, it is difficult to prove (3.18) since the oscillatory component k1e
αz cos(γz) +

k2e
αz sin(γz) of (3.17) can cause U1(z) to dip below the threshold level θ at some point

in (0,∞). Our numerical experiments indicate that there is an entire branch Γ−
0 (Figure 2) of

traveling wave front solutions satisfying

U(z) =

{
θez < θ ∀z < 0,

U1(z) > θ ∀z > 0.
(3.19)

Along Γ−
0 it follows from (3.10) and (3.12) that

c1 → 0+ as β →
(

1

2θ
− 1

)+

.(3.20)

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66638_01.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66638_01.mpg
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Thus, the lower end of Γ−
0 begins at β = 1

2θ − 1, where c1 = 0 (Figure 2, upper panel). At
this point the independent variable z = x + ct reduces to z = x, and we obtain the stationary
solution

U(x) =

{
θex ∀x ≤ 0,
θ
2

(
2 − e−x

) ∀x > 0.
(3.21)

It follows from (3.21) that U is increasing on the entire interval (−∞,∞), and that all of
the requirements in (3.2) are satisfied. To determine the upper end of Γ−

0 we substitute the
condition U(∞) ≥ θ into (3.19) and obtain U(∞) = 1

β+1 ≥ θ. This implies that the branch

Γ−
0 cannot extend past β = 1

θ −1. Figure 2 (lower left) shows solutions at the two endpoints of
Γ−

0 when (ε, θ) = (.1, .1). At the lower end where β = 1
2θ −1 = 4 the solution is the monotonic

stationary front U(x) given in (3.21). At the upper end where β = 1
θ − 1 = 9 the solution is

no longer monotone, but it does remain above the threshold level θ ∀z > 0. For each β ∈ [4, 9]
our computations indicate that U(z) > θ ∀z > 0. Thus, we conjecture that the interval of
existence of Γ−

0 is the entire interval [ 1
2θ −1, 1

θ −1] = [4, 9]. Our numerical study also indicates
that solutions on Γ−

0 are unstable.

Remarks. To obtain Γ−
0 we kept (ε, θ) fixed and let β increase from the critical value

β0 = 1
2θ − 1, where c1 = 0 and the solution is the stationary front defined in (3.21). The

eigenvalues μ± are complex at β = β0 since (ε, θ) satisfy (2.7). It is interesting to contrast
this bifurcation result with that in [2], where a similar stationary solution is found when (ε, θ)
are chosen so that μ± are real. In that study (θ, β) are kept fixed, and counter propagating
fronts bifurcate from the stationary solution as ε varies. It would be interesting to determine
whether a similar phenomenon occurs when μ± are complex.

The upper branch. We let Γ+
0 denote the branch of wave fronts corresponding to c = c2

(Figure 2, upper panel). Our study of the example (ε, β) = (.1, .1) indicates that Γ+
0 extends

below β = β∗ down to β = 0. When 0 < β ≤ β∗ the eigenvalues μ± are real, and solutions
along Γ+

0 are monotone for large z. When β > β∗ and the eigenvalues are complex, solutions
are oscillatory when z > 0 and have the form

U(z) =

{
θez ∀z ≤ 0,

k1e
αz cos(γz) + k2e

αz sin(γz) + .5(c2−ε)
(c2)2−(1+ε)c2+ε(β+1)

e−z + 1
β+1 ∀z > 0,

(3.22)

where α, γ, k1, and k2 are evaluated at c = c2. As we noted above, to complete the proof that
a solution is a wave front we need to prove that U(z) > 0 ∀z > 0. Again, this is difficult to
prove when β > β∗ since the oscillatory component of (3.22) can cause the function U to dip
below the threshold level θ at some positive z. In Figure 2 (lower right panel) the oscillatory
characteristics of U are clearly visible. The solution at β = 6 qualifies as a wave front since
it remains above θ on the entire interval (0,∞). However, when β = 6.45 the solution is
tangent to U = θ at z ≈ 21; hence it does not satisfy the definition of a wave front. Likewise,
when β > 6.45 the function U cannot be a wave front since it dips below θ at a finite positive
value of z. Thus, we conjecture that the interval of existence of Γ+

0 is (0, 6.45). Along Γ+
0 our

numerical study also indicates that solutions are stable.



WAVE PHENOMENA IN NEURONAL NETWORKS 271

D. Open problems. It remains an open problem to prove the existence of solutions along
the two branches Γ−

0 and Γ+
0 described above. In particular, whether μ± are real or complex,

new methods are needed in order to overcome the technical difficulties in showing that solu-
tions satisfy U(z) > θ on the entire interval (0,∞). Although generalizations and insightful
approximations have previously been given [2, 40], this property has not yet been verified for
any set of parameters, even in the real eigenvalue regime. In the appendix we consider param-
eter values where μ± are real and develop a comparison method to address similar issues that
arise in the analysis of 1-pulse solutions. It is hoped that an extension of these techniques will
be of help in completing the proof of existence of wave fronts for wider parameter regimes,
and also for more general coupling and firing rate functions. The proof of stability of solutions
along Γ+

0 and the instability of solutions along Γ−
0 also remain an open problem. It is possible

that the analysis of stability properties might be accomplished by extensions of Evans function
methods developed in [12, 42, 48].

4. 1-pulse traveling waves. In this section we analyze properties of 1-pulse traveling
waves when the eigenvalues μ± are complex. These solutions satisfy

c2U ′′ + c(1 + ε)U ′ + ε(β + 1)U = c
d

dz

∫ a

0
w(z − z′)dz′ + ε

∫ a

0
w(z − z′)dz′,(4.1)

where c > 0, and

⎧
⎨

⎩

U(0) = U(a) = θ for some a = a(c) > 0,
U(z) �= θ if z �= 0 or z �= a,
(U(z), U ′(z)) → (0, 0) as |z| → ∞.

(4.2)

Following [42], we assume without loss of generality that c > 0. Because w(x) = 1
2e−|x|,

equation (4.1) can be written in the equivalent form

c2U ′′ + c(1 + ε)U ′ + ε(β + 1)U = f(z),(4.3)

where

f(z) =

⎧
⎪⎨

⎪⎩

.5(c + ε)ez(1 − e−a) ∀z ≤ 0,

.5c
(
e−z − e(z−a)

)
+ .5ε

(
2 − e−z − e(z−a)

)
if 0 < z < a,

.5(ε − c)(ea − 1)e−z ∀z ≥ a.

(4.4)

We make use of both (4.1) and (4.3) to analyze 1-pulse waves. The remainder of this section
consists of the following:

A. the construction of a family of stationary 1-pulse waves,
B. the statement and proof of Theorem 4.1 concerning the coexistence of infinitely many

1-pulse waves for positive wave speeds,
C. a description of open problems based on the results of numerical experiments.
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A. Stationary solutions. We set c = 0 in (4.1) and look for time independent solutions

U(x) =
1

β + 1

∫ a

0
w(x − x′)dx′,(4.5)

which satisfy (4.2). Setting w(x − x′) = 1
2e−|x−x′|, we define a branch of stationary pulse-

shaped solutions (Figure 3) by

U(x) =

⎧
⎪⎪⎨

⎪⎪⎩

.5(1−e−a)
β+1 ex ∀x ≤ 0,

.5
β+1 (2 − e−x − ex−a) if 0 < z < a,

.5(ea−1)
β+1 e−x ∀x ≥ a,

(4.6)

where

a = ln

(
1

1 − 2θ(β + 1)

)
∀β ∈

(
0,

1

2θ
− 1

)
.(4.7)

A similar family of stationary solutions was found by Pinto, Jackson, and Wayne [42]. Figure 3
illustrates specific solutions for the representative parameter set (ε, θ) = (.1, .1) and for β
values where μ± are complex. Our numerical experiments indicate that the solutions defined
by (4.5)–(4.6) are unstable. Again, an extension of the Evans function methods in [12] might
help prove this conjecture.

U

.15

θ

β=4
β=3.9

β=3

1.6 3.91

x

Figure 3. Stationary 1-pulse wave solutions defined by (4.5)–(4.6). Lower solution: (β, a) = (3, 1.6).
Middle solution (β, a) = (3.9, 3.91). Upper solution: as a → ∞, the stationary solutions evolve into a limiting
monotonic solution at β = 1

2θ
− 14. This limiting solution is the stationary wave front defined in (3.21).

B. Positive wave speeds. When c > 0 our goal is to show that infinitely many 1-pulse
traveling waves can coexist when the eigenvalues are complex. We prove the following result.

Theorem 4.1. Let (ε, θ) satisfy (2.7), and let β = 1
2θ − 1. There are infinitely many values

c ∈ (c1, c2) and a(c) > 0, and corresponding solutions U of (4.3)–(4.4), such that

U(0) = U(a(c)) = θ.(4.8)

Furthermore, U(z) satisfies

U(z) = θez ∀z ≤ 0.(4.9)
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Remarks. To prove that the solutions described in Theorem 4.1 are truly 1-pulse traveling
waves we must also prove that z = 0 and z = a(c) are the only solutions of U(z) = θ, and
that (U(z), U ′(z)) → (0, 0) as z → ∞. Because the eigenvalues are now complex, technical
difficulties arise which make the verification of these properties a challenging problem. Further
details of this and related open problems are discussed following the proof of the theorem.

Proof of Theorem 4.1. The first step is to consider the interval (−∞, 0), where (4.3)–(4.4)
reduces to

c2U ′′ + c(1 + ε)U ′ + ε(β + 1)U = .5(c + ε)(1 − e−a)ez ∀z ≤ 0.(4.10)

On (−∞, 0) the general solution of (4.10) is

U2 = h1e
αz cos(γz) + h2e

αz sin(γz) + P2(z),(4.11)

where P2(z) is the particular solution

P2 =
.5(ε + c)(1 − e−a)

c2 + (1 + ε)c + ε(β + 1)
ez ∀z ≤ 0.(4.12)

We need to show that there are values c > 0 and a > 0 such that

U2(z) < θ ∀z ∈ (−∞, 0), U2(−∞) = U ′
2(−∞) = 0, and U2(0) = θ.(4.13)

Recall from (2.6) that α = Re(μ±) < 0. Thus, to satisfy the condition U2(−∞) = U ′
2(−∞) = 0

we conclude that h1 = h2 = 0, and therefore

U2(z) =
.5(ε + c)(1 − e−a)

c2 + (1 + ε)c + ε(β + 1)
ez ∀z ≤ 0.(4.14)

Substituting the requirement U2(0) = θ into (4.14) leads to

.5(ε + c)(1 − e−a)

c2 + (1 + ε)c + ε(β + 1)
= θ.(4.15)

Combining (4.14) and (4.15) gives U2(z) = θez ∀z ≤ 0 (Figure 4).
The interval (0, a). On the interval (0, a) the problem (4.3)–(4.4) reduces to

c2U ′′ + c(1 + ε)U ′ + ε(β + 1)U = .5c
(
e−z − e(z−a)

)
+ .5ε

(
2 − e−z − e(z−a)

)
.(4.16)

The general solution of (4.16) is

U3(z) = m1e
αz cos(γz) + m2e

αz sin(γz) + P3(z),(4.17)

where α and γ are defined in (2.6) and P3 is the particular solution

P3(z) =
.5(c − ε)

c2 − (1 + ε)c + ε(β + 1)
e−z − .5(ε + c)

c2 + (1 + ε)c + ε(β + 1)
ez−a +

1

β + 1
.(4.18)
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Figure 4. Left panel: 1-pulse traveling wave when ε = θ = .1, β = 1
2θ

− 1 = 4, c ≈ c2 = 3.9, and a ≈ 25.
The component U2 of the solution is defined by U2(z) = θez ∀z ≤ 0. The component U3(z) is defined on [0,∞)
and has the form given by (4.17)–(4.18). Right panel: blow up of the solution.
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Figure 5. Left panel: a(c) defined in (4.20) when (ε, θ) = .(1, .1) and β = 1
2θ

− 1 = 4. Right panel: g(c)
defined in (4.20).

We need to show that there are values c > 0 and a = a(c) > 0 which satisfy the algebraic
condition (4.15) such that

U3(0) = U2(0) = U ′
3(0) = U ′

2(0) = U3(a) = θ.(4.19)

We begin by solving (4.15) for e−a. This gives

e−a(c) =
.5(ε + c) − θ

(
c2 + (1 + ε)c + ε(β + 1)

)

.5(ε + c)
.(4.20)

Since the right-hand side of (4.20) is zero at c = c1 and c = c2, it follows (see Figure 5) that

a(c) > 0 ∀c ∈ (c1, c2) and lim
c→c−2

a(c) = lim
c→c+1

a(c) = ∞.(4.21)

To preserve continuity at z = 0 we require that (U3(0), U ′
3(0)) = (U2(0), U ′

2(0)) = (θ, θ).
Combining this with (4.17) and (4.18) shows that the coefficients m1 and m2 in (4.17) are
uniquely defined by

m1 = θ − P3(0) and m2 =
1

γ

(
θ(1 − α) − P ′

3(0) + αP3(0)
)
.(4.22)



WAVE PHENOMENA IN NEURONAL NETWORKS 275

We need to show that there are infinitely many speeds c ∈ (c1, c2), and corresponding values
a = a(c) > 0 such that

U3(a(c)) = θ.(4.23)

Substituting (4.17) into (4.23) gives

m1e
αa(c) cos(γa(c)) + m2e

αa(c) sin(γa(c)) + P3(a(c)) = θ.(4.24)

Thus, to prove that 1-pulse traveling waves exist, it is necessary to show that there are values
c > 0 such that the function

g(c) = m1e
αa(c) cos(γa(c)) + m2e

αa(c) sin(γa(c)) + P3(a(c)) − θ(4.25)

satisfies g(c) = 0. The remainder of the proof is devoted to showing that g(c) has infinitely
many zeros on (c1, c2). The first step is to write (4.20) as

.5(ε + c)

c2 + (1 + ε)c + ε(β + 1)
=

.5(ε + c)e−a

c2 + (1 + ε)c + ε(β + 1)
+ θ.(4.26)

Substituting (4.26) into (4.18) and using the hypothesis that β = 1
2θ − 1 gives

P3(a(c)) − θ = e−a(c)

(
.5(c − ε)

c2 − (1 + ε)c + ε(β + 1)
− .5(ε + c)

c2 + (1 + ε)c + ε(β + 1)

)
.(4.27)

Next, substitute (4.27) into (4.25) and obtain

g(c) = eαa(c)g1(c),(4.28)

where

g1 = m1 cos(γa(c)) + m2 sin(γa(c))

+ e−a(c)(1+α)

(
c2 − ε2(β + 1)

(c2 − (1 + ε)c + ε(β + 1))(c2 + (1 + ε)c + ε(β + 1))

)
.

(4.29)

Because eαa(c) > 0, it suffices to show that g1(c) changes sign infinitely often on (c1, c2).
To analyze g1(c) we need to determine the limiting behavior of the terms 1 + α, γa(c),
c2 − (1 + ε)c + ε(β + 1), and m1 as c → c−2 . First, from (2.6) it follows that

lim
c→c−2

(1 + α) = 1 − (1 + ε)

2c2
=

2c2 − 1 − ε

2c2
.(4.30)

It follows from (3.11) and (2.7) that c2 = .5−θ(1+ε)
θ > 0 when β = 1

2θ − 1. We substitute this
into (4.30) and find, after an algebraic manipulation, that

lim
c→c−2

(1 + α) =
1 − 3θ(1 + ε)

1 − 2θ(1 + ε)
> 0.(4.31)
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Remarks. The restrictions in (2.7) imply that 0 < θ < 1
3(ε+1) < 1

2(ε+1) , and therefore the

right-hand side of (4.31) is positive. Thus, if we show that γa(c) → ∞ as c → c−2 , then the
term e−a(c)(1+α) on the right-hand side of (4.29) decays exponentially fast as c → c−2 . If we
also show that c2 − (1 + ε)c + ε(β + 1) and m1 are bounded away from zero as c → c−2 , then
the first two terms on the right-hand side of (4.29) will dominate when c ≈ c2, and we will be
able to prove that g1 has infinitely many zeros.

First, we analyze γa(c). Recall that β = 1
2θ − 1. This and (2.6)–(2.7) imply that

γ =
(ε + 1)

2c
√

θ

√
2ε

(ε + 1)2
− θ > 0.(4.32)

From this and (4.21) we conclude that

γa(c) > 0 ∀c ∈ (c1, c2) and lim
c→c−2

γa(c) = ∞.(4.33)

Next, we prove that c2 − (1 + ε)c + ε(β + 1) is bounded away from zero as c → c−2 . It follows

from (3.10) that c2 = .5−θ(1+ε)
θ > 0 when β = 1

2θ − 1. This implies that

(c2)
2 − (1 + ε)c2 + ε(β + 1) = c2

(
1

2θ
− 2(1 + ε)

)
+

ε

2θ
.(4.34)

It follows from (2.7) that 1
2θ−2(1+ε) > 0. This and (4.34) imply that (c2)

2−(1+ε)c2+ε(β+1)
is bounded away from zero as c → c−2 .

Finally, we show that m1 is bounded away from 0 as c → c−2 . Since a(c) → ∞ as c → c−2 ,
it follows from the definition of m1 given in (4.22) and (4.18) that

lim
c→c−2

m1 = θ − .5(c2 − ε)

(c2)2 − (1 + ε)c2 + ε(β + 1)
− 1

β + 1
.(4.35)

We substitute (4.34) into (4.35), combine the first two terms, and obtain

lim
c→c−2

m1 =
θ(ε − 2θ(1 + ε)c2)

(.5 − 2θ(1 + ε))c2 + .5ε
− 1

β + 1
.(4.36)

Setting c2 = .5−θ(1+ε)
θ > 0 in the numerator of the first term in (4.36) gives

lim
c→c−2

m1 =
θ(−1 + 2θ(1 + ε)2)

(.5 − 2θ(1 + ε))c2 + .5ε
− 1

β + 1
.(4.37)

Recall from (2.7) that 0 < ε < 1 and 0 < θ < 1
4(ε+1) . This implies that −1 + 2θ(1 + ε)2 <

.5(ε − 1) < 0 and .5 − 2θ(1 + ε) > 0. Thus, the first term in (4.37) is negative, and therefore

lim
c→c−2

m1 < − 1

β + 1
= −2θ.(4.38)
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We now use the estimates in (4.31), (4.33), (4.34), and (4.38) to determine the behavior of
g1(c). It follows from (4.33) that there is an increasing sequence {cn} such that

cn → c−2 as n → ∞ and γa(cn) = 2nπ for large n.(4.39)

Let c = cn in (4.29). Then sin(γa(cn)) = 0, cos(γa(cn)) = 1, and (4.29) reduces to

g1(cn) = m1 + e−a(cn)(1+α)

(
c2
n − ε2(β + 1)

(c2
n − (1 + ε)cn + ε(β + 1))(c2

n + (1 + ε)cn + ε(β + 1))

)
.(4.40)

Combining the estimates in (4.31), (4.33), (4.34), (4.38), and (4.39), we conclude that

g1(cn) < − 1

2(β + 1)
for n  1.(4.41)

Likewise, there is an increasing sequence {cn} such that

cn → c−2 as n → ∞ and γa(cn) = (2n + 1)π for n  1.(4.42)

Let c = cn in (4.29). From (4.31), (4.33), (4.34), (4.38), and (4.42) it follows that

g1(c
n) >

1

2(β + 1)
for large n  1.(4.43)

It now follows from (4.41) and (4.43) and continuity that g1(c), and therefore g(c), have
infinitely many zeros on (c1, c2). Thus, we we have proved that there are infinitely many
c ∈ (c1, c2) and a(c) > 0, and corresponding solutions U of (2.2), such that

U(z) =

{
θez ∀z ≤ 0,

U3(z) 0 < z < a(c),
(4.44)

where U3(z) is defined in (4.17)–(4.18) and satisfies

U3(0) = U ′
3(0) = U3(a(c)) = θ.(4.45)

This completes the proof of Theorem 4.1.

C. Open problems. As mentioned earlier, to show that solutions are truly 1-pulse trav-
eling waves we must also prove that z = 0 and z = a(c) are the only solutions of U(z) = θ,
and that (U(z), U ′(z)) → (0, 0) as |z| → ∞. It follows from (4.44) that

U(z) < 0 ∀z < 0 and (U(z), U ′(z)) → (0, 0) as z → −∞.(4.46)

Thus, the function U(z)−θ has no zeros on (−∞, 0). Our numerical experiments indicate that
solutions satisfy U(z) > θ on the entire interval (0, a(c)). However, because the eigenvalues
μ± are complex, solutions have oscillatory tails which can cause U(z) to exceed the threshold
level θ at some point in (a,∞). This implies that the function U(z) − θ has at least three
zeros, and therefore U(z) cannot be a 1-pulse wave. Figure 6 illustrates the different types
of behavior for the representative parameter set (ε, θ) = (.1, .1). In the right panel we let
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Figure 6. Left panel: the bifurcation curve Γ+
1 for a branch of 1-pulse traveling waves when (ε, θ) = (.1, .1).

The vertical axis gives wave speed c, and the horizontal axis denotes values of β. The branch Γ+
1 extends from

β = β∗ = 2.025 to β = 16. Right panel: solutions on Γ+
1 at Q1, where β = 1

2θ
− 1 = 4 and c ≈ 3.9, and at

Q2, where (β, c) = (16, 3.56). The solution at Q2 is not a 1-pulse wave since it is tangent to U = θ at z ≈ 21.
When β > 16 solutions rise above θ at the second maximum, and therefore cannot be 1-pulse waves. Thus, we
conjecture that Γ+

1 ends at β = 16.

β = 1
2θ − 1 = 4 and graph the solution corresponding to the second positive zero of g(c). The

width of this solution is a ≈ 25; hence e−a = e−25 ≈ 10−11. Using the approximation e−a = 0
in (4.15) and solving for c, we find that c = 3.9 ≈ c2, where c2 is the “fast” wave speed defined
in (3.11). In addition, the graph of this solution indicates that all of the conditions (4.2) for a
1-pulse wave are satisfied. The bifurcation curve Γ+

1 (left panel) denotes the family of 1-pulse
traveling waves which form a continuation of the solution computed at β = 4. This branch
extends from β = β∗ = 2.025, where μ± become complex, to β = 16. The solution at β = 16
is graphed in the right panel. This solution is tangent to U = θ at z = a ≈ 20.8; hence it does
not satisfy conditions (4.2). When β > 16 solutions also intersect U = θ more than twice,
and therefore these functions cannot be 1-pulse traveling waves either. Thus, the branch Γ+

1

ends at β = 16. Our results also suggest that c ≈ c2(β) along Γ+
1 , and that solutions on Γ+

1

are stable. A rigorous analysis of the properties described above is beyond the scope of this
investigation, and therefore their proofs remain as open problems for future study.

Finally, we point out that numerical and analytical evidence suggests that 1-pulse traveling
waves can also exist for parameter values where μ± are real [2, 40, 46]. In this setting, although
insightful approximations have previously been given, the proof that U(z) = θ exactly twice
on (−∞,∞) has not yet been completed. As a first step towards resolving this issue we again
let w(x) = 1

2e−|x|, and in the appendix we develop a comparison method which shows that
when μ± are real, U(z) = θ has no solution on (a,∞). It remains an open problem to extend
our technique and prove that U(z) = θ has no solution on (0, a). It also remains an open
problem to extend our methods to the complex eigenvalue regime, and also to systems with
more general coupling and firing rate functions.

5. N-pulse waves. Finite wave trains have been observed in feline cortex [4, 5, 6], in the
brain of freely moving mice [18], and also in tangential and coronal brain slice experiments
[30, 55]. Thus, in this section our goal is to understand how N-pulse waves arise in the one-
dimensional model. The insights we obtain provide a basis for the study of two-dimensional
wave formation in section 6.



WAVE PHENOMENA IN NEURONAL NETWORKS 279

In the appendix we explain why N-pulse waves are not expected when μ± are real. Thus,

we focus our attention on the regime β > β∗ = (ε−1)2

4ε , where μ± are complex. To understand
how such waves can form when β > β∗ we need to analyze the linearization of (2.2) around
the rest state U = 0:

c2H ′′ + c(1 + ε)H ′ + ε(β + 1)H = 0.(5.1)

When μ± are complex the general solution of (5.1) is

H(z) = b1e
αz sin(γz) + b2e

αz cos(γz),(5.2)

where

α = Re(μ±) =
−(ε + 1)

2c
< 0 and γ = Im(μ±) =

√
4εβ − (ε − 1)2

2c
> 0.(5.3)

It follows from (5.2)–(5.3) that the frequency of oscillation of H(z) increases as β increases from
β∗. In turn, this causes solutions of (1.1) to become more oscillatory as β increases, making
it increasingly likely that an initial perturbation will evolve into an N-pulse traveling wave.
The remainder of this section is devoted to presenting numerical evidence for the existence of
N-pulse waves. To gain insight we consider the representative parameter set (ε, θ) = (.1, .1)
and study the dynamics of wave formation when β > β∗ = 2.025. At specific β values (see
Figure 7) we solve the initial value problem

ut(x, t) = −u − v +
1

2

∫ 100

−100
e−|x−x′|H(u(x′, t) − θ)dx′,

vt(x, t) = ε(βu − v),

u(x, 0) = .6e−x2
and v(x, 0) = 0 ∀x ∈ [−100, 100],

(5.4)

where the limits (−∞,∞) in the integral term in (1.1) have been replaced with [−100, 100].
Other choices for initial conditions give results similar to those described below. A second
approach which leads to N-pulse wave formation is to initially keep u and v at their resting
levels, i.e., u(x, 0) = v(x, 0) = 0, and perturb the system with an external stimulus applied to
the right-hand side of the equation for u. To solve (5.4) we approximate the integral term with
a Riemann sum and use an Euler time step Δt = .1. When β > β∗ the solution of (5.4) evolves
into a traveling wave, and the number of peaks in the waves increases as β increases. There
is a transition from a wave front (Figure 7, top panel) to a 1-pulse wave as β passes through
β = 6.45 from below. This is consistent with the observation in section 3 that β = 6.45 is
the critical value where the upper branch Γ−

0 of wave fronts ceases to exist (Figure 2). As β
increases from β = 6.45, the 1-pulse wave continues to exist (Figure 7, lower left panel) until
a second critical value, β ≈ 10.5, is reached, where the transition to a 2-pulse wave occurs. It
follows from (2.2) that 2-pulse waves (lower panel, middle) satisfy

c2U ′′ + c(1 + ε)U ′ + ε(β + 1)U = c
d

dz

∫ a

0
w(z − z′)dz′ + ε

∫ a

0
w(z − z′)dz′

+ c
d

dz

∫ d

b
w(z − z′)dz′ + ε

∫ d

b
w(z − z′)dz′,

(5.5)
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Figure 7. Traveling wave solutions when (ε, θ) = (.1, .1) and β > β∗. Upper row: stable wave fronts. As β
passes through β = 6.45 from below there is a transition from a wave front to a 1-pulse traveling wave. Lower
row: 1-pulse wave, 2-pulse wave, and 3-pulse wave. Clicking on the above images displays the accompany-
ing movies (66638 02.mpg [1.6MB], 66638 01.mpg [1.7MB], 66638 03.mpg [2MB], 66638 04.mpg [3MB], and
66638 05.mpg [5.3MB]).

where
⎧
⎨

⎩

U(0) = U(a) = U(b) = U(d) = θ for some d > b > a > 0,
U(z) �= θ if z /∈ {0, a, b, d},
(U(z), U ′(z)) → (0, 0) as |z| → ∞.

(5.6)

As β increases further, the number of peaks in the wave also increases. For example, a 3-pulse
wave exists at β = 11.5 (lower panel, right). For general N > 2 a simple extension of (5.5)–
(5.6) gives the criteria satisfied by N-pulse traveling waves. In particular, it is necessary to
prove that the solution intersects U = θ exactly 2N times. However, as with 1-pulse waves,
the nonlocal terms in the equation lead to technical difficulties in proving this property, and
therefore existence proofs remain a challenging open problem. In contrast, nonlocal terms do
not appear in reaction-diffusion equations where the existence of N-pulse waves can be proved
using topological shooting methods [27]. Finally, we note that our numerical experiments
suggest that the traveling waves in Figure 7 are all stable as solutions of (1.1). It would be of
interest to develop Evans function methods to prove this conjecture.

6. Two dimensions. In this section we extend the one-dimensional model (1.1) to the
two-dimensional system

ut = −u − v +

∫ ∞

−∞

∫ ∞

−∞
w(x, y, x′, y′)H(u(x′, y′, t) − θ)dx′dy′ + ζ(x, y, t),

vt = ε(βu − v).

(6.1)

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66638_02.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66638_01.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66638_03.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66638_04.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66638_05.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66638_02.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66638_01.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66638_03.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66638_04.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66638_05.mpg
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Here we have replaced the coupling function w(x − x′) = 1
2e−|x−x′| in (1.1) with the more

general two-dimensional coupling

w(x, y, x′, y′) = 2.1e−
√

(x−x′)2+(y−y′)2g(x′, y′).(6.2)

When g(x′, y′) ≡ 1 the function w represents symmetric connections, whereas g(x′, y′) �= 1
corresponds to asymmetric connections. The function ζ(x, y, t) denotes external input. As a
first step towards understanding the dynamics of wave formation we use a Fourier transform
method developed in [34] and approximate (6.1) by the PDE system

(∇4 + 2M∇2 + B + M2
)
(ut + u + v − ζ(x, y, t)) = Ag(x, y)H(u − θ),

vt(x, y, t) = ε(βu − v),
(6.3)

where (A, B, M) = (7, .52,−2.5). We solve (6.3) with an Euler time step of length Δt = .35,
and use finite differences to approximate the spatial derivatives on disk-shaped spatial domains
Ω = {(x, y) | x2 + y2 < R2}, with Neumann conditions on the boundary. Traveling waves can
be initiated with initial conditions of the form

(u(x, y, 0), v(x, y, 0)) =
(
λe−κ

√
x2+y2

, 0
)

and ζ(x, y, 0) = 0, 0 ≤ x2 + y2 ≤ R.(6.4)

Alternatively, we could initially keep u and v in the rest state, i.e., (u(x, y, 0), v(x, y, 0)) ≡
(0, 0), and initiate waves with an external stimulus of the form ζ(x, y, 0) = λe−κ

√
x2+y2

.
As in section 5, we restrict our attention to the representative parameter set (ε, θ) = (.1, .1)

and investigate the dynamics of wave formation when β > β∗. Below we give a brief description
of the results of our numerical experiments. These include the following:

(I) the formation and propagation of ring-shaped waves;
(II) the periodic formation of traveling waves;

(III) the formation of spiral waves.
(I) Ring-shaped waves. Here we let g(x′, y′) ≡ 1, so that the function w defined in (6.2)

describes symmetric connections. We assume that ζ(x, y, t) ≡ 0 (i.e., no external input), and
that the initial conditions are given by

(u(x, y, 0), v(x, y, 0)) =
(
5e−.05

√
x2+y2

, 0
)

, 0 ≤ x2 + y2 ≤ 65.(6.5)

When β > β∗, axially symmetric ring-shaped traveling waves form and propagate outwards
from (x, y) = (0, 0). Figure 8 illustrates single-ring and double-ring waves when β = 3 and
β = 6, respectively. As β increases further, the number of rings in the solution also increases.
Furthermore, when β = 6 our numerical experiments show that an initial condition of smaller
magnitude evolves into a single-ring wave. This leads us to conjecture that multiring waves
can coexist as stable solutions.

(II) The periodic formation of traveling waves. To understand how waves can periodically
form we fix β at the representative value β = 3 and let the initial conditions be given by
(6.5). As in (I), the solution evolves into a ring-shaped wave which propagates outwards
from (x, y) = (0, 0) (Figure 8 (left)). At t = 10 we apply an external stimulus, which causes
a small break in the ring. Figure 9 illustrates how the solution evolves when t > 10, and
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Figure 8. Single-ring and double-ring wave solutions when β = 3 (left) and β = 6 (right). The initial
conditions are given by (6.5). Clicking on the above images displays the accompanying movies (66638 06.mpg
[320KB] and 66638 07.mpg [680KB]).

outwardly propagating waves are periodically produced (panels (e) and (f)). Since the system
is translationally invariant this phenomenon can be initiated at any point in two-dimensional
space. It depends only on the presence of connections and occurs without any persistent
external input present. To our knowledge this mechanism for the periodic production of
traveling waves has not previously been reported for this type of model.

(III) The formation of spiral waves. For brevity we describe only our numerical experi-
ments when the coupling function is asymmetric. For this we set β = 3 and let g(x, y) be a
small perturbation from g = 1 which, in polar form, is given by

g =
1

2

(
1 + exp

(
.01r sin

(
.2

[
θ +

3π

4

])))
, r =

√
x2 + y2 and θ = tan−1

(y

x

)
.

(6.6)

We describe two ways in which spiral waves can form. First, one can proceed as in (II) and
set ζ(x, y, 0) ≡ 0, assuming that the initial conditions are given by (6.5). A ring-shaped wave
forms and propagates outwards from (x, y) = (0, 0), and at t = 10 we apply a perturbation
which breaks the leading edge of a ring. As in (II), the two free ends of the break form
into rotors. However, if the perturbation is of sufficiently large magnitude, then the rotors
cannot meet. Instead, the solution immediately evolves into a spiral wave which fills the entire
two-dimensional domain. A second method (Figure 10) is to initially keep u and v at their
resting values, i.e., (u(x, y, 0), v(x, y, 0)) ≡ (0, 0), and apply a sequence of appropriately timed
external stimuli which are focused at an arbitrarily chosen point, for example, (x, y) = (0, 0).
We consider the representative external stimulus defined by

ζ(x, y, t) =

{
5e−.05

√
x2+y2

if t ∈ {0, t12, t24, t36, . . . , t96},
0 otherwise.

(6.7)

Here tN = .35N denotes the Nth time step in the numerical solution scheme. During the
time interval [0, t12] = [0, 4.2] a ring-shaped wave forms and begins to propagate outwards

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66638_06.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66638_07.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66638_06.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66638_07.mpg
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Figure 9. Outwardly propagating waves are periodically produced when a ring-shaped wave receives an
appropriately timed external stimulus that breaks the ring. Here β = 3, and the initial conditions are given
by (6.5). At first, the two free ends form rotors (panel (a)). Their leading edges propagate outwards until the
rotors meet (panel (b)), and then a transition takes place in which two new rotors are formed, and a newly
formed traveling wave breaks away and propagates outwards (panels (c) and (d)). This process is continuously
repeated (panels (e) and (f)). Clicking on the above images displays the accompanying movie (66638 08.mpg
[2.8MB]).

from (0, 0). The second external stimulus is applied at t = t12 = 4.2, while the region behind
the leading edge of the wave is in the refractory state. A second wave forms and propagates
outwards, and we apply the third timed stimulus at t = t24 = 8.4, just before the recovery
period for the formation of the second wave is complete. Because the coupling is slightly

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66638_08.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66638_08.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66638_08.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66638_08.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66638_08.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66638_08.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66638_08.mpg
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Figure 10. The formation of a spiral wave in response to the sequence of stimuli defined in (6.7). At
t = 96 the outer edge of a wave breaks at a point where the activity has minimal amplitude, and the two free
ends form into rotors (panel (a)). As t increases further, the leading edges of the rotors propagate outwards
until they meet, and then a transition occurs in which two new rotors are formed, and a newly formed wave
breaks away and propagates outwards (panel (b)). The asymmetry in the coupling causes one of the rotors to
rotate more slowly than the other (panel (c)). Eventually this prevents their outer edges from meeting, causing
the formation of outgoing waves to cease, and the solution evolves into a spiral wave which fills the entire
domain (panel (d)). Clicking on the above images displays the accompanying movie (66638 09.mpg [6.1MB]).

inhomogeneous, there is a unique point on the leading edge of each wave where the amplitude
of the activity is a minimum. Repeated stimulation of the system during the recovery periods
causes the leading edge of the waves to weaken at the point of minimal amplitude, and by
t = t96 = 33.6 a small break occurs at this point. Figure 10 illustrates the evolution of the
solution when t > t96. The asymmetry in the coupling causes one of the rotors to rotate slightly
faster than the other, and eventually this prevents the two rotors from intersecting, and the
solution evolves into a spiral wave which fills the entire two-dimensional region (Figure 10(d)).
Chu, Milton, and Cowan [9] have numerically demonstrated that a sequence of timed stimuli
produces a spiral wave in a discrete integrate-and-fire network.

7. Conclusions. In this paper we analyzed the dynamic behavior of a system of integro-
differential equations that models the activity of excitatory neurons on large-scale spatially
extended domains. The independent variables represent the activity level of a population of
excitatory neurons with long-range connections (u) and recovery (v). We considered positive

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66638_09.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66638_09.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66638_09.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66638_09.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66638_09.mpg
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connection functions and a Heaviside firing rate. Much of our focus has been on understanding
the mechanisms responsible for the formation of traveling wave solutions. Such waves have
been observed in feline cortex [4, 5, 6], in the brain of freely moving mice [18], and also in
tangential and coronal brain slice experiments [30, 55].

In one space dimension we assumed symmetric connections and examined the existence
of traveling wave solutions in different parameter regimes such that the linearization of the
system around the rest state (u, v) = (0, 0) has real or complex eigenvalues. When the
eigenvalues are real both wave fronts and 1-pulse traveling waves can exist. In the appendix
we explain why multipulse traveling waves are not expected in the real eigenvalue case. In
contrast, when the eigenvalues are complex the range of behavior is much richer. In particular,
our analysis provides strong evidence for the coexistence of at least two families of wave
fronts and, in addition, infinitely many families of 1-pulse waves. To our knowledge this is
the first description of infinitely many families of 1-pulse traveling waves for this class of
nonlocal model. Furthermore, our numerical experiments suggest that wave fronts, 1-pulse
waves, and multipulse waves can coexist as stable solutions. In all cases formidable technical
difficulties preclude the completion of the the final step of existence proofs. However, for a
particular coupling we developed a technique that overcomes some of the difficulties which
arise in proving the existence of 1-pulse traveling waves in the real eigenvalue regime (see the
appendix). It remains an open problem to extend our methods so that existence proofs can
be completed for a wider range of parameters, and also for more general coupling and firing
rate functions.

The one-dimensional results have facilitated our study of wave formation in two space
dimensions. Here we considered a PDE approximation to the nonlocal model which in-
cludes both symmetric and asymmetric couplings. For a representative symmetric coupling
we showed numerically how single-ring and double-ring-shaped traveling waves can form. In
addition, we demonstrated a mechanism in which an appropriately timed stimulus causes a
break in a ring, and subsequently the solution periodically produces outgoing traveling waves.
When the coupling is asymmetric we investigated how a sequence of appropriately timed
stimuli focused at one point can cause ring-shaped waves to form, and how one of the rings
eventually breaks at a point of minimal activity on the leading edge of the wave. Subse-
quently, the stimuli cease, and the asymmetry in the coupling causes the solution to evolve
into a spiral wave which fills the entire two-dimensional domain. Thus, we have demonstrated
how appropriately timed stimuli can provide a natural pathway to the formation of spiral
waves in a system which is initially at rest. Our results were obtained for the representative
parameter set (ε, θ, β) = (.1, .1, 3), where (i) the eigenvalues μ± are complex and (ii) there is
no spatially independent periodic solution which can act as a periodic pacemaker. In addition,
all of these phenomena can be initiated at any point in the medium, and they do not depend
on the presence of an external input. To our knowledge, this is the first demonstration of the
periodic formation of traveling waves in the absence of an underlying spatially independent
periodic solution for the class of integro-differential equations studied in this paper. The peri-
odic formation of traveling waves is the result of the effects of large-scale connectivity and the
complex eigenvalues. The analysis of the formation of spiral waves has practical significance
since it has recently formed the basis for the prediction and discovery of rotating waves in
the disinhibited cortex of a rat [30]. It remains an open problem to consider more general



286 WILLIAM C. TROY AND VLADIMIR SHUSTERMAN

parameter regimes, firing rates, and coupling functions, and to extend our results for the PDE
system (6.3) to the full nonlocal model.

The numerical experiments described in this paper were performed when the firing rate is
the Heaviside function. To test the robustness of our results we have considered more general
sigmoidal-shaped firing rates of the form

f(u) =
1

1 + Ke−r(u−θ)
, K > 0, r > 0,(7.1)

and

f(u) = Ke
− r

(u−θ)2 H(u − θ), K > 0, r > 0.(7.2)

When the firing rate is given by (7.1) or (7.2) we find that our numerical results continue to
hold when M is of moderate size and R is large (e.g., K ≈ 1 and R ≥ 50). We have also
verified that our main results hold for more general coupling functions such as

w(x, y) = De−d(x2+y2), D > 0, d > 0.(7.3)

It remains an open problem to determine the maximal range of parameters, and generality of
firing rate and coupling functions, over which the numerical results are valid.

It is of interest to contrast our results with [19, 20], where it is shown numerically that
a breather exists when an appropriate external input is present. For some parameters the
breather periodically emits traveling waves. When the external input is missing it is pointed
out in [2] that “the homogeneous network does not support the existence of a breather that can
act as a source of these waves.” By contrast, our results indicate that the periodic production
of traveling waves can occur without any persistent external input.

Our theoretical results might have important implications for experimental and clinical
neurophysiology. In particular, our finding that the dynamics of the system undergo a quali-
tative transition when the eigenvalues of the linearization of the system around the rest state
become complex offers a plausible explanation of trailing-end instabilities observed in cortical
experiments [43, 45]. Further explanation of experimentally observed variability in the trailing
end of cortical waves might be provided by our finding of the coexistence of entire families
of traveling wave solutions. The unpredictable behavior of the trailing end could be caused
by the solutions switching from one member of the family to another. A possible biophysical
mechanism of such switching may involve a variable neurohormonal concentration affecting
neuronal recovery and strength of intercellular connections [30].

Our observation that a bifurcation of the system behavior occurs at the critical value
β = β∗ also has important practical correlates. It predicts that by lowering β below β∗, or by
pushing the system above β∗, one can qualitatively change the system behavior and obtain
a broad range of dynamical phenomena. One experimental example of such macrobehavior
is an evoked response, which might persist long after the stimulus [45]. Understanding the
cellular mechanisms responsible for such important functional changes in neuronal networks
requires further study.
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8. Appendix. In sections 3 and 4 we showed how technical difficulties can arise in com-
pleting the proof of existence of wave fronts and 1-pulse traveling waves. Here we focus on
1-pulse waves and develop a comparison argument which allows us to resolve some of the
technical issues when μ± are real and w(x) = 1

2e−|x|.
Recall that 1-pulse traveling waves satisfy the following conditions:

⎧
⎨

⎩

U(z) < θ ∀z < 0 and (U(z), U ′(z)) → (0, 0) as z → −∞,
U(0) = U(a) = θ, and z = 0, z = a are the only solutions of U(z) = θ,
(U(z), U ′(z)) → (0, 0) as z → ∞.

(8.1)

In section 4 we showed how difficulties can arise in proving the second condition, that

z = 0 and z = a are the only solutions of U(z) = θ.(8.2)

It follows from (8.1) that U(z) < θ ∀z < 0. Our goal here is to develop a technique which
allows us to prove that U(z) < θ ∀z > a when μ± are real. It remains an open problem to
extend our methods and show that U(z) > θ on the entire interval (0, a).

To understand how real eigenvalues arise, recall from section 2 that the linearization of
(2.2) around the rest state U = 0 is the homogeneous equation

c2H ′′ + c(1 + ε)H ′ + ε(β + 1)H = 0.(8.3)

When c > 0 the eigenvalues μ± associated with (8.3) are

μ± =
−(ε + 1) ±√

(ε − 1)2 − 4βε

2c
.(8.4)

We assume that ε > 0, c > 0, and β > 0. It follows from (8.4) that

μ± are real ⇐⇒ β ≤ β∗ =
(ε − 1)2

4ε
.(8.5)

Note that μ± < 0 when 0 < β ≤ β∗. For reasons which will be made clear below, we restrict
our study to the parameter regime c ≥ ε. This is reasonable since our numerical experiments
show that stable waves have relatively large wave speeds. Resolution of the case 0 < c < ε
remains open.

Theorem 8.1. Let ε > 0 and 0 < β ≤ β∗. Suppose that there are values c ≥ ε, a > 0, and
a corresponding solution U of (2.2) such that

{
U(z) < θ ∀z ≤ 0 and (U(z), U ′(z)) → (0, 0) as z → −∞,
U(0) = U(a) = θ and U ′(a) < 0.

(8.6)

Then

U(z) < θ ∀z > a and (U(z), U ′(z)) → (0, 0) as z → ∞.(8.7)

Remarks. (i) It follows from (8.7) that if c ≥ ε, then U(z) cannot exceed U = θ anywhere
on (a,∞). Thus, since multipulse waves must exceed U = θ more than twice, they cannot exist
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when μ± are real and w(x) = 1
2e−|x|. (ii) If μ± are complex, then solutions oscillate around

U = 0, and the comparison method developed below does not apply. In fact, it is precisely this
oscillatory property that underlies the existence of multipulse waves in the complex eigenvalue
regime (Figure 7).

Proof of Theorem 8.6. From the condition U(a) = θ and U ′(a) < 0 in (8.6) we conclude
that U(z) < θ on a maximal interval (a, zmax). It follows from (4.3)–(4.4) that U(z) satisfies

c2U ′′ + c(1 + ε)U ′ + ε(β + 1)U = .5(ε − c)(ea − 1)e−z ∀z ∈ (a, zmax).(8.8)

On (a, zmax) the general solution of (8.8) is

U5 = m5e
μ+z + m6e

μ−z +
.5(ε − c)(ea − 1)

c2 − c(1 + ε) + ε(β + 1)
e−z.(8.9)

The values m5 and m6 are uniquely determined by the continuity conditions

U5(a) = U(a) = θ and U ′
5(a) = U ′(a) < 0.(8.10)

We need to prove that zmax = ∞ and that U5(z) satisfies (8.7). We consider two possibilities.
The first is that U ′

5(z) < 0 ∀z ∈ [a, zmax). Because (8.8) is a linear nonhomogeneous equation
which contains no discontinuous functions, we conclude that zmax = ∞. It follows from (8.9)
that (U5(z), U ′

5(z)) → (0, 0) as z → ∞, as required.

The second possibility is that there is a ẑ > a such that

U ′
5(z) < 0 ∀z ∈ [a, ẑ) and U ′

5(ẑ) = 0.(8.11)

Then U ′′
5 (ẑ) ≥ 0. From this, (8.8), and the restriction c ≥ ε, it follows that U5(ẑ) < 0.

Therefore, there is a value z1 ∈ (a, ẑ) such that

U5(z1) = 0 and U ′
5(z) < 0 ∀z ∈ [z1, ẑ).(8.12)

Suppose that U5(z) < 0 ∀z > ẑ. Then (8.9) holds ∀z > ẑ, from which we again conclude that
(U5(z), U ′

5(z)) → (0, 0) as z → ∞, as required. Suppose, however, that there is a first z2 > ẑ
such that U5(z2) = 0. Then

U5(z) < 0 ∀z ∈ [ẑ, z2), U5(z2) = 0, and U ′
5(z2) ≥ 0.(8.13)

To obtain a contradiction we let H denote the solution of (8.3) such that

H(z1) = U5(z1) = 0 and H ′(z1) = U ′
5(z1) < 0.(8.14)

There are two parameter regimes to consider:

(i) β < (1−ε)2

4ε . Then μ+ − μ− =

√
(ε−1)2−4βε

c > 0 and

H(z) =
U ′

5(z1)

(μ− − μ+)

(
eμ

−(z−z1) − eμ
+(z−z1)

)
< 0 ∀z > z1.(8.15)
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(ii) β = (1−ε)2

4ε . Then μ+ = μ− = − ε+1
2c < 0 and

H(z) = U ′
5(z1)(z − z1)e

μ+(z−z1) < 0 ∀z > z1.(8.16)

We assume that (i) holds. The details for (ii) are the same and are omitted.

It follows from (8.3), (8.8), and (8.14) that

([
U ′

5(z)H(z) − H ′(z)U5(z)
]
e

(1+ε)
c

z
)′

= H(z)
.5(ε − c)(ea − 1)

c2
e−ze

(1+ε)
c

z, z1 < z < z2,

(8.17)

and

U ′
5(z1)H(z1) − H ′(z1)U5(z1) = 0.(8.18)

The first case is that c > ε. Then (8.15) implies that the right-hand side of (8.17) is strictly
positive. Integrating (8.17)–(8.18) from z = z1 to z = z2 gives

[
U ′

5(z2)H(z2) − H ′(z2)U5(z2)
]
e

(1+ε)
c

z2 > 0.(8.19)

However, (8.13) and (8.15) imply that

U ′
5(z2)H(z2) − H ′(z2)U5(z2) = U ′

5(z2)H(z2) ≤ 0,(8.20)

contradicting (8.19).

The second case is that c = ε. Then (8.17) reduces to

([
U ′

5(z)H(z) − H ′(z)U5(z)
]
e

(1+ε)
c

z
)′

= 0 ∀z ∈ [z1, z2].(8.21)

It follows from (8.18) and an integration of (8.21) from z1 to z that

U ′
5(z)H(z) − H ′(z)U5(z) = 0 ∀z ∈ [z1, z2].(8.22)

Dividing (8.21) by H2(z) gives

(
U5(z)

H(z)

)′
= 0 ∀z ∈ [z1, z2].(8.23)

Finally, we integrate (8.23) from z1 to z and obtain

U5(z)

H(z)
= 1 ∀z ∈ [z1, z2].(8.24)

At z = z2 this gives U5(z2) = H(z2) < 0, contradicting the definition of z2. This completes
the proof.
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Abstract. We consider dynamical behavior of nonautonomous wave-type evolutionary equations with nonlinear
damping, critical nonlinearity, and time-dependent external forcing which is translation bounded
but not translation compact (i.e., external forcing is not necessarily time-periodic, quasi-periodic,
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is established using the concept of uniform asymptotic compactness. A new method for verifying
uniform asymptotic compactness is devised. The required compactness for the existence of uniform
attractors is then fulfilled by some new a priori estimates for concrete wave-type equations arising
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Key words. nonautonomous systems, wave equation, nonlinear damping, critical exponent, uniform attractor,
norm-to-weak continuous process

AMS subject classifications. 35L05, 35B40, 35B41

DOI. 10.1137/060663805

1. Introduction. We consider the following nonautonomous wave equations with nonlin-
ear damping on a bounded domain Ω in R

3 with smooth boundary:

utt + h(ut) − Δu + f(u) = g(x, t), x ∈ Ω,(1.1)

under the boundary condition

u|∂Ω = 0,(1.2)

and initial conditions

u(x, 0) = u0(x), ut(x, 0) = v0(x).(1.3)

Here h is the nonlinear damping function, f is the nonlinearity, and g is a given external
time-dependent forcing.

Equation (1.1) arises as an evolutionary mathematical model in various systems—for ex-
ample, (i) modeling a continuous Josephson junction with specific h, g, and f ; (ii) modeling
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a hybrid system of nonlinear waves and nerve conduct; and (iii) modeling a phenomenon in
quantum mechanics. A relevant physical issue is to investigate the asymptotic dynamical
behavior of these mathematical models. See [31, 36, 39].

For the special, autonomous case of (1.1), i.e., when g does not depend on time t explicitly,
the solution operator defines a flow or semigroup. The asymptotic behaviors of the solutions
have been studied extensively by using the concept of global attractors; see, for example,
[1, 2, 3, 11, 21, 25, 34, 39] for the linear damping case, and [13, 14, 15, 19, 20, 37] for the
nonlinear damping case.

In the general case of the nonautonomous system (1.1), the solution operator does not
define a flow or semigroup but a process; see sections 2 and 5 below. A proper extension of
the notion of a global attractor for semigroups to the case of processes is the so-called uniform
attractor (see, e.g., [23, 9, 11]). About the basic concepts of nonautonomous dynamical
systems, uniform attractors, and processes, we refer the reader to [23, 9, 11] or section 2 below
for more details. See also [4, 6, 7, 12, 18, 32] for other methods or frameworks considering the
nonautonomous dynamics.

The basic assumptions about nonlinear damping h and nonlinearity f are

h ∈ C1(R), h(0) = 0, h is strictly increasing,(1.4)

lim inf
|s|→∞

h′(s) > 0,(1.5)

|h(s)| ≤ C1(1 + |s|p),(1.6)

where p ∈ [1, 5); and f ∈ C1(R) and satisfies

|f ′(s)| ≤ C2(1 + |s|q),(1.7)

lim inf
|s|→∞

f(s)

s
> −λ1,(1.8)

where 0 � q � 2 and λ1 is the first eigenvalue of −Δ in H1
0 (Ω). These assumptions are similar

to those for an autonomous system and come from [13, 14, 19].
In this paper, we consider the nonautonomous system (1.1)–(1.3) via the uniform attrac-

tors of the corresponding family of processes {Uσ(t, τ)}, σ ∈ Σ; Σ is the so-called symbol space
and is explained later, especially by (i) the nonlinear damping (i.e., h is a nonlinear function),
(ii) the nonlinearity f(u) has critical exponent (q = 2), and (iii) the external forcing g(x, t) is
not translation compact in L2

loc(R;L2(Ω)).
In Chepyzhov and Vishik [11], for the linear damping case h(v) = kv with a constant

k > 0 and q < 2 (subcritical), for system (1.1)–(1.3), the authors obtained the existence of a
bounded uniformly absorbing set if g is translation bounded and the existence of a uniform
attractor when g is translation compact (e.g., when g is time-periodic, quasi-periodic, or
almost periodic). Under the assumptions that g and ∂tg are both in the space of bounded
continuous functions Cb(R, L2(Ω)) and h satisfies the growth bounds 0 < α � h′(s) � β < ∞
for some constants α and β, Zhou and Wang [42] have proved the existence of kernel sections
and obtained the estimation of the Hausdorff dimension of the kernel sections.
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For the existence of uniform attractors, as in the autonomous case, some kind of compact-
ness of the family of processes is a key ingredient. The corresponding compactness assumption
in [23, 9, 11] is that the family of processes {Uσ(t, τ)}, σ ∈ Σ, has a compact uniformly ab-
sorbing set. The number q = 2 is called the critical exponent, since the nonlinearity f is not
compact in this case, which is an essential difficulty in studying the asymptotic behavior even
for the autonomous case [1, 2, 3, 13, 14, 19, 34, 37].

About the case of 1 < p < 5 for the nonlinear damping exponent p, as mentioned in
Haraux [22], even for the bounded dissipation, it becomes much more difficult when g depends
on t, and the characterizations of dynamics for this case are unknown to the authors. Moreover,
the nonlinearity of h also brings some difficulties in proving the compactness. For example, for
the autonomous linearly damped wave equations, Ball [3] proposed a very nice energy method
to verify the necessary asymptotic compactness; see also [29, 32, 33, 39] for this method in
the contexts of both the autonomous and nonautonomous cases. However, for our problem,
due to the nonlinear damping, it seems difficult to directly apply the method of [3, 32].

The purpose of this paper is to obtain the existence and structure of the compact (in the
norm topology of H1

0 × L2), uniform attractor when the external forcing g(x, t) is not trans-
lation compact in L2

loc(R;L2(Ω)). For the existence of uniform attractors, a main approach in
[9, 11] is to construct skew product flow on the extended phase space X × Σ. They require
that the symbol space has some compactness so that the skew product flow has some corre-
sponding compactness, i.e., the concept of translation compact functions (e.g., see [9, 10, 11]).
Consequently, the compact uniform attractors are obtained for the systems with symbols of
compact hulls, and the weakly compact uniform attractors for the systems with symbols of
weakly compact hulls. However, there are some results which show that one can obtain the
compact uniform attractors for the system with translation noncompact external forcing: by
generalizing the methods in [30], the authors in [28] obtain the existence of a uniform attractor
for the two-dimensional Navier–Stokes equation in a bounded domain with a kind of trans-
lation noncompact external forcing; in Zelik [40], by use of a bootstrap argument together
with a sharp use of Gronwall-type lemmas, when h(v) ≡ kv and g, ∂tg ∈ L∞(R;L2(Ω)), the
author obtains some regularity estimates for the solutions of (1.1), which implies naturally
the existence of an uniform attractor; see also the results in Chepyzhov and Vishik [8].

Furthermore, we consider the structure of the uniform attractor by investigating the kernel
sections of a process (see [9, 11] for more details).

Here, for system (1.1)–(1.3), we further assume that

g(·, t) ∈ L∞(R;L2(Ω))(1.9)

and

∂tg ∈ Lr
b(R;Lr(Ω)) with r >

6

5
,(1.10)

where the space Lr
b(R;Lr(Ω)) of “translation bounded” functions will be defined in the be-

ginning of the next section. Roughly speaking, the two conditions (1.9)–(1.10) mean that the
external forcing g is bounded in time and its time-derivative ∂tg is translation bounded. It
is clear that a function g satisfies (1.9) and (1.10) does not need to be translation compact
in L2

loc(R;L2(Ω)). Moreover, we remark that the technical hypothesis (1.9) is mainly for the
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existence of a bounded uniformly absorbing set, and (1.10) is for the uniform asymptotic
compactness.

Note that for uniform dissipation, using a method similar to that in the proof of Theo-
rem 5.3, we can replace (1.9) by g ∈ W 1,1

b (R;H−1), and, in order to obtain the asymptotic

compactness, we need only the weaker assumption g ∈ W 1,1+δ
b (R;H−1+δ) with arbitrary δ > 0.

Please see more on this in section 5.
It is interesting to note that if (1.10) is replaced by the assumption that g is translation

compact (e.g., g is a periodic, quasi-periodic, or almost periodic function in L2
loc(R;L2(Ω))),

then our result on uniform attractors (see Theorem 5.12) in section 5 still holds, but the proof
can be largely simplified; see (5.31)–(5.32), Remark 5.10, and Remark 5.13 below. At the
same time, the method in [28] cannot be applied to our problem as (1.1) is a hyperbolic-type
equation.

This paper is organized as follows. After introducing some basic materials in section 2,
we first present a criterion for the existence of a compact uniform attractor in section 3, using
the concept of uniform asymptotic compactness (different from the corresponding concept in
[9, 11]) which is introduced by Moise, Rosa, and Wang in [32] for the family of semiprocesses.
We apply this concept to the family of processes; see Definition 3.1 and Theorem 3.4. Then, we
investigate the structure of the uniform attractor via kernel sections of a process. In fact, we
present results on uniform attractors and their decompositions into kernel sections for norm-
to-weak continuous processes (see Definition 3.5, Theorem 3.8, and Theorem 3.10). Note that
the norm-to-weak continuity here is weaker than the usual norm-to-norm and weak-to-weak
continuities.

In section 4, partially inspired by the results and ideas in [13, 14, 15, 24], we present a
simple method for verifying the uniform asymptotic compactness for processes generated by
wave-type evolutionary equations like (1.1); see Theorem 4.2.

In section 5, as applications to concrete wave-type evolutionary equations, we first prove
the existence of compact uniform (w.r.t. σ ∈ Σ) attractors when the external forcing g0 = σ0

satisfies (1.9) and (1.10); see Theorem 5.12. Then we show that the uniform attractor w.r.t. the
initial time τ of a process {Uσ0(t, τ)} coincides with the uniform attractor w.r.t. the symbol

σ ∈ Σ′ when the external forcing g0 = σ0 ∈ W 1, 1+δ
b (R;H−1+δ(Ω)) for arbitrary δ > 0, and we

further decompose this uniform attractor into kernel sections; see Theorem 5.15. Finally, we
conclude the paper with some remarks in section 6.

2. Preliminaries. In this section, we recall some basic concepts about nonautonomous
systems. We refer to [23, 9, 11] and the references therein for more details.

The space of translation bounded functions in Lr
loc(R;Lk(Ω)), with r, k � 1, is

Lr
b(R;Lk(Ω)) =

{

g ∈ Lr
loc(R;Lk(Ω)) : sup

t∈R

∫ t+1

t

(∫

Ω
|g(x, s)|kdx

) r
k

ds < ∞
}

.

The space of translation compact functions in L2
loc(R;L2(Ω)) is

L2
c(R;L2(Ω)) =

{
g ∈ L2

loc(R;L2(Ω)) : For any interval [t1, t2] ⊂ R,

{g(x, h + s) : h ∈ R}|[t1, t2] is precompact in L2(t1, t2;L
2(Ω))

}
.
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Let X be a complete metric space and Σ be a parameter set.
The operators {Uσ(t, τ)}, σ ∈ Σ, are said to be a family of processes in X with symbol

space Σ if for any σ ∈ Σ

Uσ(t, s) ◦ Uσ(s, τ) = Uσ(t, τ) ∀ t � s � τ, τ ∈ R,(2.1)

Uσ(τ, τ) = Id (identity) ∀ τ ∈ R.(2.2)

Let {T (s)}s�0 be the translation semigroup on Σ; we say that a family of processes {Uσ(t, τ)},
σ ∈ Σ, satisfies the translation identity if

Uσ(t + s, τ + s) = UT (s)σ(t, τ) ∀ σ ∈ Σ, t � τ, τ ∈ R, s � 0,(2.3)

T (s)Σ = Σ ∀ s � 0.(2.4)

By B(X) we denote the collection of the bounded sets of X, and R
τ = {t ∈ R, t � τ}.

Definition 2.1 (see [11]). A bounded set B0 ∈ B(X) is said to be a bounded uniformly
(w.r.t. σ ∈ Σ) absorbing set for {Uσ(t, τ)}, σ ∈ Σ, if for any τ ∈ R and B ∈ B(X) there exists
T0 = T0(B, τ) such that

⋃
σ∈Σ Uσ(t; τ)B ⊂ B0 for all t � T0.

Definition 2.2 (see [11]). A set A ⊂ X is said to be uniformly (w.r.t. σ ∈ Σ) attracting for
the family of processes {Uσ(t, τ)}, σ ∈ Σ, if for any fixed τ ∈ R and any B ∈ B(X)

lim
t→+∞

(
sup
σ∈Σ

dist(Uσ(t; τ)B; A)

)
= 0;

here dist(·, ·) is the usual Hausdorff semidistance in X between two sets.
In particular, a closed uniformly attracting set AΣ is said to be the uniform (w.r.t. σ ∈ Σ)

attractor of the family of processes {Uσ(t, τ)}, σ ∈ Σ, if it is contained in any closed uniformly
attracting set (minimality property).

Obviously, if the uniform (w.r.t. σ ∈ Σ) attractor exists, it is unique.
In order to obtain the structure as well as the existence of the uniform attractor, under

the condition (2.3)–(2.4), the authors in [11] construct the skew product flow in X × Σ,

S(t)(u, σ) = (Uσ(t, 0)u, T (t)σ), t � 0, (u, σ) ∈ X × Σ,(2.5)

and {S(t)}t�0 forms a semigroup on X × Σ.

3. Abstract results.

3.1. Existence of the uniform attractor. In this subsection, we present a criterion for
the existence of a compact uniform attractor using the concept of uniform (w.r.t. σ ∈ Σ)
asymptotical compactness, which is different from the corresponding concept in [9, 11], and
it is introduced in Moise, Rosa, and Wang [32] for a family of semiprocesses; see [26] for
autonomous systems. Now, we use this concept for the family of processes.

Definition 3.1 (see [32]). A family of processes {Uσ(t, τ)}, σ ∈ Σ, on a complete metric
space X is said to be uniformly (w.r.t. σ ∈ Σ) asymptotically compact if and only if for any
fixed τ ∈ R, a bounded sequence {un}∞n=1 ⊂ X, {σn}∞n=1 ⊂ Σ, and any {tn}∞n=1 ⊂ R

τ with
tn → ∞ as n → ∞, the sequence {Uσn(tn, τ)un}∞n=1 is precompact in X.
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Similarly, define the uniform ω-limit set of B ⊂ X at initial time τ by

ωτ,Σ(B) =
⋂

t�τ

⋃

σ∈Σ

⋃

s�t

Uσ(s, τ)B,(3.1)

where A means the closure of A in X.
Then, we have the following characterizations for the uniform ω-limit set (see [11, 32]).
Lemma 3.2. For any bounded set B ⊂ B(X), u ∈ ωτ,Σ(B) if and only if there exist

{un}∞n=1 ⊂ B, {σn}∞n=1 ⊂ Σ, and {tn}∞n=1 ⊂ R
τ with tn → ∞ as n → ∞ such that

Uσn(tn, τ)un → u.
In the following, similar to [11, 28, 32], we give some characterizations for the uniform

(w.r.t. σ ∈ Σ) asymptotically compact processes.
Lemma 3.3. Let {Uσ(t, τ)}, σ ∈ Σ, be a family of uniform (w.r.t. σ ∈ Σ) asymptotically

compact processes on a complete metric space X; then for any τ ∈ R and any nonempty set
B ∈ B(X), we have the following:

(i) ωτ,Σ(B) is nonempty and compact in X;
(ii) limt→+∞ supσ∈Σ dist (Uσ (t, τ)B,ωτ,Σ(B)) = 0;
(iii) if Y is closed and uniformly (w.r.t. σ ∈ Σ) attracts B, then ωτ,Σ(B) ⊂ Y .

Furthermore, if {Uσ(t, τ)}, σ ∈ Σ, satisfies the translation identity (2.3)–(2.4), then
(iv) ωτ,Σ(B) ≡ ω0,Σ(B); that is, ωτ,Σ(B) is independent of τ ∈ R.
Proof. (i) For any fixed τ ∈ R, and then for any tn ∈ R

τ , tn → ∞, σn ∈ Σ, and
xn ∈ B, by the definition of uniform (w.r.t. σ ∈ Σ) asymptotic compactness we know that
{Uσn(tn, τ)xn}∞n=1 is precompact in X, and without loss of generality, we assume that

Uσn(tn, τ)xn → y.

Then by the definition of ω-limit set we know that y ∈ ωτ, Σ(B), which implies that ωτ, Σ(B)
is nonempty.

For any ym ∈ ωτ, Σ(B), m = 1, 2, . . . , we will show that {ym}∞m=1 is precompact in X. By
the definition, for each m ∈ N, there exist tm ∈ R

τ , tm � m, σm ∈ Σ, and xm ∈ B such that

ρ(Uσm(tm, τ)xm, ym) � 1

m
,

where ρ(·, ·) is the metric on X.
Therefore, by the assumption of uniform (w.r.t. σ ∈ Σ) asymptotic compactness again, we

have that {Uσm(tm, τ)xm}∞m=1 is precompact in X, and without loss of generality, we assume
that {Uσm(tm, τ)xm}∞m=1 is a Cauchy sequence in X. Then, from

ρ(yn, ym)

� ρ(yn, Uσn(tn, τ)xn) + ρ(Uσn(tn, τ)xn, Uσm(tm, τ)xm) + ρ(Uσm(tm, τ)xm, ym)

� 1

n
+ ρ(Uσn(tn, τ)xn, Uσm(tm, τ)xm) +

1

m
,

we know that {ym}∞m=1 is also a Cauchy sequence in X. Moreover, from the definition we
obviously have that ωτ, Σ(B) is closed in X.
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Hence, ωτ, Σ(B) is compact in X.
(ii) If (ii) is not true, then there exist ε0 > 0, σn ∈ Σ, xn ∈ B, and tn ∈ R

τ with tn � n,
such that

dist(Uσn(tn, τ)xn, ωτ, Σ(B)) � ε0, n = 1, 2, . . . .

However, the uniform (w.r.t. σ ∈ Σ) asymptotic compactness implies that {Uσn(tn, τ)xn}∞n=1

is precompact in X; that is, {Uσn(tn, τ)xn}∞n=1 has a convergent subsequence which converges
to some point of ωτ, Σ(B). This is a contradiction.

(iii) For all y ∈ ωτ, Σ(B), there are σn ∈ Σ, xn ∈ B, and tn ∈ R
τ with tn → ∞ such that

Uσn(tn, τ)xn → y. From the assumption that Y uniformly attracts B, obviously, we have

dist(Uσn(tn, τ)xn, Y ) → 0 as n → ∞.

At the same time, the closeness of Y implies y ∈ Y . Hence, ωτ, Σ(B) ⊂ Y .
(iv) For any fixed τ ∈ R and σ ∈ Σ, from the translation identity (2.3) we know (e.g., see

[28, 32]) that for any τ0 ∈ R there is a σ′ ∈ Σ such that

Uσ(t, τ) = Uσ′(t− τ + τ0, τ0) ∀ t � τ.

Combining this with (2.4), we have that for any t � τ ,

⋃

σ∈Σ

⋃

s�t

Uσ(s, τ)B =
⋃

σ∈Σ

⋃

s�t

Uσ(s− τ, 0)B.

Therefore, we have

ωτ, Σ(B) =
⋂

t�τ

⋃

σ∈Σ

⋃

s�t

Uσ(s, τ)B =
⋂

t�0

⋃

σ∈Σ

⋃

s�t

Uσ(s, 0)B = ω0, Σ(B).

Theorem 3.4. Let X be a complete metric space and {Uσ(t, τ)}, σ ∈ Σ, be a family of
processes on X which satisfies the translation identity (2.3)–(2.4). Then, {Uσ(t, τ)}, σ ∈ Σ,
has a compact uniform (w.r.t. σ ∈ Σ) attractor AΣ in X and satisfies

AΣ = ω0,Σ (B0) = ωτ,Σ (B0) =
⋃

B∈B(X)

ωτ,Σ (B) ∀ τ ∈ R

if and only if {Uσ(t, τ)}, σ ∈ Σ,
(i) has a bounded uniformly (w.r.t. σ ∈ Σ) absorbing set B0; and
(ii) is uniformly (w.r.t. σ ∈ Σ) asymptotically compact.
Proof. The necessity follows from the definition of uniform (w.r.t. σ ∈ Σ) attractor and

the compactness of AΣ.
Now we prove the sufficiency. For any fixed τ ∈ R and any B ∈ B(X), we know that there

is a T = T (τ,B) such that

⋃

σ∈Σ

⋃

t�T

Uσ(t, τ)B ⊂ B0.
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Combining this with the equivalent characterization (Proposition 3.2) of the ω-limit set, and
Lemma 3.3, we have

ωτ,Σ (B) ⊂ ωτ,Σ (B0) = ω0,Σ (B0)(3.2)

and ωτ,Σ(B); of course, ω0,Σ (B0) uniformly (w.r.t. σ ∈ Σ) attracts B.

Moreover, (3.2) implies that
⋃

B∈B(X) ωτ,Σ (B) ⊂ ω0,Σ (B0), and from B0 ∈ B(X) we
obtain

⋃
B∈B(X) ωτ,Σ (B) = ω0,Σ (B0).

The minimality and closeness follow immediately from (iii) of Lemma 3.3, and the com-
pactness follows from (i) of Lemma 3.3.

3.2. Structure of the uniform attractor. We describe the structure of the uniform at-
tractor by means of its kernel sections.

Hereafter, we assume that X is a Banach space with norm ‖ · ‖X and Σ is a complete
metric space with metric d(·, ·).

Let {U(t, τ)|t � τ , τ ∈ R} = {U(t, τ)} be a process acting in a Banach space X, and let
K be the kernel of the process {U(t, τ)}. We recall (e.g., see [11]) that the kernel K consists
of all bounded complete trajectories of the process, i.e.,

K = {u(·) |‖u(t)‖X � Cu, U(t, τ)u(τ) = u(t) ∀ t � τ, τ ∈ R},

and K(s) denotes the kernel section at a time moment s ∈ R:

K(s) = {u(s) |u(·) ∈ K}, K(s) ⊂ X.

As mentioned in [11], since the invariance of the global attractor of a semigroup is replaced
by the minimality in the definition of the uniform attractor of a family of processes, the
existence of uniform attractor does not need any continuity for the processes. However, in
order to obtain the structure of the uniform attractor, the continuity may be necessary to
some extent.

3.2.1. Norm-to-weak continuous processes. In [9, 11], in order to obtain the structure
of the uniform attractor, the authors assume that the family of processes {Uσ(t, τ)}, σ ∈ Σ,
is (X × Σ, X)-continuous; see Theorem 5.1 in Chapter IV of [11].

Now, as noticed in [41], in order to obtain the invariance of the global attractor of a
semigroup for an autonomous system, we need only the norm-to-weak continuity. In this
part, we will generalize these results to nonautonomous systems.

Definition 3.5. A family of processes {Uσ(t, τ)}, σ ∈ Σ, is said to be norm-to-weak con-
tinuous if, for any fixed t and τ ∈ R with t � τ and for any {xn} ⊂ X and {σn} ⊂ Σ, we
have

xn
‖·‖X→ x

σn
d→ σ

}

⇒ Uσn(t, τ)xn ⇀ Uσ(t, τ)x weakly in X.

For convenience, we also use the following notation.
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Definition 3.6. A semigroup {S(t)}t�0: X × Σ → X × Σ is to be called skew productively
norm-to-weak continuous if, for any fixed t � 0 and for any {xn} ⊂ X and {σn} ⊂ Σ, we
have

Π1S(t)(xn, σn)
weak
⇀ Π1S(t)(x, σ),

Π2S(t)(xn, σn)
d→ Π2S(t)(x, σ)

provided that xn
‖·‖X→ x and σn

d→ σ, where Π1 and Π2 are the canonical projectors from X×Σ
to X and Σ, respectively. Denote such continuity by

S(t)(xn, σn)
s−w
⇀ S(t)(x, σ).

Following from the definition of a skew productively norm-to-weak continuous semigroup,
we have the following result.

Proposition 3.7. Assume that {Uσ(t, τ)}, σ ∈ Σ, is a family norm-to-weak continuous
processes in X and the translation semigroup {T (t)}t�0 is continuous (w.r.t. the metric d(·, ·))
in Σ. Then, the semigroup {S(t)}t�0 corresponding to {Uσ(t, τ)}, σ ∈ Σ, defined by (2.5) and
acting on X × Σ, is skew productively norm-to-weak continuous.

3.2.2. Kernel sections of the uniform attractor.
Theorem 3.8. Let X be a Banach space and Σ be a compact metric space. Assume that a

family of processes {Uσ(t, τ)}, σ ∈ Σ, satisfies the translation identity (2.3)–(2.4) as well as
the following conditions:

(i) The translation semigroup {T (t)}t�0 is continuous on Σ;
(ii) {Uσ(t, τ)}, σ ∈ Σ, is norm-to-weak continuous on X;
(iii) {Uσ(t, τ)}, σ ∈ Σ, has a bounded uniformly (w.r.t. σ ∈ Σ) absorbing set B0 in X;
(iv) {Uσ(t, τ)}, σ ∈ Σ, is uniformly (w.r.t. σ ∈ Σ) asymptotically compact in X.

Then, {Uσ(t, τ)}, σ ∈ Σ, has a uniform (w.r.t. σ ∈ Σ) attractor AΣ satisfying

AΣ = ω0, Σ(B0) =
⋃

σ∈Σ

Kσ(s) ∀ s ∈ R,(3.3)

where Kσ(s) is the section at t = s of the kernel Kσ of the process {Uσ(t, τ)} with symbol σ.
The proof of this theorem is similar to what was done in Chepyzhov and Vishik [11,

Theorem 5.1, Chapter IV]; the different continuity assumptions can be adjusted to those
in [41] for autonomous systems, so we omit them here.

Similar to [11, 28], the following results give a method for obtaining the structure of the
uniform (w.r.t. τ ∈ R) attractor of a process {Uσ0(t, τ)}, τ ∈ R, via the structure of the
uniform (w.r.t. σ ∈ Σ0) attractor for the family of processes {Uσ(t, τ)}, σ ∈ Σ0.

Since our processes are norm-to-weak continuous, we first give a simple lemma about
metrizability. We recall (e.g., see Diestel [17, p. 18]) that a set F ⊂ X∗ is called total if
f(x) = 0 for each f ∈ F implies x = 0.

Lemma 3.9. If K is a (relatively) weakly compact subset in a Banach space X and K is

countable, then K
weak

is metrizable, where K
weak

means the weak closure of K in X.
Proof. Denote Y = span{K}.
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From the convexity of span{K} we know Y is weakly closed in X. Therefore, K = K ∩Y
is (relatively) weakly compact in the separable Banach space Y . Since the dual of a separable

Banach space contains a countable total set, we know that K
weak

is metrizable in Y , and from

that Y is a closed subspace of X, we get K
weak

is metrizable in X.

Theorem 3.10. Let Σ0 be a parameter set, Σ is a completion of Σ0 w.r.t. some metric
d(·, ·), and the translation semigroup {T (t)}t�0 also satisfies the translation identity (2.3)–
(2.4) on Σ0. Furthermore, assume that the family of processes {Uσ(t, τ)}, σ ∈ Σ, satisfies
all of the assumptions in Theorem 3.8. Then, both families of processes {Uσ(t, τ)}, σ ∈ Σ
and σ ∈ Σ0, have compact uniform (w.r.t. σ ∈ Σ and σ ∈ Σ0, respectively) attractors AΣ and
AΣ0, respectively, and moreover,

AΣ0 = AΣ = ω0, Σ(B0) =
⋃

σ∈Σ

Kσ(s) ∀ s ∈ R.

Proof. The existence is an immediate consequence of Theorem 3.8, and obviously, we have

AΣ0 ⊂ AΣ = ω0, Σ(B0) =
⋃

σ∈Σ

Kσ(s) ∀ s ∈ R.

Now we prove ω0,Σ0(B0) = ω0,Σ(B0). For any y ∈ ω0, Σ(B0), from Proposition 3.2, we
know that there exist xn ∈ B0, tn → ∞, and σn ∈ Σ such that

Uσn(tn, 0)xn → y as n → ∞.(3.4)

On the other hand, from the assumption that Σ is the completion of Σ0 we know that there

exists {σ(n)
m } ⊂ Σ0 which satisfies σ

(n)
m

d→ σn as m → ∞ for each n ∈ N. Therefore, due to the
norm-to-weak continuity of the family of processes {Uσ(t, τ)}, σ ∈ Σ, we have

U
σ

(n)
m

(tn, 0)xn ⇀ Uσn(tn, 0)xn as m → ∞(3.5)

for each n ∈ N. Denote K = {U
σ

(n)
m

(tn, 0)xn |n,m ∈ N}; then K is countable and thanks to

the condition (iv) of Theorem 3.8 we know that K is also relatively weakly compact in X.

Consequently, from Lemma 3.9 we have that K
weak

is metrizable.

Hence, combining (3.4) and (3.5), we can obtain that there exists σ′
n ∈ Σ0 for each n ∈ N

such that

Uσ′
n
(tn, 0)xn ⇀ y in X as n → ∞.

Then noticing the uniform asymptotic compactness again and the uniqueness of limits, we
have y ∈ ω0,Σ0(B0).

4. A criterion for verifying the uniform asymptotic compactness. In this section, we
present a technical method to verify the uniform asymptotic compactness (given in Defini-
tion 3.1) for the family of processes generated by the nonautonomous hyperbolic type of evolu-
tionary equations. This criterion is partially motivated by the methods in [13, 14, 15, 16, 24, 38]
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for autonomous systems. In [15], the authors present a general abstract framework for auton-
omous wave equations. Here, the following results and proof are similar to those in [24, 38]
for autonomous cases.

Definition 4.1. Let X be a Banach space, B be a bounded subset of X, and Σ be a symbol
(or parameter) space. We call a function φ(·, ·; ·, ·), defined on (X ×X) × (Σ × Σ), to be a
contractive function on B × B if for any sequence {xn}∞n=1 ⊂ B and any {σn} ⊂ Σ, there is
a subsequence {xnk

}∞k=1 ⊂ {xn}∞n=1 and {σnk
}∞k=1 ⊂ {σn}∞n=1 such that

lim
k→∞

lim
l→∞

φ(xnk
, xnl

; σnk
, σnl

) = 0.

We denote the set of all contractive functions on B ×B by Contr(B,Σ).

Theorem 4.2. Let {Uσ(t, τ)}, σ ∈ Σ, be a family of processes that satisfies the translation
identity (2.3)–(2.4) on Banach space X and has a bounded uniformly (w.r.t. σ ∈ Σ) absorbing
set B0 ⊂ X. Moreover, assume that for any ε > 0 there exist T = T (B0, ε) and φT ∈
Contr(B0,Σ) such that

‖Uσ1(T, 0)x− Uσ2(T, 0)y‖ � ε + φT (x, y;σ1, σ2) ∀ x, y ∈ B0, ∀ σ1, σ2 ∈ Σ.

Then {Uσ(t, τ)}, σ ∈ Σ, is uniformly (w.r.t. σ ∈ Σ) asymptotically compact in X.

Proof. For any fixed τ ∈ R, let {xn}∞n=1 be a bounded sequence of X, σn ∈ Σ and tn � τ
satisfy tn → ∞ as n → ∞. We need to show that

{Uσn(tn, τ)xn}∞n=1 is precompact in X.

Thanks to the translation identity (2.3)–(2.4), we know that for any fixed τ ∈ R and σ ∈ Σ
we can find σ′ ∈ Σ such that

Uσ′(t + τ, τ)x = Uσ(t, 0)x ∀ t � 0 and x ∈ X.(4.1)

Therefore, we need only to show that {Uσn(tn, 0)xn}∞n=1 is precompact in X.

In the following, we will prove that {Uσn(tn, 0)xn}∞n=1 has a Cauchy subsequence via a
diagonal method.

Taking εm > 0 with εm → 0 as m → ∞.

At first, for ε1, by the assumptions, there exist T1 = T1(ε1) and φ1 ∈ Contr(B0,Σ) such
that

‖Uσ1(T1, 0)x− Uσ2(T1, 0)y‖ � ε1 + φ1(x, y;σ1, σ2) ∀ x, y ∈ B0 and σ1, σ2 ∈ Σ.(4.2)

Since tn → ∞, for such fixed T1, without loss of generality, we assume that tn  T1 is so
large that Uσn(tn − T1, 0)xn ∈ B0 for each n ∈ N.

Similar to (4.1), for each n ∈ N, there is a σ′
n ∈ Σ such that

Uσ′
n
(T1, 0) = Uσn(tn, tn − T1).(4.3)
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Let yn = Uσn(tn − T1, 0)xn; then from (4.2) and (4.3) we have

‖Uσn(tn, 0)xn − Uσm(tm, 0)xm‖
= ‖Uσn(tn, tn − T1)Uσn(tn − T1, 0)xn − Uσm(tm, tm − T1)Uσn(tm − T1, 0)xm‖
= ‖Uσn(tn, tn − T1)yn − Uσm(tm, tm − T1)ym‖
= ‖Uσ′

n
(T1, 0)yn − Uσ′

m
(T1, 0)ym‖

� ε1 + φ1(yn, ym;σ′
n, σ

′
m).(4.4)

Due to the definition of Contr(B0,Σ) and φ1 ∈ Contr(B0,Σ), we know that {yn}∞n=1 has

a subsequence {y(1)
nk }∞k=1 and {σ′

n}∞n=1 has a subsequence {σ′(1)
nk }∞k=1 such that

lim
k→∞

lim
l→∞

φ1(y
(1)
nk

, y(1)
nl

;σ′(1)
nk

, σ′(1)
nl

) � ε1

2
.(4.5)

And similar to the autonomous cases (e.g., see [24, 38]), we have

lim
k→∞

sup
p∈N

‖U
σ

(1)
nk+p

(t(1)nk+p
, 0)x(1)

nk+p
− U

σ
(1)
nk

(t(1)nk
, 0)x(1)

nk
‖

� lim
k→∞

sup
p∈N

lim sup
l→∞

‖U
σ

(1)
nk+p

(t(1)nk+p
, 0)x(1)

nk+p
− U

σ
(1)
nl

(t(1)nl
, 0)x(1)

nl
‖

+ lim sup
k→∞

lim sup
l→∞

‖U
σ

(1)
nk

(t(1)nk
, 0)x(1)

nk
− U

σ
(1)
nl

(t(1)nl
, 0)x(1)

nl
‖

� ε1 + lim
k→∞

sup
p∈N

lim
l→∞

φ1(y
(1)
nk+p

, y(1)
nl

;σ′(1)
nk+p

, σ′(1)
nl

)

+ ε1 + lim
k→∞

lim
l→∞

φ1(y
(1)
nk

, y(1)
nl

;σ′(1)
nk

, σ′(1)
nl

),

which, combined with (4.4) and (4.5), implies that

lim
k→∞

sup
p∈N

‖U
σ

(1)
nk+p

(t(1)nk+p
, 0)x(1)

nk+p
− U

σ
(1)
nk

(t(1)nk
, 0)x(1)

nk
‖ � 4ε1.

Therefore, there is a K1 such that

‖U
σ

(1)
nk

(t(1)nk
, 0)x(1)

nk
− U

σ
(1)
nl

(t(1)nl
, 0)x(1)

nl
‖ � 5ε1 ∀ k, l � K1.

By induction, we obtain that, for each m � 1, there is a subsequence {U
σ

(m+1)
nk

(t
(m+1)
nk , 0) ·

x
(m+1)
nk }∞k=1 of {U

σ
(m)
nk

(t
(m)
nk , 0)x

(m)
nk }∞k=1 and certain Km+1 such that

‖U
σ

(m+1)
nk

(t(m+1)
nk

, 0)x(m+1)
nk

− U
σ

(m+1)
nl

(t(m+1)
nl

, 0)x(m+1)
nl

‖ � 5εm+1 ∀ k, l � Km+1.

Now, we consider the diagonal subsequence {U
σ

(k)
nk

(t
(k)
nk , 0)x

(k)
nk }∞k=1. Since for each m ∈ N,

{U
σ

(k)
nk

(t
(k)
nk , 0)x

(k)
nk }∞k=m is a subsequence of {U

σ
(m)
nk

(t
(m)
nk , 0)x

(m)
nk }∞k=1, then

‖U
σ

(k)
nk

(t(k)
nk

, 0)x(k)
nk

− U
σ

(l)
nl

(t(l)nl
, 0)x(l)

nl
‖ � 5εm ∀ k, l � max{m,Km},

which, combined with εm → 0 as m → ∞, implies that {U
σ

(k)
nk

(t
(k)
nk , 0)x

(k)
nk }∞k=m is a Cauchy

sequence in X. This shows that {Uσn(tn, 0)xn}∞n=1 is precompact in X.
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5. Application to wave equation.

5.1. Mathematical setting. Similar to the autonomous cases (e.g., see [14]), applying the
Galerkin approximation method, we have the following existence and uniqueness results (e.g.,
see [22, 27]), and the time-dependent terms make no essential complications.

Theorem 5.1. Let Ω be a bounded domain of R
3 with smooth boundary, h and f satisfy

(1.4)–(1.8), and g ∈ L∞(R;L2(Ω)). Then the nonautonomous initial boundary value problem
(1.1)–(1.3) has a unique solution u(t) satisfying (u(t), ut(t)) ∈ C(Rτ ;H1

0 (Ω) × L2(Ω)) and
∂ttu(t) ∈ L2

loc(R
τ ;H−1(Ω)) for any initial data (u0τ , u1τ ) ∈ H1

0 (Ω) × L2(Ω). Moreover, the
solution satisfies the energy inequalities.

For convenience, hereafter let | · | and ‖ · ‖ be the norms of L2(Ω) and H1
0 (Ω), respectively,

and C a general positive constant, which may be different in different estimates.
We use the notation in Chepyzhov and Vishik [11]: Let y(t) = (u(t), ut(t)), yτ = (u0τ , u1τ ),

and X = H1
0 (Ω) × L2(Ω) with finite energy norm

‖y‖X = {‖u‖2 + |ut|2} 1
2 .

Let Aσ(t)(u, v) = (v,Δu−f(u)−h(v)+σ(t)). Then the nonautonomous system (1.1)–(1.3)
can be rewritten in the operator form

∂ty = Aσ(t)(y), y|t=τ = yτ ,(5.1)

where σ(s) = g(x, s) is symbol of (5.1).
We now define the symbol space for (5.1). Taking a fixed symbol σ0(s) = g0(x, s), g0 ∈

L∞(R;L2(Ω)) ∩W 1,r
b (R;Lr(Ω)) for some r > 6

5 . Set

Σ0 = {(x, t) �→ g0(x, t + h) : h ∈ R}(5.2)

and

Σ is the ∗-weakly closure of Σ0 in L∞(R; L2(Ω)) ∩W 1, r
b (R; Lr(Ω)).(5.3)

Then we have the following simple properties.
Proposition 5.2.
(i) Σ is bounded in L∞(R;L2(Ω)) ∩ W 1, r

b (R;Lr(Ω)), and for any σ ∈ Σ, the following
estimate holds:

‖σ‖
L∞(R; L2(Ω))∩W 1, r

b (R; Lr(Ω))
� ‖g0‖L∞(R; L2(Ω))∩W 1, r

b (R; Lr(Ω))
.

(ii) The translation semigroup {T (h)|h � 0} acting on Σ is invariant in Σ; that is,

T (h)Σ = Σ ∀ h ∈ R
+.

Thus, from Theorem 5.1, we know that (1.1)–(1.3) is well posed for all σ(s) ∈ Σ and
generates a family of processes {Uσ(t, τ)}, σ ∈ Σ, given by the formula Uσ(t, τ)yτ = y(t),
where y(t) is the solution of (1.1)–(1.8), and {Uσ(t, τ)}, σ ∈ Σ, satisfies (2.1)–(2.2). At the
same time, by the unique solvability, we know that {Uσ(t, τ)}, σ ∈ Σ, satisfies the translation
identity (2.3).

In what follows, we denote by {Uσ(t, τ)}, σ ∈ Σ, the family of processes generated by
(5.1)–(5.3).
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5.2. Bounded uniformly (w.r.t. σ ∈ Σ) absorbing set. We begin with the following
result on the existence of a bounded uniformly (w.r.t. σ ∈ Σ) absorbing set. Its proof is
essentially established in Haraux [22], and for the reader’s convenience, we replicate it here
and make only a few minor changes for our problem.

Theorem 5.3. Under the assumptions of Theorem 5.1, the family of processes {Uσ(t, τ)},
σ ∈ Σ, corresponding to (5.1) has a bounded (in X) uniformly (w.r.t. σ ∈ Σ) absorbing set B0,
i.e., there exists a positive constant ρ, which depends on ‖g0‖L∞(R;L2(Ω)) and the coefficients
in (1.6)–(1.8), such that for any bounded subset B ⊂ X and any τ ∈ R, there is a T = T (B)
such that for any t− τ � T , σ ∈ Σ, and (u0τ , u1τ ) ∈ B,

‖Uσ(t, τ)(u0τ , u1τ )‖X � ρ.

Proof. Since {Uσ(t, τ)}, σ ∈ Σ, satisfies the translation identity, we need only to prove
Theorem 5.3 for the cases τ ≡ 0. Moreover, from the definition of Σ we know that for all
σ ∈ Σ,

‖σ‖L∞(R;L2(Ω)) � ‖g0‖L∞(R;L2(Ω)).

Hence, without loss of generality, in the remainder of the proof, we will not point out the
difference in symbols and will denote different σ by g.

For any ε � 0, we set

Eε(t) =
1

2
‖u(t)‖2 +

1

2
|ut(t)|2 +

∫

Ω
F (u(x))dx + ε〈ut(t), u(t)〉.(5.4)

Then we have Eε(t) → E0(t) as ε → 0. Moreover, there exist C0, C1 � 0 such that

C0

2
(‖u(t)‖2 + |ut(t)|2) − C1 � E0(t).(5.5)

By differentiating (5.4) with time t, we obtain that

d

dt
(Eε(t))

= 〈utt −�u, ut〉 + 〈f(u), ut(t)〉 + ε|ut(t)|2 + ε〈utt(t), ut(t)〉
= 〈g, ut〉 − 〈h(ut), ut〉 + ε|ut(t)|2 − ε‖u‖2 − ε〈f(u), u〉 + ε〈g, u〉 − ε〈h(ut), u〉.(5.6)

It is obvious that (1.5) implies that

〈h(ut), ut〉 � α|ut|2 − C|Ω|,
and from (1.7) and (1.8) we know that there are λ1 > δ > 0 and C > 0 such that

〈f(u), u〉 � δ

∫

Ω
F (u)dx− C.

Hence we get the inequality

E′
ε(t) �

(
2ε− α

2

)
|ut(t)|2 − ε

2
‖u(t)‖2 − εδ

∫

Ω
F (u)dx

− 1

2
〈h(ut), ut〉 + ε‖u(t)‖‖h(ut(t))‖H−1 + C,
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where C depends on ‖g‖L∞(R,L2(Ω)).
On the other hand, from (1.4)–(1.6) we have (e.g., see the lemma in [22]) that there is a

constant K such that

‖h(v)‖H−1 � K(1 + 〈h(v), v〉) ∀ v ∈ H1
0 (Ω).

Denote

w(t) � 1 + 〈h(ut(t)), ut(t)〉(> 0).

Then, by taking ε small enough, we obtain that, for all t � 0,

E′
ε(t) � −γεEε(t) + (Kε‖u(t)‖ − 1/2)w(t) + C

� −γεEε(t) + (Nε
√

Eε(t) − 1/2)w(t) + C,(5.7)

where N,C > 0 depending only on f , g, h, and Ω (not on the initial data) and γ > 0.
Now choose ε > 0 so small that

Eε(0) <

(
1

2Nε

)2

− C

γε
.(5.8)

Then,

Eε(t) <

(
1

2Nε

)2

∀ t � 0.(5.9)

If (5.9) is not true, let t0 = inf{t � 0, Eε(t) � ( 1
2Nε)

2}; then Eε(t0) = ( 1
2Nε)

2, and for all
t ∈ [0, t0], we have

Eε(t) �
(

1

2Nε

)2

.(5.10)

Therefore, from (5.7) and (5.10) we can obtain that

Eε(t0) � e−γεt0Eε(0) +
C

γε
<

(
1

2Nε

)2

.(5.11)

This is a contradiction and means that (5.9) is indeed satisfied.
Combining (5.7) and (5.9), by use of the uniform Gronwall lemma, we obtain that

Eε(t) � e−γεtEε(0) +
C

γε
.(5.12)

Finally, we notice that for every bounded set B ⊂ X, we assume the bounds of B (in X)
are E (> 0); then by taking 1/ε = 4N

√
E we can obtain 1

(2Nε)2
− C

γε � E for any E large

enough. It follows from (5.12) that there exist M > 0 (independent of the initial data) and
T = T (B) such that

E0(t) � M(1 +
√
E0(0)) ∀ t � T and (u0τ , u1τ ) ∈ B.(5.13)
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Without loss of generality, assume M > 1; then from (5.13) we have that for any bounded
set B ⊂ X, there is a T = T (B) such that

E0(t) � 4M2 + 1 ∀ t � T and (u0τ , u1τ ) ∈ B.

Combining this with (5.5), we know that Theorem 5.3 is true.
Remark 5.4. If g ∈ W 1, 1

b (R;H−1), then we can also obtain the same results about the
existence of a bounded uniformly absorbing set. For the proof we need only to replace Eε(t) by
a new energy functional Gε(t) = Eε(t) − 〈g, u〉, replace the constant C

γε in (5.8), (5.11), and
(5.12) by another constant C�, where

C� =
1

1 − e−γε
‖gt‖L1

b(R;H−1) + ‖g‖L∞(R;H−1) + 1,

and note that C�ε2 → 0 as ε → 0.

5.3. Uniform (w.r.t. σ ∈ Σ) asymptotic compactness. The main result in this subsec-
tion is summarized in the following theorem.

Theorem 5.5. Let Ω be a bounded domain in R
3 with smooth boundary, and h and f satisfy

(1.4)–(1.8). If g0 ∈ L∞(R;L2(Ω))∩W 1, r
b (R;Lr(Ω)) for some r > 6

5 and Σ is defined by (5.3),
then the family of processes {Uσ(t, τ)}, σ ∈ Σ, corresponding to (5.1) or (1.1), is uniformly
(w.r.t. σ ∈ Σ) asymptotically compact in H1

0 (Ω) × L2(Ω).
The idea for the proof is similar to that in Chueshov and Lasiecka [13, 14, 15] and Khan-

mamedov [24]; see also [38] for linear damping and autonomous cases.
Hereafter, we always assume that the hypotheses of Theorem 5.1 hold and denote by B0

the bounded uniformly absorbing set obtained in Theorem 5.3.

5.3.1. Preliminaries. Note that condition (1.6) implies that

|h(s)| 1p � C(1 + |s|);

therefore, we have

|h(s)| p+1
p = |h(s)| 1p · |h(s)| � C(1 + |s|)|h(s)| � C|h(s)| + Ch(s) · s.

Combining Young’s inequality and (1.4), we obtain that

|h(s)| p+1
p � C(1 + h(s) · s) ∀ s ∈ R,(5.14)

where the constant C is independent of s. Moreover, we recall the following result.
Lemma 5.6 (see [19, 24]). Let h satisfy (1.4) and (1.5). Then for any δ > 0, there exists

a constant Cδ, depending on δ, such that

|u− v|2 � δ + Cδ(h(u) − h(v))(u− v) for any u, v ∈ R.

Proposition 5.7. Let si ∈ R (i = 1, 2, . . . ), g ∈ W 1,r
b (R;Lr(Ω)) for some r > 6

5 , {un(t)| t �
0, n = 1, 2, . . . } is bounded in H1

0 (Ω), and for any T1 > 0, {unt(t)| n = 1, 2, . . . } is bounded
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in L∞(0, T1;L
2(Ω)). Then for any T > 0, there exist subsequences {unk

}∞k=1 of {un}∞n=1 and
{snk

}∞k=1 of {sn}∞n=1 such that

lim
k→∞

lim
l→∞

∫ T

0

∫ T

s

∫

Ω
(g(x, τ + snk

) − g(x, τ + snl
))(unk

− unl
)t(τ)dxdτds = 0.

Proof. Since {un(t)| t � 0, n = 1, 2, . . . } is bounded in H1
0 (Ω) and for any T1 > 0,

{unt(t)| n = 1, 2, . . . } is bounded in L∞(0, T1;L
2(Ω)), then for any T > 0, without loss of

generality (at most by passing subsequence), we assume

un(T ) → u0 in L2(Ω)

and

un → v in Lk(0, T ; Lk(Ω))

(
this requires r >

6

5

)
,

where k < 6.
Note that

(g(x, t + si) − g(x, t + sj))wt(t)

=
d

dt
((g(x, t + si) − g(x, t + sj))w(t)) − (gt(x, t + si) − gt(x, t + sj))w(t)

for any w ∈ W 1, 2
loc (R;L2(Ω)); then by use of the Hölder inequality, we obtain that

lim
n→∞ lim

m→∞

∫ T

0

∫ T

s

∫

Ω
(g(x, τ + sn) − g(x, τ + sm))(un − um)t(τ)dxdτds

� lim
n→∞ lim

m→∞ 2MT
2r+1

r

(∫

Ω
|un(T ) − um(T )| r

r−1dx

) r−1
r

+ lim
n→∞ lim

m→∞ 2MT
r+1
r

(∫ T

0

∫

Ω
|un(s) − um(s)| r

r−1dxds

) r−1
r

+ lim
n→∞ lim

m→∞T

∫ T

0

∫

Ω
|(gt(x, s + sn) − gt(x, s + sm))(un(s) − um(s))|dxds

= lim
n→∞ lim

m→∞T

∫ T

0

∫

Ω
|(gt(x, s + sn) − gt(x, s + sm))(un(s) − um(s))|dxds

� lim
n→∞ lim

m→∞T

(∫ T

0

∫

Ω
|gt(x, s + sn) − gt(x, s + sm)|r

) 1
r
(∫ T

0

∫

Ω
|un(s) − um(s)| r

r−1

) r−1
r

= 0,

where the constant M depends only on ‖g‖
W 1,r

b (R;Lr(Ω))
.

Remark 5.8. If g ∈ W 1,1+δ
b (R;H−1+δ) with some δ > 0, then by the compact embedding

W 1,1+δ(0, T ; H−1+δ) ↪→ W 1,1(0, T ; H−1) for any T > 0,

we can obtain Proposition 5.7 directly.
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5.3.2. A priori estimates. The main purpose of this part is to establish (5.22)–(5.23),
which will be used to obtain the asymptotic compactness. In the following, we deal only with
the strong solutions; the generalized solution case then follows easily by a density argument.

For any (ui
0, v

i
0) ∈ B0, let (ui(t), uit(t)) be the corresponding solution to σi w.r.t. initial

data (ui
0, v

i
0), i = 1, 2; that is, (ui(t), uit(t)) is the solution of the following equation:

{
utt + h(ut) − Δu + f(u(t)) = σi(x, t),

(u(0), ut(0)) = (ui
0, v

i
0), u|∂Ω = 0.

(5.15)

For convenience, we denote

gi(t) = σi(x, t), hi(t) = h(uit(t)), t � 0, i = 1, 2, and w(t) = u1(t) − u2(t).

Then w(t) satisfies

{
wtt + h1(t) − h2(t) − Δw + f(u1(t)) − f(u2(t)) = g1(t) − g2(t),

(w(0), wt(0)) = (u1
0, v

1
0) − (u2

0, v
2
0), w|∂Ω = 0.

(5.16)

Set

Ew(t) =
1

2

∫

Ω
|w(t)|2 +

1

2

∫

Ω
|∇w(t)|2.

Step 1. Multiplying (5.16) by wt(t) and integrating over [s, T ] × Ω, we obtain

Ew(T ) +

∫ T

s

∫

Ω
(h1(τ) − h2(τ))wt(τ)dxdτ +

∫ T

s

∫

Ω
(f(u1(τ)) − f(u2(τ)))wt(τ)dxdτ

�
∫ T

s

∫

Ω
(g1(τ) − g2(τ))wt(τ)dxdτ + Ew(s),(5.17)

where 0 � s � T . Then

∫ T

s

∫

Ω
(h1(τ) − h2(τ))wt(τ)dxdτ � Ew(s) +

∫ T

s

∫

Ω
(g1(τ) − g2(τ))wt(τ)dxdτ

−
∫ T

s

∫

Ω
(f(u1(τ)) − f(u2(τ)))wt(τ)dxdτ.

Combining this with Lemma 5.6, we get that, for any δ > 0,

∫ T

s

∫

Ω
|wt(τ)|2dxdτ � |T − s|δ · mes(Ω) + CδEw(s) + Cδ

∫ T

s

∫

Ω
(g1 − g2)wtdxdτ

− Cδ

∫ T

s

∫

Ω
(f(u1(τ)) − f(u2(τ)))wtxdτ.(5.18)
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Step 2. Multiplying (5.16) by w(t) and integrating over [0, T ] × Ω, we get that
∫ T

0

∫

Ω
|∇w(s)|2dxds +

∫

Ω
wt(T ) · w(T )dx

�
∫ T

0

∫

Ω
|wt(s)|2dxds−

∫ T

0

∫

Ω
(h1 − h2)wdxds +

∫

Ω
wt(0) · w(0)dx

−
∫ T

0

∫

Ω
(f(u1(s)) − f(u2(s)))wdxds +

∫ T

0

∫

Ω
(g1 − g2)wdxds.(5.19)

Therefore, from (5.18) and (5.19), we have

2

∫ T

0
Ew(s)ds � 2δT mes(Ω) + 2CδEw(0) + 2Cδ

∫ T

0

∫

Ω
(g1 − g2)wtdxds

− 2Cδ

∫ T

0

∫

Ω
(f(u1(s)) − f(u2(s)))wtdxds−

∫

Ω
wt(T )w(T ) +

∫

Ω
wt(0)w(0)

−
∫ T

0

∫

Ω
(h1 − h2)w −

∫ T

0

∫

Ω
(f(u1(s)) − f(u2(s)))w +

∫ T

0

∫

Ω
(g1 − g2)w.

Integrating (5.17) over [0, T ] w.r.t. s, we have that

TEw(T ) +

∫ T

0

∫ T

s

∫

Ω
(h1(τ) − h2(τ))wt(τ)dxdτds

� −
∫ T

0

∫ T

s

∫

Ω
(f(u1(τ)) − f(u2(τ)))wtdxdτds

+

∫ T

0

∫ T

s

∫

Ω
(g1 − g2)wtdxdτds +

∫ T

0
Ew(s)ds

� −
∫ T

0

∫ T

s

∫

Ω
(f(u1(τ)) − f(u2(τ)))wtdxdτds +

∫ T

0

∫ T

s

∫

Ω
(g1 − g2)wtdxdτds

+ δT mes(Ω) + CδEw(0) + Cδ

∫ T

0

∫ T

s

∫

Ω
(g1 − g2)wtdxds

− Cδ

∫ T

0

∫

Ω
(f(u1(s)) − f(u2(s)))wtdxds− 1

2

∫

Ω
wt(T )w(T ) +

1

2

∫

Ω
wt(0)w(0)

− 1

2

∫ T

0

∫

Ω
(h1 − h2)w − 1

2

∫ T

0

∫

Ω
(f(u1(s)) − f(u2(s)))w +

1

2

∫ T

0

∫

Ω
(g1 − g2)w.

Step 3. We need to deal with
∫ T
0

∫
Ω(h1−h2)w. Multiplying (5.15) by uit(t) and combining

this with the existence of bounded uniformly absorbing set, we have
∫ T

0

∫

Ω
h(uit)uit � MT ,

where the constant MT depends on T (which is different from the autonomous cases) and the
bounds of B0. Then, noticing (5.14), we obtain that

∫ T

0

∫

Ω
|h(uit)|

p+1
p dxds � MT .(5.20)
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Therefore, using the Hölder inequality, from (5.20) we have

∣
∣
∣
∣

∫ T

0

∫

Ω
(h1 − h2)w

∣
∣
∣
∣ � 2M

p
p+1

T

(∫ T

0

∫

Ω
|w|p+1

) 1
p+1

.(5.21)

Remark 5.9. To some extent, (5.21) requires that the growth order of h is strictly less
than 5.

Set

φδ, T ((u1
0, v

1
0), (u

2
0, v

2
0);σ1, σ2)

= −
∫ T

0

∫ T

s

∫

Ω
(f(u1(τ)) − f(u2(τ)))wtdxdτds + (1 + Cδ)

∫ T

0

∫ T

s

∫

Ω
(g1 − g2)wtdxdτds

− Cδ

∫ T

0

∫

Ω
(f(u1(s)) − f(u2(s)))wtdxds− 1

2

∫ T

0

∫

Ω
(h1 − h2)wdxds

− 1

2

∫ T

0

∫

Ω
(f(u1(s)) − f(u2(s)))wdxds +

1

2

∫ T

0

∫

Ω
(g1 − g2)wdxds,

(5.22)

CM = δT mes(Ω) + CδEw(0) − 1

2

∫

Ω
wt(T )w(T )d +

1

2

∫

Ω
wt(0)w(0)dx.

Then we have

Ew � CM

T
+

1

T
φδ, T ((u1

0, v
1
0), (u

2
0, v

2
0);σ1, σ2).(5.23)

5.3.3. Uniform asymptotic compactness.
Proof of Theorem 5.5. Since the family of processes {Uσ(t, τ)}, σ ∈ Σ, has a bounded

uniformly absorbing set, for any fixed ε > 0, we can first choose δ � ε
2 mes(Ω) and then let T

be so large that

CM

T
� ε.

Hence, thanks to Theorem 4.2, we need only to verify that φδ, T (·, ·; ·, ·) ∈ Contr(B0,Σ)
for each fixed T .

At first, we can observe from the proof procedure of Theorem 5.3 that for any fixed T , we
have

⋃

σ∈Σ

⋃

t∈[0, T ]

Uσ(t, 0)B0 is bounded in E0,(5.24)

and the bound depends on T .

Let (un, unt) be the solutions corresponding to initial data (un
0 , v

n
0 ) ∈ B0 w.r.t. symbol

σn ∈ Σ, n = 1, 2, . . . . Then, from (5.24), without loss of generality (at most by passing
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subsequence), we assume that

un → u �-weakly in L∞(0, T ; L6(Ω)),(5.25)

un → u in Lp+1(0, T ; Lp+1(Ω)),(5.26)

unt → ut �-weakly in L∞(0, T ; L2(Ω)),(5.27)

un → u in L2(0, T ; L2(Ω)),(5.28)

and

un(0) → u(0) and un(T ) → u(T ) in L4(Ω),(5.29)

where we used the compact embeddings H1
0 ↪→ L4 and H1

0 ↪→ Lp+1 (since p < 5).
Now, we will deal with each term corresponding to that in (5.22) one by one.
First, from (5.21), we have

∣∣∣∣

∫ T

0

∫

Ω
(h(unt(s)) − h(umt(s)))(un(s) − um(s))dxds

∣∣∣∣

� 2M
p

p+1

T

(∫ T

0

∫

Ω
|un(s) − um(s)|p+1

) 1
p+1

,

where MT depends on T and the bound of B0 in H1
0 ×L2. Therefore, from (5.26) we can get

lim
n→∞ lim

m→∞

∫ T

0

∫

Ω
(h(unt(s)) − h(umt(s)))(un(s) − um(s))dxds = 0.(5.30)

Second, from Proposition 5.7 and (5.29), we have

lim
n→∞ lim

m→∞

∫ T

0

∫

Ω
(gn(x, s) − gm(x, s))(unt(s) − umt(s))dxds = 0(5.31)

and

lim
n→∞ lim

m→∞

∫ T

0

∫ T

s

∫

Ω
(gn(x, τ) − gm(x, τ))(unt(τ) − umt(τ))dxdτds = 0.(5.32)

At the same time, from the growth condition (1.7) and (5.28), we can get easily that

lim
n→∞ lim

m→∞

∫ T

0

∫

Ω
(f(un(s)) − f(um(s)))(un(s) − um(s))dxds = 0.(5.33)

Finally, since
∫ T

0

∫

Ω
(unt(s) − umt(s))(f(un(s)) − f(um(s)))dxds

=

∫

Ω
F (un(T )) −

∫

Ω
F (un(0)) +

∫

Ω
F (um(T )) −

∫

Ω
F (um(0))

−
∫ T

0

∫

Ω
untf(um(s)) −

∫ T

0

∫

Ω
umtf(un(s)),
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then, by use of (5.25), (5.27), (5.29), and (1.7), taking first m → ∞ and then n → ∞, we
obtain that

lim
n→∞ lim

m→∞

∫ T

0

∫

Ω
(unt(s) − umt(s))(f(un(s)) − f(um(s)))dxds

=

∫

Ω
F (u(T )) −

∫

Ω
F (u(0)) +

∫

Ω
F (u(T )) −

∫

Ω
F (u(0))

−
∫ T

0

∫

Ω
utf(u(s)) −

∫ T

0

∫

Ω
utf(u(s))

= 0.(5.34)

Similarly, we have

∫ T

s

∫

Ω
(unt(τ) − umt(τ))(f(un(τ)) − f(um(τ)))dxdτ

=

∫

Ω
F (un(T )) −

∫

Ω
F (un(s)) +

∫

Ω
F (um(T )) −

∫

Ω
F (um(s))

−
∫ T

s

∫

Ω
untf(um(τ)) −

∫ T

s

∫

Ω
umtf(un(τ)).

At the same time, |∫ T
s

∫
Ω(unt(τ) − umt(τ))(f(un(τ)) − f(um(τ)))dxdτ | is bounded for each

fixed T ; then by the Lebesgue dominated convergence theorem we have

lim
n→∞ lim

m→∞

∫ T

0

∫ T

s

∫

Ω
(unt(τ) − umt(τ))(f(un(τ)) − f(um(τ)))dxdτds

=

∫ T

0

(
lim

n→∞ lim
m→∞

∫ T

s

∫

Ω
(unt(τ) − unt(τ))(f(un(τ)) − f(um(τ)))dxdτ

)
ds

=

∫ T

0
0ds = 0.(5.35)

Hence, combining (5.30)–(5.35), we get that φδ, T (·, ·; ·, ·) ∈ Contr(B0,Σ), and then this
completes the proof of Theorem 5.5.

Remark 5.10. If g0 ∈ L∞(R;L2(Ω))∩L2
c(R;L2(Ω)) (e.g., g0 ∈ L∞(R;L2(Ω)) and is a time

periodic, quasi-periodic, or almost periodic function in L2
loc(R;L2(Ω))), then we can obtain

(5.31) and (5.32) directly from the definition of L2
c(R;L2(Ω)). That is, we do not need the

preliminaries in Proposition 5.7, and Theorem 5.5 on uniform asymptotic compactness still
holds.

Remark 5.11. From Remarks 5.4 and 5.8, we know that Theorem 5.5 also holds if g0 ∈
W 1,1+δ

b (R;H−1+δ) for some δ > 0.

5.4. Existence of uniform attractor.
Theorem 5.12. Let Ω be a bounded domain in R

3 with smooth boundary, and h and f
satisfy (1.4)–(1.8). If g0 ∈ L∞(R;L2(Ω)) ∩W 1, r

b (R;Lr(Ω)) for some r > 6
5 and Σ is defined

by (5.3), then the family of processes {Uσ(t, τ)}, σ ∈ Σ, corresponding to (5.1) or (1.1) has a
compact uniform (w.r.t. σ ∈ Σ) attractor AΣ.
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Proof. From Theorems 5.3 and 5.5 we know that the conditions of Theorem 3.4 are all
satisfied.

Remark 5.13. If g0 ∈ L∞(R;L2(Ω)) and g0 is a time periodic, quasi-periodic, or almost
periodic function in L2

loc(R;L2(Ω)), then the family of processes {Uσ(t, τ)}, σ ∈ Σ, corre-
sponding to (5.1) or (1.1) has a compact uniform (w.r.t. σ ∈ Σ) attractor AΣ. Similarly, if

g0 ∈ W 1,1+δ
b (R;H−1+δ) for some δ > 0, then the same result about the existence of a compact

uniform (w.r.t. σ ∈ Σ) attractor holds.

5.5. Structure of uniform attractor. In this subsection, we will consider the structure of
a uniform attractor by applying Theorems 3.8 and 3.10.

For this purpose, we need some continuities for the processes.

Now, assume that g0 ∈ W 1,1+δ
b (R;H−1+δ) for some δ > 0, and define

Σ′
0 = {(x, t) �→ g0(x, t + h) : h ∈ R}

and

Σ′ is the closure of Σ′
0 w.r.t. the local weak convergence topology of

W 1,1+δ
loc (R;H−1+δ).

(5.36)

Then, by the results of Chepyzhov and Vishik [11], we see that Σ′ with the local weak

convergence topology of W 1,1+δ
loc (R;H−1+δ) forms a sequentially compact and metrizable com-

plete space, and we denote the equivalent metric by d1(·, ·). Thus (Σ′, d1) is a compact metric
space. Moreover, from [11, Lemma 4.1, Chapter V] we have the following lemma.

Lemma 5.14. The translation semigroup {T (t)}t�0 is invariant and continuous in Σ′ w.r.t.

the local weak convergence topology of W 1,1+δ
loc (R;H−1+δ)—equivalently, w.r.t. the metric d1.

On the other hand, from the assumptions on h(·), f(·), and g0, we can (e.g., using the
methods similar to [14, 19]) show that the family of processes {Uσ(t, τ)}, σ ∈ Σ′: (X, ‖ · ‖X)×
(Σ′, d1) �→ (X, ‖ · ‖X), is continuous (and obviously is norm-to-weak continuous).

Therefore, applying Theorem 3.10, from Remark 5.13 and Lemma 5.14, we have the
following result.

Theorem 5.15. Let Ω be a bounded domain in R
3 with smooth boundary, and h and f

satisfy (1.4)–(1.8). If g0 ∈ W 1,1+δ
b (R;H−1+δ) for some δ > 0 and Σ′ is defined by (5.36),

then the family of processes {Uσ(t, τ)}, σ ∈ Σ′, corresponding to (5.1) has a compact uniform
(w.r.t. σ ∈ Σ′) attractor AΣ′. Moreover,

AΣ′
0

= AΣ′ =
⋃

σ∈Σ′
Kσ(0).

6. Some discussions. As indicated by some authors (for example, [3, 5, 29, 32, 33, 39]),
the energy method for proving asymptotic compactness requires that the solutions satisfy some
energy equality to some extent. For our problem, since we assume only that the nonlinear
function h satisfies (1.4)–(1.6), we can obtain only the inequality estimate (5.20). This brings
an obstacle for us to verify the energy equality and apply the energy method; see [13, 14].
Fortunately, these energy inequalities (5.17)–(5.19) are enough for us to obtain the asymptotic
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compactness. Note that if we take other (possibly stronger) assumptions for h (other than
(1.4)–(1.6)), e.g., the standard two-sided growth assumption

h(v)v � −C + C0|v|p+1 for any v ∈ R,

then it is possible to obtain the energy equality, and the energy method applies.
Moreover, in section 3, we present a slightly improved result about the kernel section,

from continuous processes to “weakly” continuous processes (i.e., norm-to-weak continuous
processes). For our wave model here, under the assumptions on the nonlinear functions and
forcing term, we can prove that, indeed, the corresponding process is continuous in the strong
topology (i.e., with the usual topology on the energy state space and weak topology on the
hull of the external force). However, the theory on attractors for norm-to-weak continuous
processes maybe useful for some other systems. For example, as mentioned in Robinson [35],
for a class of autonomous reaction-diffusion equations with a polynomial growth nonlinearity,
the continuity of solution semigroups in H1

0 is unknown if we do not take any restriction on
the growth order of nonlinearity. The same situation is also possible for some nonautonomous
systems.

Acknowledgment. The authors would like to thank the referees for very helpful comments
and suggestions.
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1969.
[28] S. S. Lu, H. Q. Wu, and C. K. Zhong, Attractors for nonautonomous 2D Navier-Stokes equations with

normal external forces, Discrete Contin. Dyn. Syst., 13 (2005), pp. 701–719.
[29] G. Lukaszewicz and W. Sadowski, Uniform attractor for 2D magneto-micropolar fluid flow in some

unbounded domains, Z. Angew. Math. Phys., 55 (2004), pp. 247–257.
[30] Q. F. Ma, S. H. Wang, and C. K. Zhong, Necessary and sufficient conditions for the existence of

global attractors for semigroups and applications, Indiana Univ. Math. J., 51 (2002), pp. 1541–1557.
[31] A. Majda, Introduction to PDEs and Waves for the Atmosphere and Oceans, AMS, Providence, RI,

2003.
[32] I. Moise, R. Rosa, and X. Wang, Attractors for noncompact nonautonomous systems via energy equa-

tions, Discrete Contin. Dyn. Syst., 10 (2004), pp. 473–496.
[33] I. Moise, R. Rosa, and X. Wang, Attractors for non-compact semigroup via energy equations, Nonlin-

earity, 11 (1998), pp. 1369–1393.
[34] V. Pata and S. Zelik, A remark on the damped wave equation, Commun. Pure Appl. Anal., 5 (2006),

pp. 609–614.
[35] J. C. Robinson, Infinite-Dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs

and the Theory of Global Attractors, Cambridge University Press, Cambridge, UK, 2001.
[36] G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Springer-Verlag, New York, 2002.
[37] C. Y. Sun, M. H. Yang, and C. K. Zhong, Global attractors for the wave equation with nonlinear

damping, J. Differential Equations, 227 (2006), pp. 427–443.
[38] C. Y. Sun, M. H. Yang, and C. K. Zhong, Global attractors for hyperbolic equations with critical

exponent in locally uniform spaces, J. Differential Equations, submitted.
[39] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New

York, 1997.
[40] S. V. Zelik, Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical

growth exponent, Commun. Pure Appl. Anal., 3 (2004), pp. 921–934.



318 CHUNYOU SUN, DAOMIN CAO, AND JINQIAO DUAN

[41] C. K. Zhong, M. H. Yang, and C. Y. Sun, The existence of global attractors for the norm-to-weak
continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Differential
Equations, 223 (2006), pp. 367–399.

[42] S. F. Zhou and L. S. Wang, Kernel sections for damped non-autonomous wave equations with critical
exponent, Discrete Contin. Dyn. Syst., 9 (2003), pp. 399–412.



SIAM J. APPLIED DYNAMICAL SYSTEMS c© 2007 Society for Industrial and Applied Mathematics
Vol. 6, No. 2, pp. 319–347

Nonlinear Convective Instability of Turing-Unstable Fronts near Onset: A Case
Study∗
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Abstract. Fronts are traveling waves in spatially extended systems that connect two different spatially homo-
geneous rest states. If the rest state behind the front undergoes a supercritical Turing instability,
then the front will also destabilize. On the linear level, however, the front will be only convectively
unstable since perturbations will be pushed away from the front as it propagates. In other words,
perturbations may grow, but they can do so only behind the front. The goal of this paper is to
prove for a specific model system that this behavior carries over to the full nonlinear system.
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1. Introduction. Propagating fronts are of interest in many different applications. In this
manuscript, we are interested in the transition from stable to convectively unstable fronts:
An initial perturbation to a convectively unstable front grows in time in any translation
invariant norm but is simultaneously transported either to the right or to the left toward
infinity in such a way that it decays pointwise at every fixed point in space as time goes to
infinity [3]. It is worth pointing out that a convective instability can justifiably be viewed as
a form of stability since perturbations decay pointwise: Consequently, we will use the terms
“convective instability” and “convective stability” as synonyms. Whether or not an instability
is convective depends strongly on the coordinate frame in which we measure the growth of
perturbations. A natural reference frame for fronts is the comoving frame in which the front
becomes stationary. Our aim is to show for a model system that the convective nature of
certain front instabilities can be captured analytically.

The general situation can be described as follows. Consider a reaction-diffusion system

∂tU = D∂2
xU + F (U ; α), x ∈ R, t > 0, U ∈ R

N ,(1.1)

with a control parameter α ∈ R, where D is a diagonal matrix with strictly positive entries,
and F is a smooth function. We assume that the system exhibits a front, i.e., a nonlinear
wave U(x, t) = Uh(x − ct) that travels with positive speed c > 0 and connects two different
homogeneous rest states U± so that Uh(ξ) → U± as ξ → ±∞. Once we specified that the
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front velocity c is positive so that the front travels toward x = ∞, we may refer to the rest
states U+ and U− as being, respectively, ahead of and behind the front.

We say that a front is stable if every solution that starts near the front converges to the
front, or one of its spatial translates, as time goes to infinity. A sufficient criterion for stability
is that the spectrum of the linearization L of (1.1) about the front, computed in the comoving
frame ξ = x− ct, lies in the left half-plane except for a simple eigenvalue at the origin, which
arises due to translational symmetry. Fronts become unstable when a subset of the spectrum
of L crosses the imaginary axis. The effect of such instabilities on the dynamics near a given
front depends on which part of the spectrum crosses the imaginary axis. If isolated eigenvalues
cross the imaginary axis, then the problem can be analyzed using Lyapunov–Schmidt reduction
or, alternatively, center-manifold theory. The two generic bifurcations that occur are saddle-
nodes and Hopf bifurcations. At a Hopf bifurcation, a unique modulated front bifurcates, i.e.,
a solution that becomes time periodic in an appropriate comoving coordinate frame. It is
also possible that part of the essential spectrum crosses the imaginary axis. The boundary of
the essential spectrum of L coincides with the spectra of the asymptotic rest states U±, and
we concentrate here exclusively on Turing bifurcations of one of the asymptotic rest states:
Turing bifurcations lead to stationary spatially periodic patterns whose deviation from the
rest state is small; these patterns are commonly referred to as Turing patterns. If the rest state
U+ ahead of the front destabilizes, then there exists a continuum of modulated fronts which
connect the rest state U− behind the front with the Turing patterns ahead of the front [23].
The bifurcating modulated fronts are spectrally stable provided the periodic patterns are
spectrally stable [22, 23]. For a certain model system that shares the main features of general
reaction-diffusion systems, they have also been shown to be nonlinearly stable [10]. It should
be emphasized that nonlinear stability does not follow from spectral stability, because the
essential spectrum of the linearization about the modulated front touches the imaginary axis.
The proof of nonlinear stability in [10] is based on exponential weights [4, 8, 9, 24] to handle the
essential spectrum and on renormalization techniques [2, 7, 8] to take care of the nonlinearity.

In this paper, we are interested in the case where the rest state U− behind the front
destabilizes. It has been proved in [23] that modulated fronts that connect the Turing patterns
behind the front to the rest state ahead cannot exist in this situation (see also [25] for related
formal results). Thus, while the front is linearly unstable, there are no stable coherent front
structures nearby. Numerical simulations and formal arguments give the following picture:
The Turing bifurcation behind the front leads to stationary patterns. In the frame that moves
with the front (which has speed c), we therefore expect, at least on the linear level, that
initial perturbations to the front are transported with speed c to the left toward x = −∞. In
other words, the front can be thought of as pushing any perturbation away to the left. On the
nonlinear level, we expect that growth saturates at the Turing pattern. Numerical simulations
indeed show that initial data near the linearly unstable front evolve to a superposition of two
fronts that move with different speeds, namely, a small Turing front which connects the Turing
patterns far to the left with the unstable rest state U−, and the primary linearly unstable front
which travels faster and leaves the Turing front behind in its wake; see Figure 1. Sherratt [25]
investigated in great detail the dynamics in the wake of convectively unstable fronts using
formal arguments. Our goal is to make the above picture rigorous, at least for a model
system similar to that considered in [10]: Our approach involves a priori estimates that we are
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Figure 1. A schematic illustration of the expected dynamics near a convectively unstable front is shown:
The speeds satisfy ĉ < c.

currently able to establish only in specific cases using restrictive tools such as the maximum
principle and energy methods. We nevertheless believe that our general approach to nonlinear
convective stability will apply more widely, which is why we carry out this case study. We
certainly expect the overall phenomenon to be general for supercritical Turing bifurcations.

We consider the system

∂tu1 = ∂2
xu1 +

1

2
(u1 − c)(1 − u2

1) + γ1u
2
2,(1.2)

∂tu2 = −(1 + ∂2
x)2u2 + αu2 − u3

2 − γ2u2(1 + u1),

where x ∈ R, t ≥ 0, and U = (u1, u2). The parameters γ1 ∈ R, γ2 > 0, and c ∈ (0, 1) are
fixed, while the parameter α is a bifurcation parameter which varies near zero. For every α,
the system (1.2) admits the traveling-wave solution

Uh(x − ct) =

(
h(x − ct)

0

)
, h(ξ) = tanh

ξ

2
,

which connects the rest state U− = (−1, 0) at x = −∞ with the rest state U+ = (1, 0) at
x = ∞. The idea of considering the Chafee–Infante equation coupled to the Swift–Hohenberg
equation is adopted from [10], where a similar system has been used to investigate the nonlinear
stability of modulated fronts which bifurcate when the rest state ahead of the primary front
becomes unstable.

A standard bifurcation argument (see, for instance, [4]) has been used in [11] to show that
spatially periodic equilibria bifurcate at α = 0 from the rest state U−. More precisely, assume
that the parameters γ1 and γ2 satisfy

γ1γ2 > −3(1 + c)(5 + c)

11 + 3c
;(1.3)

then (1.2) has spatially periodic equilibria Uper for α > 0 sufficiently close to zero which are
given by

Uper(x) =

( −1
0

)
+

√
α

a0

(
0

cos x

)
+ O(α), a0 =

3

4
+

γ1γ2

2

(
1

1 + c
+

1

2(5 + c)

)
.(1.4)
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Figure 2. A schematic picture of the spectrum of the front Uh of (1.2) in the comoving frame ξ = x − ct
is shown in the complex plane C for α = 0 in spaces with (right) and without (left) exponential weight eβξ

with β > 0. Upon increasing α, the spectrum moves in the direction indicated by the arrows on spaces without
exponential weights but stays to the left of the imaginary axis in spaces with exponential weight.

In particular, the bifurcation is supercritical provided (1.3) holds. The following result shows
that the periodic patterns are nonlinearly stable with respect to perturbations in the space
H2(2) defined to be the set of L2-functions for which the norm

‖U‖H2(2) :=

(
2∑

j=0

∫

R

|∂j
xU(x)|2(1 + x2)2 dx

) 1
2

is finite.

Theorem 1 (see [11, Theorem 3.2]). Assume that γ2 > 0 and c ∈ (0, 1) are fixed and that
(1.3) is met. For each α > 0 sufficiently small, there are positive numbers K and δ such that,
for every V0 ∈ H2(2) with ‖V0‖H2(2) ≤ δ, (1.2) with initial data Uper + V0 has a unique global

solution U(t) = Uper + V (t), and ‖V (t)‖C0 ≤ K(1 + t)−1/2 for t ≥ 0.

The proof of the preceding theorem is essentially identical to that of [10, Theorem 2.4],
where a slightly different system was studied, and we therefore refer the reader to [11] for
details.

The front Uh exists for all values of α but it will be spectrally unstable for α > 0, since
part of its essential spectrum will then lie in the open right half-plane. To repeat the reasoning
outlined above, we might expect that waves bifurcating from the front at α = 0 resemble a
pattern obtained by gluing together the front Uh and the Turing patterns Uper that emerge in
its wake. Such waves would be time-periodic, rather than stationary, in a frame that moves
with the front. It was shown though in [23] that, for small α > 0, such waves cannot bifurcate.
Thus, it is natural to ask how perturbations of the front will evolve in time for α > 0. We
shall see that the spectrum of the front can actually be moved into the left half-plane in the
comoving frame ξ = x − ct, provided it is computed in an exponentially weighted function
space with norm ‖eβξU(ξ)‖ for some appropriate β > 0; see Figure 2 for an illustration. Thus,
if perturbations are localized ahead of the front, while being allowed to grow behind the front,
then they will decay exponentially in time as t → ∞. The main result of this paper asserts
that the same statement is true for the full nonlinear problem: The front is only convectively
unstable for α > 0 in that perturbations are pushed away from the front toward its wake.
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The results on nonlinear convective instability of the front Uh are formulated in the spaces
H1

ul(R, R2) of uniformly local functions (see [16, section 3.1]) whose definition we recall in
section 2. These spaces contain, in particular, all differentiable bounded functions such as
fronts or periodic solutions. The results furthermore utilize the smooth weight functions

ρβ(x) :=

{
eβx, x ≤ −1,
1, x ≥ 1,

(1.5)

defined for β > 0, with ρ′β(x) ≥ 0 for all x.
Theorem 2. Assume that γ2 > 0 and c ∈ (0, 1) are fixed, that (1.3) is met, and further that

either γ1 ≥ 0 or else γ2 < γ1 +
√

2 <
√

2. There are then positive constants α∗, β∗, ε∗, K,
and Λ∗ so that the following is true for all (α, ε) with |α| < α∗ and 0 < ε < ε∗: For every
function V0 = (v0

1, v
0
2) with

‖v0
1‖H1

ul
≤ ε2, ‖v0

2‖H1
ul
≤ ε, ‖ρβ∗V0‖H1

ul
≤ ε2,

(1.2) with initial data U0 = Uh + V0 has a unique global solution U(t), which can be expressed
as

U(x, t) = Uh(x − ct − q(t)) + V (x, t)

for an appropriate real-valued function q(t), and there is a q∗ ∈ R so that

‖V (·, t)‖H1
ul

+ |q(t)| ≤ K
[
ε +

√
|α|

] 1
2
, ‖ρβ∗(· − ct)V (·, t)‖H1

ul
+ |q(t) − q∗| ≤ Ke−Λ∗t(1.6)

for t ≥ 0.
Upon setting η∗ := ε2∗/2 and K∗ := K[ε∗ +

√
α∗]

1
2 /η∗, we obtain the following slightly

weaker, but also less technical, corollary of Theorem 2 which we formulate in the comoving
frame.

Corollary 1. Under the assumptions of Theorem 2, there are positive constants α∗, β∗, η∗,
K∗, and Λ∗ so that the following is true for all α with |α| < α∗: For each function V0 with
‖V0‖H1

ul
≤ η∗, (1.2) with initial data U0 = Uh + V0 has a unique global solution U(t), which

can be expressed as

U(x, t) = Uh(x − ct − q(t)) + V (x − ct, t)

for an appropriate real-valued function q(t), and there is a q∗ ∈ R so that

‖V (·, t)‖H1
ul

+ |q(t)| ≤ K∗η∗, ‖ρβ∗(·)V (·, t)‖H1
ul

+ |q(t) − q∗| ≤ K∗e−Λ∗t

for t ≥ 0.
Thus, the conclusion of the preceding theorem and corollary is that the dynamical behavior

of the front does not change at all near α = 0 provided we measure perturbations in the
weighted norm: Perturbations stay bounded in the C0-norm and decay exponentially to zero
as t → ∞ when they are multiplied by eβ∗(x−ct) for some appropriate β∗ > 0, so that the
front is nonlinearly stable in this norm for all values of α near zero. Note that our results
say nothing about the detailed dynamics behind the front. Indeed, our approach, outlined in
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detail below, relies only on a priori estimates and does not take the specific dynamics behind
the front into account.

We comment briefly on the scalings in ε and α that appear in Theorem 2. The components
v1 and v2 of the perturbation V scale with different powers in ε because the instability mani-
fests itself on a linear level only in the v2-component, while the v1-component is affected only
through the quadratic nonlinearity. The estimates (1.6) for the perturbation V are certainly

not optimal as we expect solutions to saturate at order |α| 12 . The weaker estimates (1.6) are
an artifact of our method which requires a supercritical bifurcation, but not necessarily its
genericity, and which consequently will not yield sharp estimates.

As already mentioned, nonlinear stability of the front Uh in the weighted spaces cannot
be inferred from spectral stability because the nonlinearity does not map the weighted spaces
into themselves. Indeed, if we define W = eβxV and use W = (w1, w2) as the new dependent
variable, then we would like to find bounds for W in C0 or H1

ul. If we transform the equation
for the initial perturbation V to the new weighted variable W , then the nonlinear term un

1

becomes

eβx[e−βxw1]
n = e(1−n)βxwn

1 ,

which is unbounded as x → −∞ for n > 1. To overcome this difficulty, we use a method
introduced originally in [19] in the Hamiltonian context. If we can obtain a priori estimates
for the solution in the space without weight, for instance, in C0 or H1

ul, and show that it
stays bounded and sufficiently small, then the nonlinear terms un

j , written as un
j = un−1

j uj ,

become un−1
j wj when transformed to the weighted functions W , which are now well behaved

due to the a priori estimates for uj . This interplay of the spatially uniform norm and the
exponentially weighted norm is the key for the proof of nonlinear stability of the front. An
example of a successful application of this technique has also been given independently in [1],
where a reaction-diffusion-convection system is considered that has essential spectra up to
the imaginary axis for all values of the bifurcation parameter while an isolated pair of simple
eigenvalues crosses the imaginary axis at the bifurcation point.

The plan of the paper is as follows. In section 2, we discuss the spectral stability of the
front and state several auxiliary results that we need later. Section 3 contains the proof of
Theorem 2. Numerical simulations and some further implications of our results are given in
section 4, and we end with conclusions and a discussion in section 5.

2. Linear convective instability. We begin by introducing the spaces L2
ul(R) from [16]

in which we shall work. Pick any positive and bounded function σ ∈ C2(R) for which∫
R

σ(x) dx = 1 and |σ′(x)|, |σ′′(x)| ≤ σ(x) for x ∈ R: We may, for instance, set σ(x) = 1
π sech x.

For each 0 < b < 1, we define σb(x) := σ(bx) and record that
∫

R
σb(x) dx = 1/b.

Using the weight function σ, we define the Banach space L2
ul of uniformly local weighted

L2 functions to be

L2
ul(R) =

{

u ∈ L2
loc(R) : ‖u‖2

L2
ul

:= sup
y∈R

∫

R

σ(x + y)|u(x)|2 dx < ∞

and ‖Tyu − u‖L2
ul
→ 0 as y → 0

}

,
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where [Tyu](x) := u(x + y) is the translation operator. We denote the associated Sobolev
spaces by Hk

ul(R) and remark that different choices for σ result in the same spaces with
equivalent norms. We collect various properties of these spaces in the following lemma.

Lemma 2.1 (see [16, Lemmas 3.1 and 3.8]). There is a constant K0 with the following prop-
erties:

(i) H1
ul is an algebra and embeds continuously into C0

unif with ‖u‖2
C0 ≤ K0‖u‖L2

ul
‖u‖H1

ul

for all u ∈ H1
ul.

(ii) For each 0 < b < 1, let σb(x) := σ(bx); then ‖u‖2
L2

ul(σ)
≤ K0(1 + b)‖u‖2

L2
ul(σb)

for all

u ∈ L2
ul(σ).

(iii) We have − ∫
R

σbu(1 + ∂2
x)2u dx ≤ 7b2

2

∫
R

σbu
2 dx for all u ∈ H4

ul.
We return now to the partial differential equation (1.2). Upon transforming (1.2) into the

comoving coordinate ξ = x − ct, we obtain the system

∂tu1 = ∂2
ξ u1 + c∂ξu1 +

1

2
(u1 − c)(1 − u2

1) + γ1u
2
2,(2.1)

∂tu2 = −(1 + ∂2
ξ )2u2 + c∂ξu2 + αu2 − u3

2 − γ2u2(1 + u1).

The linearization of (2.1) about a stationary solution of the form U∗ = (u∗, 0) is given by the
diagonal operator

L0[U∗] :=

(
∂2

ξ + c∂ξ + 1
2(1 + 2cu∗ − 3u2∗) 0

0 −[1 + ∂2
ξ ]2 + c∂ξ + α − γ2(1 + u∗)

)
.(2.2)

The operator L0[U∗] is sectorial on X0 := H1
ul × H1

ul with dense domain H3
ul × H5

ul. We shall
also consider (2.2) in exponentially weighted spaces: For β > 0, we defined in (1.5) the weight
function

ρβ(ξ) =

{
eβξ, ξ ≤ −1,
1, ξ ≥ 1,

where ρ′β(ξ) ≥ 0 for all ξ. We then set

W (ξ) := ρβ(ξ)V (ξ)

so that W satisfies Wt = Lβ[U∗]W with

Lβ[U∗] = ρβL0[U∗]ρ−1
β

whenever V satisfies Vt = L0[U∗]V . It is easy to check that the operator Lβ[U∗] is again
sectorial on X0. From now on, we shall denote by Lβ := Lβ[Uh] the linearized operator
belonging to the front Uh.

Proposition 2.2. Given γ2 > 0 and c ∈ (0, 1), there are positive numbers α0 and β0 and a
strictly positive function Λ0(β) defined for 0 < β < β0 so that the following holds for |α| ≤ α0:
The spectrum of Lβ satisfies

spec(Lβ) = {0} ∪ Σ with Re Σ ≤ −Λ0(β),



326 ANNA GHAZARYAN AND BJÖRN SANDSTEDE

and λ = 0 is the simple eigenvalue of Lβ and L0. Furthermore, the spectrum of L0 satisfies

spec(L0) = {0} ∪ Σ with Re Σ < 0 for α < 0,

spec(L0) ∩ {λ : Re λ ≥ 0} = {0} ∪ {±i} for α = 0,

and spec(L0) ∩ {λ : Re λ > 0} �= ∅ for α > 0.
In particular, the front Uh is orbitally stable for α < 0 due to [12, section 5.1], while it is

spectrally unstable for α > 0.
Proof. For each β, the spectrum of Lβ on X0 is the disjoint union of the essential spectrum

and the point spectrum, where the latter consists, by definition, of all isolated eigenvalues with
finite multiplicity. It follows from [12, appendix to section 5] or [17] that the essential spectrum
of Lβ on X0 is, for any β ≥ 0, bounded to the right by the essential spectra of the asymptotic
operators

L−
β := Lβ[U−] =

(
(∂ξ − β)2 + c(∂ξ − β) − (1 + c) 0

0 −[1 + (∂ξ − β)2]2 + c(∂ξ − β) + α

)

and L+
0 := L0[U+]. Indeed, the weight function ρβ is equal to one for ξ ≥ 1 and therefore has

no effect on the asymptotic coefficients when ξ → ∞.
Thus, to determine the rightmost elements in the essential spectrum of L0, it suffices to

compute the essential spectra of the operators L±
0 on the space X0. On account of multiplier

theory [16, Lemma 3.3], these spectra can be calculated using the Fourier transform: A
complex number λ is in the spectrum of L±

0 if and only if there are a vector V0 ∈ C
2 and a

number k ∈ R so that

λeikξV0 = L±
0 eikξV0,

that is, if and only if

det

( −k2 + ikc + 1
2(1 + 2cu± − 3u2±) − λ 0

0 −(1 − k2)2 + ikc + α − γ2(1 + u±) − λ

)
= 0,

where u± = ±1. In particular, we see that the spectrum of L+
0 is given by

spec(L+
0 ) =

{
λ ∈ C; λ = λ+

1 (k) := −k2 + ikc − (1 − c) or

λ = λ+
2 (k) := −(1 − k2)2 + ikc + α − 2γ2 for some k ∈ R

}

and therefore lies in the left half-plane and is uniformly bounded away from the imaginary
axis for all α near zero. Similarly, the spectrum of the operator L−

0 associated with the rest
state behind the front is given by

spec(L−
0 ) =

{
λ ∈ C; λ = λ−

1 (k) := −k2 + ikc − (1 + c) or

λ = λ−
2 (k) := −(1 − k2)2 + ikc + α for some k ∈ R

}
.(2.3)

It lies in the left half-plane, bounded away from the imaginary axis, except for the curve
λ = λ−

2 (k) which crosses into the right half-plane for α ≥ 0 and k ∈ R near kc = ±1.
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The spectrum of L−
β can be computed either analogously or, more directly, by replacing k

with k + iβ in the above expression for spec(L−
0 ). The rightmost part of the spectrum of L−

β

is therefore given by the linear dispersion curve

λ = λ−
2 (k + iβ) = −(1 − k2 + β2)2 + α − cβ + 4β2k2 + i[ck − 4βk(1 − k2 − β2)]

for k ∈ R, and we have

max
k∈R

Re λ−
2 (k + iβ) = α − cβ + 4β2(1 + 2β2),(2.4)

which is achieved at k = ±
√

1 + 3β2. Choosing β = c
8 , we obtain the bound

Λ−
ess = α − c2

16

(
1 − c2

32

)
< 0

for the maximal real part of spec(L−
β ), which is strictly negative for fixed c ∈ (0, 1) and

|α| ≤ c2

32 .
In summary, the essential spectrum of L0 lies in the open left half-plane for α = 0, touches

the imaginary axis at λ = ±i when α = 0, and crosses into the right half-plane for α > 0.
Having discussed the essential spectrum, we now turn to the point spectrum. The situation

here is similar to the one considered in [10]. The eigenfunctions associated with isolated
eigenvalues of L0 necessarily decay exponentially as |ξ| → ∞. The origin λ = 0 is always in
the point spectrum of L0 with eigenfunction U ′

h(ξ) = (hξ(ξ), 0).
For α < 0, any isolated eigenvalue λ of L0 satisfies either Re λ < 0 or λ = 0. To prove

this claim, we assume that there is an eigenvalue λ with eigenfunction V = (v1, v2) which
therefore satisfies the decoupled system

λv1 = ∂2
ξ v1 + c∂ξv1 +

1

2
(1 + 2ch − 3h2)v1,(2.5)

λv2 = −(1 + ∂2
ξ )2v2 + c∂ξv2 + αv2 − γ2(1 + h)v2.(2.6)

We see that λ = 0 is an eigenvalue of (2.5) with positive eigenfunction hξ(ξ) = 1
2 sech2 ξ

2 .
Sturm–Liouville theory implies that λ = 0 is simple for (2.5) and that all other eigenvalues of
(2.5) are strictly negative. To analyze (2.6), we multiply by v̄2 and integrate over R to obtain

Re λ‖v2‖2
L2 ≤ −‖(1 + ∂2

ξ )v2‖2
L2 + α‖v2‖2

L2 ≤ α‖v2‖2
L2 ,

where we used that γ2(1+h(ξ)) ≥ 0. Thus, either Re λ ≤ α or v2 = 0, which proves the claim.
Next, we consider the isolated eigenvalues of Lβ for 0 < β < β0 for an appropriate

β0 > 0. We claim that there are no eigenvalues on or to the right of the imaginary axis
for all α with |α| sufficiently small, except for a simple eigenvalue at the origin. To prove
this claim, we first record that eigenfunctions associated with isolated eigenvalues of Lβ in
the closed right half-plane decay exponentially as ξ → ∞ with a rate that does not depend
on the eigenvalue. In particular, there is a β0 > 0 so that the following is true for each
0 < β ≤ β0: if (w1, w2) = ρβ(v1, v2) is an L2-eigenfunction of Lβ belonging to an eigenvalue λ
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with Re λ ≥ 0, then eβξ(v1, v2) will also be in L2. Thus, it suffices to prove the claim for the
operator eβξL0(∂ξ)e

−βξ = L0(∂ξ − β): the associated eigenvalue problem is given by

λw1 = (∂ξ − β)2w1 + c(∂ξ − β)w1 +
1

2
(1 + 2ch − 3h2)w1,(2.7)

λw2 = −(1 + (∂ξ − β)2)2w2 + c(∂ξ − β)w2 + αw2 − γ2(1 + h)w2.(2.8)

Multiplying (2.8) by w̄2 and integrating over R, we obtain

Re λ‖w2‖L2 ≤ (α − cβ)‖w2‖L2 ≤ 0,

and therefore either Re λ ≤ α − cβ < 0 or w2 = 0. It remains to consider (2.7), which has an
eigenvalue at the origin with bounded positive eigenfunction eβξhξ(ξ). Sturm–Liouville theory
implies again that all other eigenvalues are strictly negative: In fact, the largest negative
eigenvalue is equal to −3

4(1 − c2). Thus, for eigenvalues λ of (2.7)–(2.8), we have λ = 0 or
Re λ ≤ max{α − cβ, −3

4(1 − c2)} < 0, and as mentioned above the same statement holds for
the eigenvalues of Lβ.

Finally, we remark that solutions V of (2.5)–(2.6) and W of (2.7)–(2.8) are in one-to-one
correspondence via W (ξ) = eβξV (ξ). This shows that L0 cannot have any isolated eigenvalues
in the closed right half-plane except at λ = 0.

In the nonlinear stability analysis of our model, we need the semigroup estimates for the
operators

A1 := ∂2
x − (1 + c), A2 := −(1 + ∂2

x)2

provided by the following lemma, which is a straightforward application of multiplier theory
[16, Lemma 3.3].

Lemma 2.3. The operators A1 and A2 are sectorial and thus generate holomorphic semi-
groups eA1t and eA2t. There is a positive constant K0 with

‖eA1t‖L2
ul→H1

ul
≤ K0(1 + t−

1
4 )e−t, ‖eA1t‖H1

ul→H1
ul

≤ K0e
−t,

‖eA2t‖L2
ul→Hs

ul
≤ K0(1 + t−

s
4 ), ‖eA2t‖H1

ul→H1
ul

≤ K0

uniformly in t > 0.

3. Nonlinear convective instability. This section contains the proof of Theorem 2. We
want to show that the front is convectively stable in the comoving frame for initial pertur-
bations which are small in H1

ul. In the comoving frame ξ = x − ct, the front is a stationary
solution of

∂tu1 = ∂2
ξ u1 + c∂ξu1 +

1

2
(u1 − c)(1 − u2

1) + γ1u
2
2,(3.1)

∂tu2 = −(1 + ∂2
ξ )2u2 + c∂ξu2 + αu2 − u3

2 − γ2u2(1 + u1).

The proof of Theorem 2 is divided into two parts. First we show that suitable a priori estimates
imply the nonlinear stability of the front in appropriate exponentially weighted norms imposed
in the comoving frame. Afterward, we establish these a priori estimates. We focus exclusively
on the case γ1 ≥ 0 and refer the reader to [11] for the modifications that are necessary for the
case γ2 < γ1 +

√
2 <

√
2. Recall that γ2 > 0 and c ∈ (0, 1) are both fixed.
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3.1. A priori estimates imply nonlinear stability. We expect that initial data close to the
front will converge to an appropriate translate of the front but not necessarily to the primary
front Uh itself. To capture this behavior, we introduce a time-dependent spatial shift function
q(t) in the argument of the front Uh and write solutions to (3.1) as

U(ξ, t) =

(
u1(ξ, t)
u2(ξ, t)

)
=

(
h(ξ − q(t))

0

)
+

(
v1(ξ, t)
v2(ξ, t)

)
,(3.2)

with h(ξ) = tanh ξ
2 . We may assume that q(0) = 0 since our system is translationally invariant.

The decomposition (3.2) can be made unique by requiring that the perturbation V = (v1, v2)
be “perpendicular,” in an appropriate way that we specify below, to the one-dimensional
subspace spanned by the derivative of the front.

The perturbation V = (v1, v2) of the front satisfies the system

∂tv1 = ∂2
ξ v1 + c∂ξv1 +

1

2
[1 − 3h2(ξ − q(t)) + 2ch(ξ − q(t))]v1 +

1

2
[c − 3h(ξ − q(t))]v2

1

− 1

2
v3
1 + q̇(t)hξ(ξ − q(t)) + γ1v

2
2,(3.3)

∂tv2 = −(1 + ∂2
ξ )2v2 + c∂ξv2 + αv2 − v3

2 − γ2(1 + h(ξ − q(t)))v2 − γ2v1v2

with initial data v1(ξ, 0) = v0
1(ξ), v2(ξ, 0) = v0

2(ξ), and q(0) = 0. Using the notation

A =

(
∂2

ξ + c∂ξ 0

0 −(1 + ∂2
ξ )2 + c∂ξ + α

)
,

R(ξ) =

( R1 0
0 R2

)
=

(
1
2 [1 − 3h2(ξ) + 2ch(ξ)] 0

0 −γ2(1 + h(ξ))

)
,

N (V ) =

( N1(V )
N2(V )

)
=

(
1
2 [c − 3h(ξ − q(t))]v1(ξ, t) − 1

2v2
1(ξ, t) γ1v2(ξ, t)

0 −v2
2(ξ, t) − γ2v1(ξ, t)

)
,

system (3.3) becomes

∂tV = AV + R(ξ − q(t))V + N (V )V + q̇(t)hξ(ξ − q(t))e1, e1 = (1, 0).(3.4)

Next, we introduce the weighted solution W = (w1, w2) via

W (ξ, t) = ρβ(ξ)V (ξ, t),

with ρβ as defined in (1.5), which satisfies the system

∂tW = LβW + [R(ξ − q(t)) −R(ξ)]W + N (V )W + q̇(t)hξ(ξ − q(t))ρβ(ξ)e1(3.5)

with Lβ = ρβAρ−1
β + R(ξ) being the linearization of the front Uh discussed in section 2

whenever V (ξ, t) satisfies (3.4).
Throughout the remainder of the proof, we fix β with 0 < β < β0 as in Proposition 2.2: We

then know that λ = 0 is a simple isolated eigenvalue of Lβ with eigenfunction ρβ(ξ)∂ξUh and
the rest of the spectrum has real part less than Λ0 with Λ0 from Proposition 2.2. We define
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Pc
β : H1

ul ×H1
ul → H1

ul ×H1
ul to be the spectral projection onto the one-dimensional eigenspace

of Lβ corresponding to the zero eigenvalue and denote by Ps
β = 1 − Pc

β the complementary
projection onto the stable eigenspace.

Lemma 3.1. For 0 < β < β0, there are constants K0 > 0 and α0 > 0 such that the
following is true for any α with |α| < α0. The spectral projection Pc

β is given by

Pc
βW =

(
P c

β 0

0 0

)
W = 〈ψc

1, W1〉L2ρβ∂ξUh,(3.6)

where

ψc
1(ξ) =

ecξρβ(ξ)hξ(ξ)∫
R

ecζhξ(ζ)2 dζ
,

and we have

‖ePc
βLβt‖H1

ul
≤ K0e

−Λ0t, t ≥ 0,(3.7)

with Λ0 as in Proposition 2.2.
Proof. It is easy to check that, in the space of bounded functions, the kernel of the operator

adjoint to Lβ is spanned by (hξ(ξ)e
cξρβ(ξ), 0). Upon normalizing this function, we end up

with the expression (3.6) for the center projection. The estimate (3.7) is a consequence of
Proposition 2.2 once we observe that the constant K0 does not depend on α despite the
presence of α in the definition of Lβ. Indeed, when α = 0, the spectrum of Pc

βLβ belongs to
{λ ∈ C : Re λ < −βc}, and an estimate of the form (3.7) holds for some K0. The operator for
α �= 0 is a bounded perturbation of order O(α) of the α = 0 operator, and [18, Theorem 1.1]
implies that K0 can be chosen to be independent of α for α sufficiently close to zero.

To fix q(t), we require that Pc
βW (t) = 0 for all t for which the decomposition (3.2) exists.

In other words, we require that W (t) ∈ Range(Ps
β) for all t. Applying the projections Pc

β and
Ps

β to (3.5), we obtain the evolution system

∂tV = AV + R(ξ − q(t))V + N (V )V + q̇(t)hξ(ξ − q(t))e1,(3.8)

∂tW = Ps
βLβW + Ps

β ([R(ξ − q(t)) −R(ξ)]W + N (V )W + q̇(t)hξ(ξ − q(t))ρβ(ξ)e1) ,(3.9)

q̇(t) = −〈ψc
1, [R1(ξ − q(t)) −R1(ξ)]W1 + N1(V )W 〉L2

〈ψc
1, hξ(ξ − q(t))ρβ(ξ)〉L2

(3.10)

for V = (v1, v2), W = (w1, w2), and q. It is easy to see that the linear parts of the right-
hand sides in (3.8)–(3.9) are sectorial operators on H1

ul(R, R2) with dense domain H3
ul × H5

ul.
The nonlinearity is smooth from Y := H1

ul(R, R2) × H1
ul(R, R2) × R into itself, and there is a

constant K1 such that

‖R1(· − q) −R1(·)‖H1
ul

+ ‖N (V )‖H1
ul
≤ K1(|q| + ‖V ‖H1

ul
)(3.11)

and

|q̇| ≤ K1(|q| + ‖V ‖H1
ul
)‖W‖H1

ul
(3.12)
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for all (V, W, q) ∈ Y with norm less than one, say. We therefore have the methods introduced
in [12] at our disposal which give local existence and uniqueness of solutions for initial data
in Y as well as continuous dependence on initial conditions, thus proving local existence and
uniqueness of the decomposition (3.2).

These arguments also allow us to claim that, for each given 0 < η0 ≤ 1, there exist a
δ0 > 0 and a time T > 0 such that the decomposition (3.2) exists for 0 ≤ t < T with

|q(t)| + ‖V (t)‖H1
ul
≤ η0(3.13)

provided ‖V (0)‖H1
ul
≤ δ0. Let Tmax = Tmax(η0) be the maximal time for which (3.13) holds.

Lemma 3.2. Pick Λ with 0 < Λ < Λ0 and η̂0 > 0 so that

2K0K1(1 + K0)

Λ0 − Λ
η̂0 < 1;(3.14)

then there are positive constants K2 and K3 that are independent of α such that for any
0 < η0 ≤ η̂0 we have

‖W (t)‖H1
ul
≤ K2e

−Λt‖W (0)‖H1
ul
, |q(t)| ≤ K3‖W (0)‖H1

ul

for all 0 ≤ t < Tmax(η0) and any solution that satisfies (3.13). If Tmax(η0) = ∞, then there
is a q∗ ∈ R with

|q(t) − q∗| ≤ K1K2

Λ
e−Λt‖W (0)‖H1

ul
(3.15)

for t ≥ 0.

Thus, to complete the proof of Theorem 2 once the lemma has been proved, it suffices to
establish a priori estimates which guarantee that V (t) stays so small that Tmax = ∞ for our
particular choice (3.14) of η̂0.

Proof. The variation-of-constants formula applied to (3.9) gives

W (t) = eP
s
βLβtW (0)

+

∫ t

0
eP

s
βLβ(t−s)Ps

β [(R(ξ − q(s)) −R(ξ) + N (V (s)))W (s) + q̇(s)hξ(ξ − q(s))ρβ(ξ)e1] ds.

The estimates (3.7) and (3.11) give

‖W (t)‖H1
ul
≤ K0e

−Λ0t‖W (0)‖H1
ul

+ K0

∫ t

0
e−Λ0(t−s)

[
K1η0‖W (s)‖H1

ul
+ |q̇(s)| ‖hξ(ξ − q(s))ρβ(ξ)‖H1

ul

]
ds,

which due to (3.12) and ‖hξ(ξ − q(s))ρβ(ξ)‖H1
ul
≤ K0 implies

‖W (t)‖H1
ul
≤ K0e

−Λ0t‖W (0)‖H1
ul

+ 2K0K1(1 + K0)η0

∫ t

0
e−Λ0(t−s)‖W (s)‖H1

ul
ds(3.16)
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for 0 < t < Tmax. Let

M(T ) := sup
0≤t≤T

eΛt‖W (t)‖H1
ul
,

where 0 ≤ T ≤ Tmax with T < ∞. Equation (3.16) gives

eΛt‖W (t)‖H1
ul
≤ K0e

−(Λ0−Λ)t‖W (0)‖H1
ul

+ 2K0K1(1 + K0)η0

∫ t

0
e−(Λ0−Λ)(t−s)eΛs‖W (s)‖H1

ul
ds

≤ K0‖W (0)‖H1
ul

+ 2K0K1(1 + K0)η0M(T )

∫ t

0
e−(Λ0−Λ)(t−s) ds,

from which we conclude that

M(T ) ≤ K0‖W (0)‖H1
ul

+
2K0K1(1 + K0)η0

Λ0 − Λ
M(T ) ≤ K0‖W (0)‖H1

ul
+

2K0K1(1 + K0)η̂0

Λ0 − Λ
M(T ).

The choice (3.14) of η̂0 shows that there is a constant K2 such that

sup
0≤t≤T

eΛt‖W (t)‖H1
ul
≤ K2‖W (0)‖H1

ul

and therefore

‖W (t)‖H1
ul
≤ K2e

−Λt‖W (0)‖H1
ul

(3.17)

for 0 ≤ t ≤ T as desired. From (3.12) and (3.17), we conclude that

|q̇(t)| ≤ 2K1e
−Λt‖W (0)‖H1

ul
(3.18)

for 0 ≤ t ≤ T . To obtain an estimate for q(t), we write

q(t) = q(s) +

∫ t

s
q′(τ) dτ(3.19)

and, setting s = 0 and using (3.18), we obtain

|q(t)| ≤
∫ t

0
|q̇(s)|ds ≤ 2K1K2‖W (0)‖H1

ul

∫ t

0
e−Λs ds ≤ 2K1K2

Λ
‖W (0)‖H1

ul
.

Setting K3 = 2K1K2/Λ, we get the desired estimate

|q(t)| ≤ K3‖W (0)‖H1
ul

(3.20)

for 0 ≤ t ≤ T .
Finally, if Tmax = ∞, then (3.17), (3.12), and (3.20) are valid for all times since the

constants K2 and K3 do not depend upon T or η0. Thus, (3.18) implies that the limit
q∗ = limt→∞ q(t) exists, and (3.20) shows that |q∗| ≤ K3‖W (0)‖H1

ul
. We can therefore take

the limit s → ∞ in (3.19) and get

q(t) = q∗ +

∫ t

∞
q′(τ) dτ,

which, together with (3.18), gives the estimate (3.15).
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3.2. Establishing the necessary a priori estimates. To complete the proof of Theorem 2,
it suffices to prove that, for sufficiently small 0 < η0 ≤ 1, there exists a δ0 > 0 such that

|q(t)| + ‖V (t)‖H1
ul
≤ η0

for all t ≥ 0 provided ‖V (0)‖H1
ul

≤ δ0. Throughout this section, we consider initial data

q(0) = 0 and V (0) ∈ H1
ul for which W (0) = ρβV (0) ∈ H1

ul.
Proposition 3.3. There exists a constant ε0 > 0 such that, if 0 < ε ≤ ε0 and

‖v1(0)‖H1
ul
≤ ε2, ‖v2(0)‖H1

ul
≤ ε, ‖W (0)‖H1

ul
≤ ε2,

then

|q(t)| + ‖V (t)‖H1
ul
≤

[
ε +

√
|α|

] 1
2

for t ≥ 0 and, in particular, Tmax(η0) = ∞ for η0 > 0 sufficiently small.
Theorem 2 follows now from Proposition 3.3. Indeed, the proposition implies that (3.13)

holds for all t > 0 so that (3.17) and (3.20) are valid for all positive times. In the remainder
of this section, we prove Proposition 3.3.

Recall that v1 satisfies (3.3), which we write as

∂tv1 = ∂2
ξ v1 + c∂ξv1 − (1 + c)v1 + R̃1(ξ − q(t))ρβ(ξ)−1w1 + q̇(t)hξ(ξ − q(t))(3.21)

+
1

2
[c − 3h(ξ − q(t))]v2

1 − 1

2
v3
1 + γ1v

2
2,

where R̃1(ξ) = [32(1 − h(ξ)) + c][1 + h(ξ)] and w1 = ρβv1.

We claim that the term R̃1(ξ − q(t))ρβ(ξ)−1 is bounded in H1
ul which will allow us to

control the term linear in w1 in (3.21) using the estimate (3.17) for w1. To show that
R̃1(ξ − q(t))ρβ(ξ)−1 is bounded, we recall that q(t) is bounded on [0, T ] on account of (3.20),
0 < 3

2(1 − h(ξ − q(t))) ≤ 3 + c, and

0 < [1 + h(y)]ρβ(ξ)−1 =
[
1 + tanh

y

2

]
e−βξ, ξ < −1,

is bounded, which, taken together, proves boundedness in H1
ul as claimed. Using this result,

we find that there is a positive constant K4 such that

G̃1(ξ, q, W ) := R̃1(ξ − q)ρβ(ξ)−1w1 + q̇hx(ξ − q)

satisfies

‖G̃1(·, q, W )‖H1
ul
≤ K4‖W‖H1

ul

for all (q, V ) = (q, ρ−1
β W ) with norm less than one, say. For any solution (q, V ) satisfying

(3.13) with η0 as in Lemma 3.2, Lemma 3.2 then implies that

‖G̃1(·, q(t), W (t))‖L2
ul
≤ K4‖W (t)‖H1

ul
≤ K2K4e

−Λt‖W (0)‖H1
ul
≤ K2K4‖W (0)‖H1

ul
(3.22)
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for t ∈ [0, Tmax). In particular, we have

sup
0≤t<Tmax

‖G̃1(·, q(t), W (t))‖L2
ul
≤ 1

20K2
0

√
π

(3.23)

provided

‖W (0)‖H1
ul
≤ 1

20K2
0K2K4

√
π

.(3.24)

Finally, the nonlinear term

Ñ1(q, v1) =
1

2
[c − 3h(ξ − q)]v2

1 − 1

2
v3
1

can be estimated by

‖Ñ1(q, v1)‖H1
ul
≤ 5

2
δ1‖v1‖2

H1
ul
≤ 1

2K0
‖v1‖H1

ul
(3.25)

for all (q, v1) ∈ R × H1
ul with |q| ≤ 1 and ‖v1‖H1

ul
≤ 1

5K0
.

Since the H1
ul-norm is invariant under translations, we may as well consider (3.21) in the

laboratory frame (x, t) in which it becomes

∂tv1 = A1v1 + G̃1(x − ct, q(t), W (t)) + Ñ1(q(t), v1) + γ1v
2
2,(3.26)

where A1 = ∂2
x − (1 + c). The coupling term γ1v

2
2 makes it difficult to obtain estimates for v1

without dealing with v2 at the same time. Thus, our goal is to compare v1 to the solution v̄1

of the equation

∂tv̄1 = A1v̄1 + G̃1(x − ct, q(t), W (t)) + Ñ1(q(t), v̄1)(3.27)

with initial condition

v̄1(x, 0) = v1(x, 0)

for which estimates are easier to obtain. As a first step toward estimating v̄1, we state the
following lemma.

Lemma 3.4. There exists a constant K5 > 0 with the following property. Consider the
equation

∂tv̄1 = A1v̄1 + G(x, t) + Ñ1(q(t), v̄1),(3.28)

where G(x, t) is a given function with

sup
0≤t≤T1

‖G(·, t)‖L2
ul

<
1

20K2
0

√
π
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for some T1 > 0, and solve it with an initial condition v̄1(0) with ‖v̄1(0)‖H1
ul
≤ 1

20K2
0
; then the

solution v̄1 of (3.28) exists for t ∈ [0, T1] and

‖v̄1(t)‖H1
ul
≤ K5(‖v̄1(0)‖H1

ul
+ sup

0≤s≤T1

‖G(·, s)‖L2
ul
)

for 0 ≤ t ≤ T1.

Proof. Since A1 is sectorial on H1
ul (see Lemma 2.3) and the initial condition satisfies

‖v̄1(0)‖H1
ul

≤ 1
20K2

0
, we see that there is a maximal number T2 with 0 < T2 ≤ T1 such that

the solution to the initial-value problem (3.28) exists on [0, T2) with ‖v̄1(t)‖H1
ul

≤ 1
5K0

for

t ∈ [0, T2). We claim that T2 = T1. Indeed, the variation-of-constants formula for v̄1 reads

v̄1(t) = eA1tv̄1(0) +

∫ t

0
eA1(t−s)G(·, s) ds +

∫ t

0
eA1(t−s)Ñ1(q(s), v̄1(s)) ds.

Using Lemma 2.3 and (3.25), we obtain

‖v̄1(t)‖H1
ul
≤ K0e

−t‖v̄1(0)‖H1
ul

+ K0 sup
0≤s≤T1

‖G(·, s)‖L2
ul

∫ t

0
e−(t−s)(t − s)−

1
2 ds +

1

2
sup

0≤s≤t
‖v̄1(s)‖H1

ul

≤ K0e
−t‖v̄1(0)‖H1

ul
+ K0

√
π sup

0≤s≤T1

‖G(·, s)‖L2
ul

+
1

2
sup

0≤s≤t
‖v̄1(s)‖H1

ul

for 0 ≤ t ≤ T2. Using the assumptions on v̄1(0) and G, we find that ‖v̄1(T2)‖H1
ul
≤ 1

5K0
from

which we conclude that T2 = T1 as claimed. The above inequality then gives

sup
0≤t≤T1

‖v̄1(t)‖H1
ul
≤ 2K0

√
π(‖v̄1(0)‖H1

ul
+ sup

0≤t≤T1

‖G(·, t)‖L2
ul
),

which completes the proof of the lemma.

To apply the preceding lemma to (3.27) on the time interval [0, Tmax), we need to prove
that

‖G̃1(·, q(t), W (t))‖L2
ul

<
1

20K2
0

√
π

on [0, Tmax). Equation (3.23) shows that this estimate holds for any solution (q, V ) that
satisfies (3.13) with η0 as in Lemma 3.2 provided W (0) satisfies (3.24). In this case, we
therefore have

‖v̄1(t)‖H1
ul
≤ K5(‖v̄1(0)‖H1

ul
+ K2K4‖W (0)‖H1

ul
)(3.29)

for t ∈ [0, Tmax).

We shall now use the preceding estimate for v̄1 to obtain estimates for v1 on the interval
[0, Tmax), where Tmax is the maximal time for which the inequality (3.13) holds for some η0

satisfying (3.14) and for all initial conditions for which ‖V0‖H1
ul

and ‖W0‖H1
ul

are small enough.
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Lemma 3.5. Assume that γ1 ≥ 0. There are positive numbers K7, α0, and ε0 such that the
following is true for all (α, ε) with |α| < α0 and 0 < ε < ε0: If (V, W, q) = (v1, v2, w1, w2, q)
satisfies (3.8)–(3.10) with initial data for which

‖v1(0)‖H1
ul
≤ ε2, ‖v2(0)‖H1

ul
≤ ε, ‖W (0)‖H1

ul
≤ ε2,(3.30)

then the v2-component of the solution satisfies

‖v2(t)‖L2
ul
≤ K7

[
ε +

√
|α|

] 1
2

for all t with 0 < t < Tmax.
Proof. Using (3.30), we infer from (3.29) that ‖v̄1(t)‖C0 ≤ K0‖v̄1(t)‖H1

ul
≤ K6ε

2, where
K6 = K0K2K4K5 does not depend on ε, and therefore

v̄1(x, t) ≥ −K6ε
2

for all x ∈ R and 0 < t < Tmax. Next, (3.26) and (3.27) together with the assumption γ1 ≥ 0
show that

∂tv̄1 −A1v̄1 − G̃1(x − ct, q(t), W (t)) − Ñ1(q(t), v̄1)
(3.27)
= 0

≤ γ1v
2
2

(3.26)
= ∂tv1 −A1v1 − G̃1(x − ct, q(t), W (t)) − Ñ1(q(t), v1).

The comparison principle [4, Theorem 25.1 in section VII] gives v̄1(x, t) ≤ v1(x, t) for 0 ≤ t <
Tmax and x ∈ R, and therefore

v1(x, t) ≥ v̄1(x, t) ≥ −K6ε
2(3.31)

for 0 ≤ t < Tmax and x ∈ R. Having established the lower pointwise bound (3.31) for v1, we
return to the equation

∂tv2 = −(1 + ∂2
x)2v2 + αv2 − v3

2 − γ2[1 + h(x − ct − q(t))]v2 − γ2v1v2

for v2, written in the laboratory frame. Using Lemma 2.1(iii) and the bounds (3.31), γ2 ≥ 0,
and [1 + h(y)] ≥ 0 for all y ∈ R, we obtain

1

2
∂t‖v2‖2

L2
ul(σb)

≤
[
7

2
b2 + |α|

] ∫

R

σbv
2
2 dx −

∫

R

σbv
4
2 dx −

∫

R

σbγ2[1 + h(x − ct − q(t))]v2
2 dx

+ γ2K6ε
2

∫

R

σbv
2
2 dx

≤
[
7

2
b2 + K6γ2ε

2 + |α|
] ∫

R

σbv
2
2 dx −

∫

R

σbv
4
2 dx.

Next, we record that

∫

R

aσbv
2
2 dx −

∫

R

σbv
4
2 dx ≤ a2

b
−

∫

R

aσbv
2
2 dx
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for any constant a > 0 since

∫
2aσbv

2
2 −

∫
σbv

4
2 ≤

∫ √
2aσ

1/2
b

√
2σ

1/2
b v2

2 −
∫

σbv
4
2 ≤

∫
a2σb +

∫
σbv

4
2 −

∫
σbv

4
2 ≤ a2

b
.

Therefore,

1

2
∂t‖v2‖2

L2
ul(σb)

≤ [7b2 + 2(K6γ2ε
2 + |α|)]2

4b
− 1

2
[7b2 + 2(K6γ2ε

2 + |α|)]‖v2‖2
L2

ul(σb)
.

This is a differential inequality of the form 1
2f ′(t) ≤ d1 −d2f(t) for which Gronwall’s estimate

[13, Theorem 1.5.7] gives

f(t) ≤ e−2d2tf(0) +
d1

d2
(1 − e−2d2t) ≤ f(0) +

d1

d2

for d2 > 0. In our case, this estimate becomes

‖v2(t)‖2
L2

ul(σb)
≤ ‖v2(0)‖2

L2
ul(σb)

+
7b2 + 2(K6γ2ε

2 + |α|)
2b

≤ 2K2
0ε2 + [7b2 + 2(K6γ2ε

2 + |α|)]
2b

,

where we used that

‖v2(0)‖2
L2

ul(σb)
≤ 1

b
‖v2(0)‖2

L2
ul(σ) ≤

K2
0

b
‖v2(0)‖2

H1
ul
≤ K2

0ε2

b
.

Setting b =
√

ε2 + |α| and using Lemma 2.1(ii), we finally get

‖v2(t)‖2
L2

ul
≤ K2

7

√
ε2 + |α|, 0 ≤ t < Tmax,

for an appropriate constant K7 that depends only on K0, K6, and γ2 but not on α, ε, or t.
Next, we estimate v1 and v2 in the H1

ul-norm.
Lemma 3.6. Assume that γ1 ≥ 0. There are positive numbers K8, α0, and ε0 such that the

following is true for all (α, ε) with |α| < α0 and 0 < ε < ε0: If (V, W, q) = (v1, v2, w1, w2, q)
satisfies (3.8)–(3.10) with initial data for which (3.30) holds, then

‖V (t)‖H1
ul
≤ K8

[
ε +

√
|α|

] 1
2

(3.32)

uniformly in t ∈ [0, Tmax).
Proof. First, we shall estimate ‖v1‖H1

ul
. Assumption (3.30) allows us to apply Lemma 3.4,

and we conclude

‖v2(t)‖L2
ul
≤ K7

[
ε +

√
|α|

] 1
2

on [0, Tmax). Furthermore, from the definition of Tmax, we know that ‖V (t)‖H1
ul

≤ η0 on

[0, Tmax). Taken together, these estimates show that

‖v2
2(t)‖L2

ul
≤ η0K0K7

[
ε +

√
|α|

] 1
2

(3.33)
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on [0, Tmax). To find an estimate for ‖v1(t)‖H1
ul
, we wish to apply Lemma 3.4 to (3.26) which

means that we have to set

G(x, t) := G̃1(x − ct, q(t), W (t)) + γ1v2(x, t)2

in Lemma 3.4. The estimates (3.22) and (3.33) give

‖G(·, t)‖L2
ul
≤ K9

(
‖W (0)‖H1

ul
+

[
ε +

√
|α|

] 1
2

)

for some constant K9 that does not depend on α, ε, or t. Lemma 3.4 and (3.30) now show
that

‖v1(t)‖H1
ul
≤ K5K9

(
‖v1(0)‖H1

ul
+ ‖W (0)‖H1

ul
+

[
ε +

√
|α|

] 1
2

)
≤ K5K9

[
ε +

√
|α|

] 1
2

on [0, Tmax).
Next, we employ energy methods to estimate ‖v2(t)‖H1

ul
, and we begin by collecting the

bounds

‖V (t)‖H1
ul
≤ η0, ‖v2(t)‖L2

ul
≤ K7

[
ε +

√
|α|

] 1
2
, ‖W (t)‖H1

ul
≤ K2‖W (0)‖H1

ul
≤ K2ε

2,

which we established so far on the time interval [0, Tmax). We write the equation for the
v2-component in the form

∂tv2 = −(1 + ∂2
x)2v2 + αv2 − v3

2 + R2(x − ct − q(t))ρβ(x − ct)−1w2 − γ2v1v2,

where we recall that R2(y − q(t))ρβ(y)−1 is bounded in H1
ul, and consider also the equivalent

integral equation

v2(t) = eA2tv2(0) +

∫ t

0
eA2(t−s)

[
αv2(s) − v3

2(s) − γ2v1(s)v2(s)(3.34)

+ R2(x − cs − q(s))ρβ(x − cs)−1w2(s)
]
ds

with A2 = −(1 + ∂2
x)2. Lemma 2.3 shows that

‖eA2t‖H1
ul
≤ K0, ‖eA2t‖L2

ul→H1
ul
≤ K0t

− 1
4 , t > 0,

and applying these estimates together with (3.17) to (3.34) gives

‖v2(t)‖H1
ul
≤ K0‖v2(0)‖H1

ul
+ K0

∫ t

0
(t − s)−

1
4

[
|α|‖v2(s)‖L2

ul
+ ‖v2(s)‖2

L2
ul
‖v2(s)‖H1

ul

+ ‖v1(s)‖H1
ul
‖v2(s)‖L2

ul
+ ‖W (0)‖H1

ul

]
ds,

where we used that

‖v3
2‖L2

ul
≤ K0‖v2‖L2

ul
‖v2‖2

C0 ≤ K2
0‖v2‖2

L2
ul
‖v2‖H1

ul
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on account of Lemma 2.1(i).
We set T1 := min{Tmax, 1}. For 0 < t < T1, we then have

‖v2(t)‖H1
ul
≤ K0K7

[
‖v2(0)‖H1

ul
+

∫ t

0
(t − s)−

1
4

(
|α|

[
ε +

√
|α|

] 1
2

+
[
ε +

√
|α|

] [
1 + sup

0≤s≤t
‖v2(s)‖H1

ul

])
ds

]
,

and therefore

sup
0≤t≤T1

‖v2(t)‖H1
ul
≤ K10

(

‖v2(0)‖H1
ul

+
[
ε +

√
|α|

] 1
2

+
[
ε +

√
|α|

]
sup

0≤t≤T1

‖v2(t)‖H1
ul

)

for an appropriate constant K10 that does not depend on α, ε, or T1 (as long as T1 ≤ 1).
We now choose positive bounds α0 and ε0 for α and ε, respectively, that are so small that
K10[ε0 +

√
α0] ≤ 1

2 . For all (α, ε) with |α| < α0 and |ε| < ε0 we then have

sup
0≤t≤T1

‖v2(t)‖H1
ul
≤ 2K10

[
‖v2(0)‖H1

ul
+

[
ε +

√
|α|

] 1
2

]
.

To obtain estimates for ‖v2(t)‖H1
ul

for t > 1, we use the variation-of-constants formula

v2(t) = eA2(t−τ)v2(τ)

+

∫ t

τ
eA2(t−s)

[
αv2(s) − v3

2(s) − γ2v1(s)v2(s) + R2(x − cs − q(s))ρβ(x − cs)−1w2(s)
]
ds

on [τ, t] for each τ with t − 1 ≤ τ ≤ t. As before, we obtain

‖v2(t)‖H1
ul
≤ K0(t − τ)−

1
4 ‖v2(τ)‖L2

ul
+ K0

∫ t

τ
(t − s)−

1
4

[
|α|‖v2(s)‖L2

ul
+ ‖w2(s)‖H1

ul

+ ‖v2(s)‖2
L2

ul
‖v2(s)‖H1

ul
+ ‖v1(s)‖H1

ul
‖v2(s)‖L2

ul

]
ds

and consequently

‖v2(t)‖H1
ul
≤ K0K7(t − τ)−

1
4

[
ε +

√
|α|

] 1
2

(3.35)

+ K0

[
ε +

√
|α|

] ∫ t

τ
(t − s)−

1
4

[
1 + ‖v2(s)‖H1

ul

]
ds.

Upon setting

J1(τ) :=

(∫ τ+1

τ
‖v2(s)‖3

H1
ul

ds

)1/3

,

Hölder’s inequality gives

∫ t

τ
(t − s)−

1
4 ‖v2(s)‖H1

ul
ds ≤

(∫ t

τ
(t − s)−

3
8 ds

)2/3 (∫ t

τ
‖v2(s)‖3

H1
ul

ds

)1/3

≤ K0J1(τ),
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and therefore

(∫ τ+1

τ

[∫ t

τ
(t − s)−

1
4 ‖v2(s)‖H1

ul
ds

]3

dt

) 1
3

≤ K0J1(τ).(3.36)

Upon raising (3.35) to the power three, integrating both sides over t ∈ [τ, τ + 1], taking the
third root, and using (3.36), we see that

J1(τ) ≤ K11

([
ε +

√
|α|

] 1
2

+
[
ε +

√
|α|

]
J1(τ)

)

for an appropriate constant K11 that does not depend on t or τ . Making α0 and ε0 smaller if
necessary, we conclude that

J1(τ) ≤ 2K11

[
ε +

√
|α|

] 1
2
,

and using this estimate in (3.35), we finally obtain the pointwise estimate

‖v2(τ + 1)‖H1
ul
≤ K0K11

[
ε +

√
|α|

] 1
2
,

which is valid for any τ > 0. This completes the proof of the lemma.
We are now ready to complete the proof of Proposition 3.3.
Proof of Proposition 3.3. For sufficiently small ε > 0, Lemma 3.6 shows that |q(t)| +

‖V (t)‖H1
ul
‖ ≤ 1

2η0 for 0 ≤ t < Tmax, which contradicts the maximality of Tmax (see (3.13))

if Tmax is finite. Thus, (3.13) holds for any t, which in turn implies that (3.17) and (3.20)
are valid for all times. Therefore, (3.32) holds with Tmax = ∞, which completes the proof of
Proposition 3.3.

4. Implications of nonlinear stability and comparison with simulations. Throughout
this section, we consider the system

∂tu1 = ∂2
ξ u1 + c∂ξu1 +

1

2
(u1 − c)(1 − u2

1) + γ1u
2
2,(4.1)

∂tu2 = −(1 + ∂2
ξ )2u2 + c∂ξu2 + αu2 − u3

2 − γ2u2(1 + u1)

exclusively in the frame ξ = x− ct that moves with the front. In this frame, the front solution
is stationary and is given by

Uh(ξ) =

(
tanh(ξ/2)

0

)
.

We shall also assume that the coefficients appearing in (4.1) satisfy the assumptions required
in Theorem 2. This theorem then asserts that, for any function V0 for which ‖V0‖H1

ul
is

sufficiently small, the solution U(ξ, t) with initial data U(·, 0) = Uh + V0 can be written as
U(ξ, t) = Uh(ξ − q(t)) + V (ξ, t) and that there is a number q∗ so that

‖ρβ(·)V (·, t)‖H1
ul

+ |q(t) − q∗| ≤ Ke−Λ∗t, ‖V (·, t)‖H1
ul
≤ K

[
‖V0‖H1

ul
+

√
|α|

] 1
2

(4.2)
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Figure 3. A schematic illustration of the interplay between the perturbation V0(ζ) and the weight ρβ(ζ+ ĉt)
in the frame ζ = ξ + ĉt that moves with the perturbation. The speed ĉ needs to be negative so that the weight
travels to the right, since (4.3) implies that the product ρβ(ζ + ĉt)V0(ζ) tends to zero as t → ∞.

for t ≥ 0.
To see what the implications of the nonlinear stability estimates (4.2) are, let us suppose

that V (ξ, t) assumes the form of a traveling wave of speed ĉ so that V (ξ, t) = V0(ξ− ĉt). Using
the coordinate ζ = ξ − ĉt that moves with the perturbation, we obtain from (4.2) that

Ke−Λ∗t ≥ ‖ρβ∗(·)V (·, t)‖H1
ul

= ‖ρβ∗(ξ)V0(ξ − ĉt)‖H1
ul

= ‖ρβ∗(ζ + ĉt)V0(ζ)‖H1
ul
,(4.3)

which implies that the speed ĉ needs to satisfy

ĉ ≤ −Λ∗
β∗

.(4.4)

In particular, ĉ is negative, meaning that any traveling wave that exists in the wake of the
stationary front Uh moves toward ξ = −∞, that is, away from the front Uh; see Figure 3 for
an illustration.

One possible candidate for perturbations of traveling wave type in the wake of the front
Uh are Turing fronts which, by definition, connect the spatially periodic Turing patterns Uper

discussed in (1.4) at ξ = −∞ to the unstable homogeneous rest state U− in the wake of the
front. We shall first derive an explicit estimate c∗ for the maximal speed with which they can
move.

The Turing patterns (1.4) have amplitude of order
√

α, and we therefore set ε = K
√

α in
Theorem 2 for a sufficiently large constant K. The proof of Proposition 2.2, and in particular
(2.4), shows that the spectrum of the linearization Lβ of (4.1) about Uh in the weighted space
lies to the left of the line Reλ = α − cβ + 4β2 + 8β4 with the exception of the translation
eigenvalue at the origin. The decay rate Λ∗ in Theorem 2 is chosen in Lemma 3.2: Choosing
η̂0 = K

√
α allows us to set Λ∗ = Λ = K

√
α − [α − cβ + 4β2 + 8β4] (we remark here that the

constants K2 and K3 in Lemma 3.2 depend only on the value of the left-hand side of (3.14)
but not on the values of Λ and η̂0). Substituting this expression for Λ∗ into (4.4), we obtain

ĉ ≤ K
√

α + α − cβ + 4β2 + 8β4

β
≤ −c +

K
√

α + α + 4β2 + 8β4

β
.

The minimum 4
√

Kα1/4 + O(α3/4) of the right-hand side over β > 0 is achieved at β =√
Kα1/4 + O(α3/4), which gives the upper bound

ĉ ≤ c∗ := −c + 4
√

Kα1/4 + O(α3/4)(4.5)
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for the speed of traveling fronts with amplitude bounded by K
√

α to the left of the stationary
front Uh. We remark that similar upper bounds for more general solutions of the Swift–
Hohenberg equation, but without the presence of a front to the right, were obtained in [5].

Next, we complement the upper bound (4.5) for ĉ by formal lower bounds using the
results in [6, 20] by van Saarloos and his collaborators who derived lower bounds c∗ for the
propagation of Turing patterns into the unstable homogeneous rest state U−. Applying the
formulas in [20, section 2.11] to the u2-component

∂tv2 = −(1 + ∂2
ξ )2v2 + c∂ξv2 + αv2

of the linearization of (4.1) about U− = (1, 0), we obtain the lower bound

c∗ = −c + 4
√

α + O(α3/2)(4.6)

for Turing fronts. Thus, combining (4.5) and (4.6), we expect that Turing fronts in the wake
of the stationary front Uh travel at a speed ĉ with c∗ ≤ ĉ ≤ c∗ to the left.

In summary, Theorem 2 shows that small perturbations to the front should move away
from the front at a speed ĉ that satisfies (4.4). If the perturbations are of order

√
α, then

the speed at which they have to move to the left satisfies the more explicit estimate (4.5).
Furthermore, if we construct an initial condition that consists of the small-amplitude Turing
patterns at ξ = −∞ with the front Uh to their right, then we expect that the solution to (4.1)
is the superposition of the stationary front Uh with a Turing front in its wake whose speed ĉ
lies between the lower and upper bounds provided by (4.6) and (4.5), respectively. This last
claim is based only on formal arguments, though.

We now compare these predictions with numerical simulations of (4.1). Throughout, we
set

γ1 = 0.5, γ2 = 0.6, c = 0.5(4.7)

and solve (4.1) on the interval (0, �) for � = 1000 with the boundary conditions

u1(0, t) = −1, u1(�, t) = 1, u2(0, t) = ∂ξu2(0, t) = u2(�, t) = ∂ξu2(�, t) = 0.

We discretized (4.1) using centered finite differences with step size 0.05 and integrated the
resulting ODE using the explicit Runge–Kutta–Chebyshev scheme developed in [27]. Through-
out, we pick the initial condition

U0(ξ) =

(
tanh[0.5(ξ − 950)] + 0.045 cos ξ

0.045 cos ξ

)
,(4.8)

which excites the most unstable linear mode over the entire domain, and comment in section 5
on other initial data.

First, we choose α = 0.001 to be very small in order to test the speed predictions from
(4.5) and (4.6). In Figure 4, we plot the difference V (ξ, t) = (v1, v2)(ξ, t) between the solution
U(ξ, t) and the front Uh(ξ − 950.024) at t = 1000 for α = 0.001. The relative offset 0.024
to the front interface at ξ = 950 for t = 0 minimizes the difference between U and Uh near
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Figure 4. Plotted are the values of v1 = u1 − h(· − 950.024) (left) and of v2 = u2 (right) for α = 0.001 in
the comoving frame as functions of ξ for t = 1000: The Turing patterns behind the front have been pushed to
the left of the front interface which is located at ξ = 950.024 for t = 1000.

Figure 5. Space-time contour plots of v2 = u2 are shown for α = 0.001 (left) and α = 0.01 (right) in
the comoving frame (time t upward and space ξ horizontal). The inset illustrates that small individual Turing
patterns behind the front travel to the left as expected. For α = 0.001, the overall perturbation also travels to
the left at an approximately constant speed −0.384. For α = 0.01, the perturbation still travels to the left, but
at a much smaller speed.

ξ = 950 and accounts therefore for the shift q(t) from Theorem 2. Figure 4 indicates that
V becomes very small ahead of and near the front as expected, while it develops Turing
patterns to the left of the front, that is, in the spatial regime where the background state is
unstable. Upon measuring the slope of the Turing front interface in the contour plot shown
in Figure 5 (left plot), we find that the Turing front travels at speed −0.384 to the left. This
is in agreement with the formal lower bound (4.6) which gives the minimal speed c∗ = −0.373
upon substituting α = 0.001 into (4.6).

For larger values α, the perturbation will still evolve into Turing fronts which are pushed
to the left of the front, but the relative speed between the Turing front and the large front h
will decrease as α increases. This is illustrated in the simulation for α = 0.01 shown in the
right plot of Figure 5.

Eventually, for sufficiently large parameters α, the instability of the background state
u = 0, which is initially convective in nature, will become an absolute instability: Perturba-
tions of the background state will then no longer be convected away but will grow in amplitude
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Figure 6. The simulations in this figure are for α = 0.03. On the left, a space-time contour plot of
v2 = u2 is shown in the comoving frame (time t upward and space ξ horizontal). On the right, we plotted
v1 = u1 − h(· − 950.02) at t = 1000 in blue and v1 = u1 − h(· − 950.0135) at t = 2500 in red: Note that the two
graphs lie on top of each other which indicates that the Turing patterns have locked to the front h.

as time increases at each fixed point in space. In this situation, we can no longer expect that
perturbations will be pushed away by the front. Instead, the Turing patterns behind the front
may lock to the front, yielding a time-periodic wave in an appropriate comoving frame. The
convective instability changes to an absolute instability when the linear dispersion relation
λ = λ−(k) from (2.3) has a double root kbp ∈ C with λ ∈ iR; see, for instance, [3] or [21]
and the references therein. For our system with parameter values as in (4.7), the transition
from convective to absolute instability occurs at α = 0.015. Figure 6 shows simulations for
α = 0.03 which illustrate that the expected locking behavior between the front and the Turing
pattern in its wake indeed occurs in our system.

In summary, our numerical simulations with initial data (4.8) show that the corresponding
solution is indeed composed of two fronts—a Turing front which connects the Turing pattern
at −∞ to the unstable homogeneous rest state U− = (−1, 0), and the primary front h which
connects (−1, 0) to the stable homogeneous rest state (1, 0) at +∞. In the parameter regime
where the equilibrium U− is only convectively unstable, the relative speed between the two
fronts is positive, and the front h therefore is asymptotically stable in the weighted norm
as predicted by Theorem 2. As α increases, the relative speed between the two interfaces
decreases. For sufficiently large α, the equilibrium U− is absolutely unstable, and we then
observe locking of the front h and the Turing pattern in its wake.

5. Discussion. In this paper, we discussed the nonlinear stability of convectively unstable
fronts near supercritical Turing instabilities for the specific system (1.2). To prove nonlinear
stability, we established a priori H1

ul-estimates for solutions with initial data close to the front
and used these estimates to show exponential temporal decay of solutions when measured in
exponentially weighted H1

ul-norms. While the second part of the proof generalizes easily to
general partial differential equations, our proof of a priori estimates relies on the comparison
principle and depends therefore on the special structure of our model system.

We expect nevertheless that our nonlinear stability result remains true for general partial
differential equations, and there is indeed much numerical evidence that supports this belief.
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For instance, the Gray–Scott system

∂tU1 = d1∂
2
xU1 − U1U

2
2 + F (1 − U1),

∂tU2 = d2∂
2
xU2 + U1U

2
2 − (F + k)U1

is known to have Turing bifurcations, and direct numerical computations show that these
are supercritical in certain parameter regions [15]. The direct numerical partial differential
equation simulations in [23, section 8] show that the Gray–Scott system exhibits fronts in
parts of this parameter regime which become convectively unstable at the supercritical Turing
bifurcation. In particular, [23, Figures 14–15] indicate that the convectively unstable fronts
are nonlinearly stable in the weighted norm.

Our results should also remain true if the homogeneous equilibrium U− behind the front
undergoes a supercritical Hopf bifurcation, rather than a Turing bifurcation. In both cases,
the dynamics near U− is captured by the complex Ginzburg–Landau equation (CGL)

At = (1 + ia)∂2
xA + αA − (1 + ib)|A|2A,(5.1)

but the coefficients a and b vanish for Turing bifurcations, while they are generically nonzero
for Hopf bifurcations. Depending on the values of the coefficients a and b, the Ginzburg–
Landau equation may exhibit stable oscillatory waves or spatio-temporally complex patterns
which, beyond onset, appear behind the front. Again, we expect that the front should outrun
these structures in its wake, while leaving a growing spatial region behind it where the solution
converges to the unstable equilibrium U−. Sherratt [25] confirmed this picture, through a
formal analysis, for fronts near supercritical Hopf bifurcations in the case when these can be
described by λ-ω systems, i.e., for a = 0. We also refer the reader to [14, 25, 26] for numerical
simulations in this setup and for applications to predator-prey systems.

The numerical simulations presented in section 4 used the initial condition (4.8) which
selected a single linearly unstable spatially periodic mode. For more general initial data
close to the front h, the perturbation remains small and is still pushed to the left for α
near zero. The dynamics in the wake of the front may, however, be more complex and may,
in particular, involve amplitude-modulated Turing patterns whose spatial periods vary over
space: The evolution behind the front is, on a formal level, captured by the Ginzburg–Landau
approximation (5.1). As mentioned previously, the nonlinear stability result presented here
is valid independently of the particular dynamics behind the front, as long as a priori bounds
for solutions are available.

As illustrated in Figure 6 in section 4, we expect that the stability properties of the front
change when the equilibrium behind the front becomes absolutely unstable, since perturba-
tions will then grow pointwise in space, rather than being convected toward −∞. In our
specific model problem, the Turing patterns lock to the front, and a modulated front (time-
periodic in an appropriate moving coordinate frame) emerges which converges to spatially
periodic patterns in its wake. In particular, the original front is no longer stable in weighted
norms.

Finally, we comment on subcritical bifurcations behind the front. In this case, we cannot
expect to have nonlinear stability in weighted norms since perturbations will not necessarily
stay small in the wake of the front but may grow to finite amplitude. In particular, there is no
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reason to believe that the solution in the wake will not strongly influence the front ahead, thus
possibly precluding nonlinear stability; note though that the front may still be nonlinearly
stable if conditions are right. In the system (4.1), these different behaviors can be observed:
The Turing bifurcation is subcritical for parameters as in (4.7) with γ1 = −4 or γ1 = −8.
Numerical simulations of (4.1) for γ1 = −4 show that the solution behind the front converges
to a spatially periodic pattern of finite amplitude which is again pushed away by the front,
and the front therefore seems to be nonlinearly stable in weighted norms. For γ1 = −8, on
the other hand, the periodic patterns in the wake have much larger amplitude and lock to the
front, which is therefore no longer nonlinearly stable.
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A Multilegged Modular Robot That Meanders: Investigation of Turning
Maneuvers Using Its Inherent Dynamic Characteristics∗

Shinya Aoi†, Hitoshi Sasaki†, and Kazuo Tsuchiya†

Abstract. This paper deals with the motion of a multilegged modular robot. The robot consists of a set of
homogenous modules, each of which has a body and two legs and is connected to the others through
a three-degree-of-freedom rotary joint. The leg joints are manipulated to follow periodic desired
trajectories, and the joints between the modules act like a passive spring with a damper. This robot
has characteristic dynamic properties. Specifically, a straight walk naturally turns into a meandering
walk by changing the compliance of the joints between the modules without incorporation of any
oscillatory inputs. We first show that this transition is excited due to a Hopf bifurcation, based on a
numerical simulation and Floquet analysis. Following that, we examine whether the maneuverability
and agility of the robot increase by utilizing the dynamic characteristics inherent in the robot. In
particular, we conduct an experiment in which the robot pursues a target moving across the floor.
We propose a simple controller to accomplish the task and achieve high maneuverability and agility
by making the most of the robot’s dynamic features.

Key words. multilegged modular robot, turning maneuvers, meandering walk, maneuverability, Hopf bifurca-
tion, Floquet analysis
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1. Introduction. Modular robots consist of a set of robotic modules that change the
configuration and strength of their connection, which allows them to deal with a wide variety
of tasks. In the literature, many modular robots have been developed that have capabilities
such as self-reconfiguration, fault tolerance, and locomotion [13, 21, 40, 47, 58, 80, 81, 82].
In particular, legged-type modular robots, which are specialized for locomotion, have a high
possibility of moving across uneven terrain and high adaptability to various environments
[16, 36, 37, 39, 74]. They are expected to display their great ability in a lot of places such as
in space [66, 81].

However, it is still difficult to create sophisticated legged robots and their control systems.
In particular, (1) the robot is a mechanical system with many degrees of freedom, composed of
many links that are connected with others by joints, some of which are redundant in achieving
walking. As Bernstein [11] pointed out, the essential problem is how to coordinate motion.
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(2) The leg motion consists of the swing and stance phases. The swing leg lands on the
ground and in turn becomes the stance leg. Therefore, periodically and intermittently, the
legs receive reaction forces from the ground. In other words, the condition of foot-to-ground
contact is changeable, resulting in changes of the dynamics that govern the walking motion and
influence the walking stability. To overcome these difficulties, studies have been widely carried
out based on the model-based approach [12, 27, 53]. In this approach, the robot motion is
basically generated by the inverse kinematics and kinetics, for example, by calculating the foot
landing positions to keep the walk stable and then by computing the joint motions. However,
complicated computations are required, as is precise modeling of the robot and environment,
which restricts the possibility of attaining adaptability and robustness. In addition to these
difficulties, a robot that possesses many legs has the following characteristic problem: since
its many legs are in contact with the ground and support the robot, they keep the robot
from falling over. However, all those contact legs also keep the robot from accomplishing
maneuverable and agile motions such as a quick turn. Therefore, it is difficult to simply
design a locomotion control system and achieve high adaptability and maneuverability of the
robot motion.

This is in contrast to the millions of animal species that adapt themselves to various en-
vironments by manipulating their complicated and redundant musculoskeletal system, giving
them marvelous maneuverability and agility. Recently, many researchers have developed bi-
ologically inspired robots and aimed to clarify the control mechanisms of animals based on
the constructive approach. In particular, neurophysiological studies have revealed that animal
walking is generated by central pattern generators (CPGs) [32, 33, 52]. CPGs comprise a set
of neural oscillators present in the spinal cord, generating rhythmic signals that activate their
limbs. The CPGs modulate signal generation in response to the sensory signals, resulting
in adaptive motions. The CPGs are widely modeled using nonlinear oscillators [68, 69, 70],
and based on such CPG models many locomotion robots and their control systems have been
developed. For example, Fukuoka, Kimura, and Cohen [22] and Kimura et al. [43, 44] created
quadruped robots and achieved adaptive and agile walking on an irregular terrain by employ-
ing CPG and reflex models. Tsujita, Tsuchiya, and Onat [75] proposed a locomotion control
system for a quadruped robot using nonlinear oscillators and built a quadruped robot that
obtained adaptive walking by changing the gait pattern depending on the walking speed and
environmental variations. Inagaki et al. [36, 37] developed a six-legged modular robot and
generated its gait pattern through their CPG model. Ijspeert et al. [35], Crespi et al. [18],
Ijspeert, Crespi, and Cabelguen [34], and Inoue, Ma, and Jin [38] created salamander and
snake-like modular robots that accomplished a serpentine meandering locomotion through a
neural oscillator network. Lewis et al. [48], Nakanishi et al. [51], and Aoi and Tsuchiya [5, 6, 8]
realized adaptive walking of biped robots using their CPG models and nonlinear oscillators.

Also, from the field of neurophysiology, it has been revealed that, as well as rhythm control,
muscle tone control has an important role in generating adaptive motions [50, 57, 71, 72],
suggesting the importance of compliance in locomotion. Actually, many studies on robotics
demonstrated the essential roles of the compliance. Specifically, by appropriately employing
the mechanical compliance of the robots, simple control systems attained highly adaptive,
robust, and agile motions, especially in hexapod robots [2, 14, 15, 19, 56, 59, 60], quadruped
robots [22, 43, 54, 55], and biped robots [73, 79].
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Animals generate their motions by skillfully applying the intrinsic characteristics of their
musculoskeletal system. In particular, many researchers have used simple models and ana-
lyzed self-stabilizing properties embedded in animals’ musculoskeletal systems that accomplish
stable motions without depending on external sensory information. Wagner and Blickhan [78]
exhibited such self-stabilizing oscillatory leg movement by using such muscle properties as
the force-length relationship, the force-velocity relationship, and muscle geometry. For a run-
ning model, Geyer, Seyfarth, and Blickhan [25] employed a simple spring-mass model and
Ghigliazza et al. [26] used a spring-loaded inverted pendulum (SLIP). They demonstrated
that by appropriately controlling the leg angle at touchdown their models could obtain an
asymptotically stable running motion. Schmitt et al. [61, 62, 63, 64], meanwhile, analyzed the
hexapod walking of a cockroach by using a simple model composed of a rigid body and a pair
of massless elastic legs.

As well as with animals, many studies have been carried out to elucidate such self-
stabilization inherent in locomotion robots also by employing simple models. Garcia et al. [24]
investigated the asymptotic stability of passive dynamic walking, originally performed by
McGeer [49] using hardware experiments and numerical simulations. Altendorfer, Koditschek,
and Holmes [3, 4] analyzed the running motion of a hexapod robot, RHex [2, 59, 60], which
has passively compliant legs, and Aoi and Tsuchiya [7, 9] examined biped robot walking driven
by a rhythmic signal from an oscillator.

Dynamic characteristics such as stability must strongly affect the maneuverability and
agility of locomotion. For example, cockroaches are highly agile and have a great range of
maneuverability [23, 41, 42, 45]. Schmitt et al. [61, 62, 63, 64] simply modeled the hexapod
walking of a cockroach, and then analytically demonstrated that it successfully achieves a
quick turn by virtue of destabilizing its straight walking motion by changing its dynamic
features. It would be very interesting and helpful if we attained such maneuverability and
agility of locomotion robots by using the dynamic properties inherent in the robots.

In this paper, we deal with a multilegged modular robot whose model is introduced in
section 2 and in particular we study its rudimentary locomotion. The robot consists of a set
of homogenous modules, each of which has a body and two legs and is connected to the others
through a three-degree-of-freedom (-DOF) rotary joint. The robot has a simple controller that
generates periodic leg trajectories. The leg joints are manipulated to follow periodic desired
trajectories and each joint between modules acts like a passive spring with a damper. This
robot features characteristic dynamic properties. Specifically, a straight walk by the robot
naturally turns into a meandering walk by changing the strength of the connection between the
modules without actually incorporating any oscillatory inputs. That is, the dynamic stability
of a straight walk varies depending on the compliance of the joints between the modules. In
section 3, we show that the transition from a straight to a meandering walk is excited due to
a Hopf bifurcation, based on a numerical simulation and Floquet analysis.

As described above, it is difficult for a locomotion robot that has many legs to achieve
agile motions such as a quick turn because of the contact legs and motion planning. Since
such a motion is a fundamental behavior for a locomotion robot, its dynamic characteristics
should be thoroughly analyzed and the problem should be solved. Although the model-
based approach is generally used, it requires precise modeling and complicated computations,
preventing one from achieving adaptive locomotion and simple control system. In this paper,
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Figure 1. Schematic model of a multilegged modular robot.

Joint 1

Joint 2

Joint 3

AEP

PEP
ζjswi

ζjsti

Figure 2. Nominal trajectory of the leg.

we especially focus on the dynamic characteristics embedded in the multilegged modular robot
as one of the solutions to the problem. In particular, in section 4, we investigate whether the
maneuverability and agility of the robot increase by using the dynamic characteristics. We
conduct an experiment in which the robot pursues a target moving across the floor. We
then propose a simple controller to accomplish the task and achieve high maneuverability and
agility by making the most of the robot’s dynamic features. Sections 5 and 6 present the
discussion and conclusion, respectively.

2. A multilegged modular robot.

2.1. Robot model. Figure 1 shows a schematic diagram of the multilegged modular robot
considered in this paper. The robot has n homogenous modules, each with one body and two
legs. Each leg consists of three links that are connected to each other through a one-DOF
rotational joint (see Figure 2). The legs are articulated to the body also by a one-DOF
rotational joint. Each module is connected to the next through a coupler composed of roll,
pitch, and yaw joints, with each joint manipulated by a motor. The modules are enumerated
from Module 1 to Module n, and the coupler between Module i and Module (i+1) is numbered
Coupler i (i = 1, . . . , n− 1). The left and right legs are numbered Legs 1 and 2, respectively.
The joints and links of each leg are numbered from the side of the body as Joints 1, 2, and 3
and Links 1, 2, and 3, respectively. The position vector of the body of Module 1 is given by
vector [x1 x2 x3 ] expressed on the ground, where x1 and x3 are toward the nominal direction
of locomotion and the vertical direction, respectively. The posture of the body of Module 1 is
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given by Euler angles [ θ11 θ12 θ13 ], where θ11, θ12, and θ13 correspond to roll, pitch, and yaw
angles, respectively. Similarly, angles θim (i = 2, . . . , n, m = 1, 2, 3) are the components of
relative angles of Module i with respect to Module (i− 1), which correspond to the angles of
Coupler (i−1). Angles θjik (i = 1, . . . , n, j = 1, 2, k = 1, 2, 3) are the relative angles of Joint k
of Leg j of Module i.

State variable q ∈ R
3+9n is defined as qT = [xm θim θjik ] (i = 1, . . . , n, j = 1, 2, k = 1, 2, 3,

m = 1, 2, 3). An equation of motion for the state variable is derived using the Lagrangian
formulation by

(2.1) K(q)q̈ + h(q, q̇) = g(q) + u + λ,

where K(q) ∈ R
(3+9n)×(3+9n) is the inertia matrix, h(q, q̇) ∈ R

3+9n is the nonlinear term
that includes Coriolis and centrifugal forces, g(q) ∈ R

3+9n is the gravity term, u ∈ R
3+9n is

the input torque term, and λ ∈ R
3+9n is the reaction force from the ground. The ground

is modeled as a spring with a damper in the vertical direction and a viscous damper in the
horizontal direction (see Appendix A). In this paper, numerical simulations are carried out
based on this equation of motion.

2.2. Clock-driven leg controller. The robot’s walking motion is generated by the motions
of the leg joints and coupler joints. The main role of the legs in walking is to support the
robot’s weight and provide propulsive forces to move forward. We have designed the physical
kinematics of the legs, whereby the leg joints are manipulated by motors using a proportional-
derivative (PD) controller. Specifically, we employ a simple clock-driven, open-loop gait, and
the leg joints are controlled by incorporating periodic desired angles. Therefore, input torque
ujik (i = 1, . . . , n, j = 1, 2, k = 1, 2, 3) at Joint k of Leg j of Module i is given by

ujik = −κjik(θ
j
ik − θ̂jik) − σj

ik(θ̇
j
ik − ˙̂

θjik),

i = 1, . . . , n, j = 1, 2, k = 1, 2, 3,(2.2)

where θ̂jik is the periodic desired angle and κjik and σj
ik are feedback gains (i = 1, . . . , n,

j = 1, 2, k = 1, 2, 3). On the other hand, the coupler joints are controlled with a desired
angle maintained at zero to generate a straight walk. Thus, input torque uij (i = 2, . . . , n,
j = 1, 2, 3) at angles of Coupler (i− 1) is given by

(2.3) uij = −κijθij − σij θ̇ij , i = 2, . . . , n, j = 1, 2, 3,

where κij and σij are feedback gains (i = 2, . . . , n, j = 1, 2, 3). Therefore, the coupler joints
act like a passive spring with a damper.

To design the periodic desired angles of the leg joints, we first introduce an oscillator
for each leg. In particular, we introduce Oscillator i, j (i = 1, . . . , n, j = 1, 2) for Leg j of
Module i. Oscillator i, j has a phase φj

i whose angular velocity is constant. Second, we design

nominal trajectory ζji (i = 1, . . . , n, j = 1, 2) of the tip of Leg j of Module i in the sagittal

plane as a function of phase φj
i , that is, ζji = ζji (φ

j
i ). Trajectory ζji is expressed in the body

of Module i and consists of trajectories ζjswi for the swing phase and ζjsti for the stance phase

(i = 1, . . . , n, j = 1, 2) (see Figure 2). Trajectory ζjswi is composed of half of an elliptic curve
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that includes the anterior extreme position (AEP) and the posterior extreme position (PEP).
Note that the distance between points AEP and PEP implies nominal stride s. Trajectory
ζjsti is comprised of a straight line that also involves points AEP and PEP. During the stance
phase, the tip of the leg moves at constant speed v with respect to the body in the opposite
walking direction, which is given by

(2.4) v = s/(βτ),

where τ is the nominal step cycle and β indicates the nominal duty ratio that expresses the
ratio between the nominal stance phase duration and the nominal step cycle. Since we consider
that the tip of the leg is constrained on the ground and hardly slips relative to the ground
during the stance phase, the body moves in the walking direction at nominal locomotion speed
v with respect to the ground. In light of the above description, trajectory ζji is given by (see
details in [5])

ζji (φ
j
i ) =

{
ζjswi(φ

j
i ), 0 ≤ φj

i < φa,

ζjsti(φ
j
i ), φa ≤ φj

i < 2π,

i = 1, . . . , n, j = 1, 2,(2.5)

where φa = 2π(1 − β), which indicates the nominal phase value at point AEP (0 at point
PEP). When trajectory ζji is on point PEP at t = 0, it arrives at point AEP at t = (1 − β)τ
through the swing phase and turns into the stance phase. It then reaches point PEP at t = τ
and returns to the swing phase. Finally, based on the inverse kinematics, we obtain the desired
angles θ̂jik (i = 1, . . . , n, j = 1, 2, k = 1, 2, 3) of Joint k of Leg j of Module i as the function of

phase φj
i .

In numerical simulations, regarding the gait pattern of the robot, the unilateral legs on
adjacent modules move out of phase with each other. That is, the phases of the oscillators
have relationships such that φj

i − φj
i+1 = π (i = 1, . . . , n − 1, j = 1, 2). On the other hand,

the relationship between the contralateral legs on each module is determined from the phase
relationship φ1

i −φ2
i = Δφcntrl (i = 1, . . . , n). For example, when Δφcntrl = π, the contralateral

legs on each module move out of phase with each other (which we call an “anti-phase gait
pattern”), and when Δφcntrl = 0, the contralateral legs on each module move in phase (we
call this an “in-phase gait pattern”). Nominal stride s, duty ratio β, and step cycle τ of each
leg are set to 5 cm, 0.5, and 0.5 s, respectively. In this case, nominal locomotion speed v
becomes equivalent to 0.2 m/s from (2.4). Point AEP of both legs of each module is located
4.5 cm ahead of and 7.5 cm outside of the center of the module in the nominal direction of
locomotion.

3. Dynamic properties of the multilegged modular robot.

3.1. Transition from a straight to a meandering walk. This robot has interesting and
essential characteristics in locomotion. Since the couplers act like a passive spring with a
damper, the robot is able to achieve a straight walk as long as it moves its legs in a similar
manner. However, it is clear that when we decrease the feedback gains of the couplers’
yaw joints, a meandering walk appears beyond a critical point without incorporation of any
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Table 1
Physical parameters of the multilegged modular robot. The same values are used in each module.

Link Parameter Value

Body Mass [kg] 0.6
Length [m] 0.2
Width [m] 0.15
Inertia [× 10−3kgm2] 3.1

Link 1 Mass [kg] 0.02
Length [m] 0.015

Link 2 Mass [kg] 0.03
Length [m] 0.045

Link 3 Mass [kg] 0.05
Length [m] 0.15

Motor Gear ratio 100
Rotor inertia [× 10−7kgm2] 9.7

oscillatory inputs into the couplers. This means that the robot’s walking motion naturally
varies according to changes in its mechanical properties.

In this section, we present detailed results obtained through numerical simulations using
six modules (n = 6) and an anti-phase gait pattern (Δφcntrl = π). Table 1 displays the physical
parameters of the multilegged modular robot used in the numerical simulations. The center
of mass of each module is located 0.9 cm ahead of the center of the module in the nominal
direction of locomotion. The damping coefficient of the ground in the horizontal direction is set
to 19.6 Ns/m. To change the mechanical features of the robot, we parameterize proportional
feedback gain κi3 and derivative feedback gain σi3 (i = 2, . . . , n) of the couplers’ yaw joints
by using parameter f ,

(3.1) κi3 = κ0(2πf)2, σi3 = 2κ0ζ0(2πf), i = 2, . . . , n,

where κ0 and ζ0 are set to 0.0097 and 0.8, respectively, to provide adequate damping. Note that
for other joints high feedback gains are used and parameter f is set to 10 (e.g., κ−1

i1,2 = 0.0261,
i = 2, . . . , n). Also note that this change in the feedback gains indicates a change in the
joints’ compliance. Figure 3(a) shows yaw angle θ43 of Coupler 3 at φ1

1 = 0 with respect to
the reciprocal of gain parameter κ−1

i3 . Figure 3(b) shows the power spectrum of yaw angle
θ43 of Coupler 3 using κ−1

i3 = 10 and κ−1
i3 = 17. These figures reveal that undulatory motion

is excited over a bifurcation point. Figure 3(a) also implies that since the angles are plotted
with respect to each step cycle of the leg motion, this meandering motion is not synchronized
with the leg motion. Therefore, it has an independent frequency (see details in Figure 7(c)
shown below). Figures 4(a) and (b) are snapshots of the front and top views, respectively,
of the walking motion using κ−1

i3 = 21, showing that wavy motion appears. A video of this
behavior is available as 66475 01.avi [10.3MB].

3.2. Investigation of the transition mechanism. As shown above, a straight walk natu-
rally turns into a meandering walk through changes in the robot’s mechanical characteristics.
This robot receives dynamical interactions between the contact legs and the ground. Since
the robot moves the legs parallel to their modules, it receives reaction forces from the ground
also parallel to their modules. Therefore, the robot is supposed to walk straight. However,

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66475_01.avi
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Figure 3. Bifurcation of the walking motion. (a) Yaw angle of Coupler 3, θ43, at φ1
1 = 0 versus the

reciprocal of gain parameter κ−1
i3 . (b) Power spectrum of angle θ43.

when the feedback gains of the couplers’ yaw joints decrease beyond the critical threshold,
lateral motions appear and wavy motion is generated. Why does this happen? In this section
we investigate its mechanism in detail.

In a straight walk, the couplers’ yaw joints hardly move and the modules keep straight,
suggesting that zero is stable for the joint motions. On the contrary, the joints achieve
periodic oscillation in a meandering walk. Depending on the feedback gains, a straight walk
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(a) Front view

(b) Top view

Figure 4. Meandering motion. See also the accompanying animation (66475 01.avi [10.3MB]).

x1

x2

θ13 θ23 θ33

v

v

v

Module 1 Module 2 Module 3

Figure 5. Overhead view of the simplified model. Black dots beside the bodies indicate the positions of the
leg tips during the stance phase.

turns into a meandering walk. These facts imply that when the gains are large enough a
straight walk is stable. On the other hand, when the gains decrease beyond a critical value,
a Hopf bifurcation occurs and the straight walk is destabilized, exciting undulatory motion.
As a result, the transition from a straight to a meandering walk takes place as obtained
in numerical simulations. Here, we examine whether this suggestion actually explains the
transition mechanism.

Although the above suggestion comes from simulation results based on the robot model
described in section 2.1, we simplify the robot model by assuming the following for its straight
walk to extract the essence of the transition mechanism:

1. The leg mass is too small in comparison to the body mass and the leg joints completely
follow the kinematically designed trajectories as shown in Figure 2.

2. Many legs are in contact with the ground and support the robot. Since the legs’
nominal motions do not cause the up-and-down, roll, and pitch motions of the robot,
those motions are sufficiently small with respect to other motions and can be ignored.

3. The robot walks at constant speed v in the nominal direction of locomotion.

Figure 5 shows an overhead view of the simplified model, where black dots beside the bodies
indicate the positions of the leg tips during the stance phase. Note that the legs receive the
forces from the ground only when they are in the stance phase.

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66475_01.avi
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Figure 6. Trajectories of Floquet exponents. (a) Trajectories of all the Floquet exponents. (b) Enlarged detail.

Under these assumptions, state variable q ∈ R
n+2 is redefined as qT = [x1 x2 θ13 · · · θn3 ].

Then, we define state ξ ∈ R
2n+4 as ξT = [ q̇T qT ]. In a straight walk, state ξ can be written

as ξT
str = [ v 0 · · · 0 vt + x10 0 · · · 0 ], where x10 is the state of x1 at t = 0. Perturbed state

ξ ∈ R
2n+4 from a straight walk is defined as ξ = ξstr+δξ, where δξ ∈ R

2n+4 is the perturbation.
By contracting the equation of motion (2.1) and then linearizing it around state ξstr, we obtain
(see Appendices B and C)

(3.2) δξ̇ = A(t)δξ,

where matrix A(t) ∈ R
(2n+4)×(2n+4) is periodic and A(t+ τ) = A(t) for step cycle τ of the leg

motion. Note that matrix A(t) has no element that contains x10.

Based on the Floquet theory [20], we analyze the stability of a straight walk, where for the
simplified model the mass and inertia of each module are set to 0.8 kg and 4.2×10−3 kgm2, re-
spectively. Figures 6(a) and (b) show the trajectories of the Floquet (characteristic) exponents
while the feedback gains of the yaw joints of the couplers change. Specifically, Figure 6(a)
shows all the trajectories of the Floquet exponents, revealing that a Hopf bifurcation occurs
by crossing the imaginary axis. Displayed circles indicate all the (2n + 4) Floquet exponents
when the Hopf bifurcation takes place, where red circles correspond to the Hopf bifurcation.
Figure 6(b) shows trajectories in detail by focusing on the vicinity of the imaginary axis.

The above result clarifies that a Hopf bifurcation occurs and a straight walk becomes
unstable according to the feedback gains. However, this result comes from the simplified
model. Next, we verify whether this Hopf bifurcation actually explains the transition from a
straight to a meandering walk obtained in numerical simulations. Figure 7 shows a comparison
between the results of the numerical simulation and the Floquet analysis, where the obtained
meandering motion in the numerical simulation is analyzed using fast Fourier transform and
the eigenvector corresponding to the destabilized Floquet exponent is used for the Floquet
analysis. In particular, Figures 7(a), (b), and (c) illustrate the phase difference with respect to
angle θ13, the amplitude ratio between the angles, and the period of the meandering motion,
respectively. Although the simplification causes some discrepancies, these results are almost
the same in quality and quantity. Therefore, we conclude that the transition from a straight
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Figure 7. Comparison between numerical and analytical results. (a) Phase difference with respect to θ13.
(b) Amplitude ratio between angles. (c) Period of meandering motion.

to a meandering walk is caused by a Hopf bifurcation due to the change of the feedback gains
of the couplers’ yaw joints.

3.3. Investigation of the model dependence of the transition. In the previous sections,
we examined the transition from a straight to a meandering walk with respect to a specific
robot model using six modules (n = 6), an anti-phase gait pattern (Δφcntrl = π), and a viscous
damper model for the ground reaction force in the horizontal direction. In this section, we
show that this transition is not a particular property caused by the specific robot model
but a qualitatively universal characteristic inherent in the robot by similarly using numerical
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simulations and Floquet analysis.

3.3.1. Dependence on the number of modules. Although up to this section we used
six modules for the robot model (n = 6), we here change the number of modules n and
investigate the effect on the characteristics of walking motion. Note that we use an anti-phase
gait pattern (Δφcntrl = π) and the viscous damper model as the ground reaction force model
in the horizontal direction.

Figure 8 depicts the results. Specifically, Figure 8(a) shows yaw angle θ33 of Coupler 2 at
φ1

1 = 0 with respect to the reciprocal of gain parameter κ−1
i3 for number of modules n (≥ 3)

obtained through numerical simulations, where arrows indicate the bifurcation points. This
figure reveals that the multilegged modular robot, composed of more than two modules, has
the dynamic properties to change the walking motion beyond a critical point of the compliance
of the couplers’ yaw joints. Figure 8(b) shows all the trajectories of the Floquet exponents
with respect to number of modules n achieved by the Floquet analysis. Figure 8(c) illustrates
a comparison between the numerical and analytical results, showing the phase difference with
respect to angle θ13, the amplitude ratio between the angles, the period of the meandering
motion, and the bifurcation point of the reciprocal of gain parameter κ−1

i3 (cf. Figure 7). These
figures indicate that a Hopf bifurcation occurs, resulting in the transition from a straight to
a meandering walk. Although such dynamic features as the amplitude of the angles and the
wavelength of the meandering motion quantitatively depend on the number of modules, it is
clarified that this transition is intrinsic in the robot when n ≥ 3. Figures 9(a) and (b) are
snapshots of the front and top views, respectively, of the walking motion using n = 12 and
κ−1
i3 = 29.

Although this analysis demonstrates that when n ≥ 3 a straight walk is destabilized and
undulatory motion is excited through a Hopf bifurcation, when n ≤ 2 it is clear that the
robot has no such characteristic that changes the walking motion due to a Hopf bifurcation.
Figure 10 presents all the trajectories of the eight Floquet exponents using n = 2 and verifies
that the changes in the couplers’ yaw joints cause no bifurcation and that a meandering motion
does not take place. In fact, no matter how small the feedback gains of the couplers’ yaw
joints are in numerical simulations, wavy motion does not appear.

3.3.2. Dependence on the gait pattern. In the previous sections, we used an anti-phase
gait pattern (Δφcntrl = π) for the leg motions. In this section, we employ another gait pattern
and examine its influence on the walking motion. As described above, when we used an anti-
phase gait pattern, a meandering motion was generated without synchronization with the
leg motions. Therefore, we expect that the transition from a straight to a meandering walk
will appear irrespective of the gait pattern. In particular, this section employs an in-phase
gait pattern (Δφcntrl = 0), in which the contralateral legs on each module move in phase.
In contrast to an anti-phase gait pattern, an in-phase gait pattern has completely symmetric
leg motions in each module and thus has no direct influence on the motions of the couplers’
yaw joints. In that sense, this gait pattern is very useful for examining the mechanism of this
transition. This section also uses six modules (n = 6) and the viscous damper model for the
ground reaction force in the horizontal direction.

Figure 11(a) shows yaw angle θ43 of Coupler 3 at φ1
1 = 0 with respect to the reciprocal

of gain parameter κ−1
i3 obtained by numerical simulations, illustrating that undulatory mo-
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Figure 8. Numerical and analytical results with respect to number of modules n. (a) Yaw angle of Coupler 2,
θ33, at φ1

1 = 0. (b) Trajectories of Floquet exponents. (c) Comparison between numerical and analytical results.

tion appears over a bifurcation point. Figure 11(b) shows all the trajectories of the Floquet
exponents calculated in the Floquet analysis. Figure 11(c) presents a comparison between
the results of the numerical simulation and the Floquet analysis. Specifically, it displays the
phase difference with respect to angle θ13, the amplitude ratio between the angles, and the
meandering cycle versus the reciprocal of gain parameter κ−1

i3 (cf. Figures 7 and 8(c)), verify-
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(a) Front view

(b) Top view

Figure 9. Meandering motion when n = 12.
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Figure 10. Trajectories of Floquet exponents when n = 2.

ing that the transition is caused by a Hopf bifurcation. These figures demonstrate that this
transition is a universal feature embedded in the robot independent of the gait pattern.

3.3.3. Dependence on the ground reaction force model. Reaction forces from the
ground have important roles in locomotion. In particular, for a locomotion robot that has
many legs, vertical forces help it to achieve stable walking. With the support of those legs,
horizontal forces affect the generation of a planar walking motion of the robot. In the above
sections, we used the viscous damper model for the ground reaction force in the horizontal
direction, and we demonstrated that the transition from a straight to a meandering walk
takes place depending on the mechanical characteristics. The purpose of this section is to
explain that this transition is not specific to such a ground reaction force model. To do this,
we specifically employ a spring with a damper model and also a Coulomb friction model for
the horizontal reaction force, which are often used in numerical simulations [1, 5, 77] (see
Appendix A). Here, we use six modules (n = 6) and an anti-phase gait pattern (Δφcntrl = π).

Figure 12 shows the numerical results obtained using a spring with a damper model and
a Coulomb friction model. Specifically, it exhibits yaw angle θ43 of Coupler 3 at φ1

1 = 0, the
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Figure 11. Numerical and analytical results using an in-phase gait pattern (Δφcntrl = 0). (a) Yaw angle
of Coupler 3, θ43, at φ1

1 = 0. (b) Trajectories of Floquet exponents. (c) Comparison between numerical and
analytical results.

phase difference with respect to angle θ13, and the amplitude ratio between the angles versus
the reciprocal of gain parameter κ−1

i3 . These numerical results reveal that wavy motion arises
beyond a bifurcation point and that the transition from a straight to a meandering walk is



A MULTILEGGED MODULAR ROBOT THAT MEANDERS 363

Spring with a damper model Coulomb friction model

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1
κi3

−1

-1.5

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8 10 12
κi3

−1

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.5 0.6 0.7 0.8 0.9 1 1.1

A
m

pl
itu

de
 r

at
io

κi3−1

θ13
θ23
θ33
θ43
θ53
θ63

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

2 4 6 8 10 12 14

A
m

pl
itu

de
 r

at
io

κi3−1

θ13
θ23
θ33
θ43
θ53
θ63

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.5 0.6 0.7 0.8 0.9 1 1.1

P
ha

se
 d

iff
er

en
ce

 fr
om

 θ
13

 [×
 2

π 
ra

d]

κi3−1

θ13
θ23
θ33
θ43
θ53
θ63

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2 4 6 8 10 12 14

P
ha

se
 d

iff
er

en
ce

 fr
om

 θ
13

 [×
 2

π 
ra

d]

κi3−1

θ13
θ23
θ33
θ43
θ53
θ63

Figure 12. Numerical results obtained using a spring with a damper and a Coulomb friction model.

not specific to the ground reaction force model.

These results obtained from numerical simulations and Floquet analysis clarified the dy-
namic characteristics inherent in the multilegged modular robot. In the next section, we focus
on the dynamic characteristics to achieve one solution to solve the problem in multilegged
robots.

4. Turning maneuvers utilizing dynamic properties. Dynamic characteristics such as sta-
bility must greatly affect the maneuverability and agility of locomotion. Schmitt et al. [61, 62,
63, 64] simply modeled the hexapod walking of a cockroach, which has marvelous agility, and
analytically demonstrated that it successfully achieves a quick turn by virtue of destabilizing
its straight walk through changing its dynamic features.

As described above, there is a characteristic problem for a locomotion robot that has many
legs: although many contact legs help the robot to achieve a stable walk, all those contact legs
also keep the robot from accomplishing maneuverable and agile motions such as a quick turn.
It would be interesting and helpful if we attained one solution to the problem by using the
dynamic properties inherent in the robot as cockroaches use the dynamic features embedded
in themselves. Therefore, in this section, we especially focus on the dynamic characteristics
analyzed in the previous sections.

In particular, we investigate the relationship between the dynamic features and maneu-
verability of the robot. To clarify this relationship, we have the robot pursue a target moving



364 SHINYA AOI, HITOSHI SASAKI, AND KAZUO TSUCHIYA

Center of vision
[y1, y2]

Target
[η1, η2]

Module 1

Coupler 1

Camera

θ13

θ23

ψθ

x1

x2

(a)

Center of
visionTarget

Module 1Camera

θ12 + 30◦
s

ψs

(b)

Figure 13. Target pursuit. (a) Direction ψθ. (b) Distant angle ψs.

across the floor. A camera is attached to the head of Module 1, whose elevation angle is −30◦.
From the visual image taken by the camera, the robot can obtain direction angle ψθ and
distance angle ψs (see Figures 13(a) and (b)). The center of vision is the intersection point
between the ground and the visual line of the camera, whose position is expressed by [ η1 η2 ]
on the floor. The position of the target is [ y1 y2 ]. The sampling frequency of the visual
information is set to be 20 Hz. By using information ψθ and ψs, the robot attempts to follow
the moving target. In this section, we use six modules (n = 6), an anti-phase gait pattern
(Δφcntrl = π), and the viscous damper model for the horizontal reaction force.

To manipulate the walking direction, input torque u13 at the yaw joint of Coupler 1 is
activated by incorporating the desired angle regarding visual information ψθ, given by

(4.1) u23 = −κ23(θ23 + ψθ) − σ23θ̇23,

where feedback gains κ23 and σ23 are fixed and parameter f in (3.1) is set to 1.0 for them. The
aim of this control is to point the first module in the direction of the target and then make
the other modules follow the first module through their passive connections. To approach the
target, by using visual information ψs, stride s is determined by

(4.2) s = κsψs,

where κs is set to 0.191 m/rad and stride s is limited with a saturation at ±5 cm.
In the task of pursuing the target, the target moves straight at a constant speed of 0.18 m/s.

The target then makes a right-angled turn to the left and continues to move straight at the
same constant speed. First, the robot walks straight following the target, where feedback
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Figure 14. Simulation results of the target pursuit. (a) Evaluation criterion ν and overshoot of the
trajectory of Module 1. (c) Trajectories of the target and Module 1.

gains κi3 and σi3 of the couplers’ yaw joints (i = 3, . . . , 6) are also fixed by setting f = 1.0,
and wavy motion does not appear. Immediately after the target makes a turn, we change
feedback gains κi3 and σi3 except for Coupler 1 (i = 3, . . . , 6) and investigate the relationship
between the maneuverability and dynamic characteristics dependent on the feedback gains.
To examine the agility of locomotion, we employ evaluation criterion ν, which represents the
mean square error between the target and center of vision, given by

(4.3) ν =
1

τtask

∫ τtask

0

√
(η1 − y1)2 + (η2 − y2)2 dt,

where τtask is the time interval to execute this task (set to 50 s).
14(a)
Figure 14(a) shows evaluation criterion ν and the overshoot of the trajectory of Module 1

with respect to gain parameter κi3. Figure 14(b) shows the trajectories of the target and
Module 1 during the target pursuit, especially with respect to κi3 = 0.75, 0.061 (close to the
bifurcation point), and 0.015. Figure 15 is a snapshot of the turning behavior during the
target pursuit (κi3 = 0.061). A video of this turning behavior and the comparison between
three cases is available as 66475 02.avi [2.1MB]. These figures show that the robot achieves
high maneuverability and agility by using the feedback gains around the bifurcation point

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66475_02.avi
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Figure 15. Turning behavior during the target pursuit.

where a straight walk becomes unstable. Although they do not necessarily mean that the
bifurcation point is optimal, they do illustrate that there is an adequate region for feedback
gains around the bifurcation point to achieve high maneuverability and agility. When the
feedback gains are larger than the bifurcation point (i.e., when a straight walk is stable),
evaluation criterion ν is also larger. This reflects that the robot is unable to obtain sufficient
maneuverability, resulting in a large overshoot of the trajectory of Module 1, preventing the
modules behind Module 1 from smoothly following Module 1. When the feedback gains are
smaller than the bifurcation point (i.e., when a straight walk is unstable), evaluation criterion
ν is also larger, partly because the undulatory motion is excited during target pursuit. Note
that when the feedback gains are excessively small, the turning behavior is easily disintegrated.
Therefore, the robot needs to use appropriate feedback gains. These results imply that the
decrease in stability during a straight walk, due to a reduction in the strength of the connection
between the modules, helps the robot to efficiently accomplish this task. In other words, the
robot appears to achieve its maneuverability and agility by virtue of changes in the dynamic
characteristics.

5. Discussion. The contribution of this paper consists mainly of two parts. One is the
elucidation of the dynamic characteristics and the mechanism of them embedded in a multi-
legged modular robot. The other is an investigation into improving the maneuverability and
mobility of the robot by using the dynamic properties.

5.1. Dynamic characteristics inherent in the robot. In this paper, we revealed that a
straight walk by a multilegged modular robot that has more than two modules, each with
one body and two legs, naturally turns into a meandering walk depending on the mechanical
characteristics. This transition reflects the fact that undulatory motion appears according to
the strength of the connection between the modules. Specifically, a straight walk becomes
unstable and wavy motion is excited through a Hopf bifurcation. Furthermore, this dynamic
property is qualitatively independent of the robot models such as the number of modules, gait
pattern, and ground reaction force model.

The robot receives external forces from the ground when the tips of the legs are in contact
with it. Since the robot manipulates the legs parallel to the body of the module as designed
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in section 2.2, it obtains propulsive forces in that direction and moves forward. However,
motions in the lateral direction appear and undulatory motions are generated due to changes
in the mechanical characteristics. We clarified this mechanism by linearizing the equations
of motion of the robot around the state of a straight walk under certain assumptions and by
investigating the stability of the straight walk based on the Floquet theory.

In this Floquet analysis, the following should be noted. It is true that this analysis verifies
that a straight walk is destabilized and turns into another walk, but it does not necessarily
indicate formation of undulatory motion. Although this analysis surely suggests that when a
straight walk becomes unstable the states diverge in accordance with the destabilized eigen-
vector and generate wavy motion, the nonlinearity in the dynamics is essential to saturate the
divergence of the states and to complete a meandering motion.

Since this modular robot consists of many modules, all of which move independently and
interact with each other through the couplers, we can consider this robot an autonomous, de-
centralized system. This system generates its motion pattern through the interaction between
the dynamics of the mechanical system, the environment, and module connections. Further-
more, this system naturally changes the motion pattern according to the interaction between
the modules. Although we often observe such a system that creates different motion patterns
by changing control inputs depending on circumstances, not much work has been done on such
a system that generates motion patterns by changing the mechanical and dynamic features
and through a bifurcation like our results.

Golubitsky et al. [28, 29] analytically investigated the CPG network of many-legged ani-
mals such as Myriapods that display meandering walks, suggesting that there is an important
type of neural system structure. On the other hand, we generate the meandering walk of a
multilegged robot through the mechanical dynamics and the environment without incorpo-
rating the dynamical neural system. Animals must generate their walk by making the most
of their inherent physical characteristics and neural structure. It is both mathematically and
biologically important to elucidate their roles in locomotion dynamics.

5.2. Maneuverability dependent on the dynamic characteristics. The key issue in con-
trolling a locomotion robot is to improve the stability and maneuverability of the robot’s mo-
tion, where stability means that the robot continues locomotion without falling over. However,
stability and maneuverability generally conflict with each other. Therefore, it is important
to determine how to reach an acceptable trade-off between them in designing the controller.
Regarding a multilegged robot, although an increase in the number of legs results in an im-
provement of stability, it makes the robot less maneuverable since the legs are constrained
on the ground. Thus, it is essential to design a controller that enhances maneuverability and
agility.

In designing the controller for a locomotion robot that has many legs and easily accom-
plishes statically stable walking, the model-based approach is widely used [12, 27, 53], in which
the foot landing positions are calculated and then the joint angles are computed based on the
inverse kinematics. However, the controller needs the calculations to be performed in real
time to achieve desired motions such as target pursuit. It also requires more complicated and
heavy computations as the numbers of modules and legs increase. Furthermore, this approach
makes it difficult to attain adaptive and robust motions against environmental changes, errors
in modeling, and disturbances.



368 SHINYA AOI, HITOSHI SASAKI, AND KAZUO TSUCHIYA

To design the controller of a locomotion robot, it is essential to first undertake detailed re-
search to better comprehend the intrinsic mechanical and dynamic characteristics of the robot.
After that, it is important to design a simple controller to achieve the desired performance by
making the most of the inherent characteristics. For example, the dynamic features of pas-
sive dynamic walkers have been examined in detail, revealing that they have a self-stabilizing
property, a bifurcation characteristic, and chaotic behavior [24, 31, 49]. In particular, by
using the intrinsic self-stabilizing property, many controllers have been successfully developed
[10, 17, 30, 46, 65, 67, 73, 79].

This paper has so far clarified the inherent dynamic characteristics of a multilegged mod-
ular robot and revealed that a straight walk by the robot is destabilized due to its mechanical
features and turns into a meandering walk. Such destabilization of a straight walk indicates
that it becomes difficult for the robot to maintain its straight walk, and it does help the robot
to increase the maneuverability. In section 4, we proposed simple turning maneuvers for the
robot and investigated whether the robot achieves maneuverable and agile motions. The robot
moves its legs periodically and manipulates the heading module according to the vision infor-
mation. Despite having such a simple controller and strategy, the robot accomplishes efficient
turning and walking by virtue of the dynamic characteristics. Making it harder for the robot
to walk straight may be a very straightforward and acceptable approach to improving mobil-
ity. In this paper, the significance of the investigation of the dynamics properties embedded in
the robot is to demonstrate that the robot can manipulate the ease and difficulty of a straight
walk, and the crucial conclusion lies in the connection of the intrinsic dynamic characteristics
with functions in locomotion, such as maneuverability.

5.3. Advanced controller and turning maneuvers. In the multilegged modular robot,
the modules are connected with each other through the couplers. As the connections are
weakened, the stability of its straight walk decreases and the mobility of each module in-
creases. However, when the connections are excessively weakened, the walking motion will
easily disintegrate. Therefore, a locomotion controller is required for determining adequate
connection strength. In contrast to locomotion robots, animals modulate their muscle tone
depending on circumstances and achieve adaptive walking. Although in this paper we examine
the turning of the robot without changing the strength of the connections while performing
an experiment, it is important to design a controller that modulates the strength according
to the purpose and situation. Our results must provide guiding principles for designing such
a controller and strategy.

As demonstrated in section 3.3.1, quadruped robots that consist of two modules and four
legs, as well as biped robots comprising one module and two legs, do not possess dynamic
characteristics in which a straight walk is destabilized and turns into a meandering walk. To
be sure, the stability of a straight walk by a quadruped robot will deteriorate by decreasing the
strength of the coupler’s connection, but it is not sufficient to merely destabilize the straight
walk; thus it is difficult to design a controller that makes the most of the intrinsic dynamic
characteristics by using the maneuvers described in this paper.

Generally, in slow walking by a quadruped robot, the robot’s motion is generated so
that the center of gravity lies within the support leg polygon to maintain stable walking,
making it relatively easy for a quadruped robot to walk slowly. However, since it is difficult
to attain high-speed, dynamic, and agile walking, a controller is needed that stabilizes the
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robot while retaining high mobility. Tsujita, Toui, and Tsuchiya [76] proposed a turning
controller using nonlinear oscillators for a quadruped robot and accomplished dynamic turning
by incorporating the kinematic control design and modulating the walking motion through
sensory information and oscillators.

In this paper, we have analyzed the walking motion of the robot on flat terrain. However,
terrain in the real world is not necessarily even and is often irregular and rough. One of the
advantages of legged robots is that they are more adaptive and robust against such terrains
than wheeled robots. Although irregular terrain produces up-and-down, roll, and pitch mo-
tions in a robot, the multilegged modular robot considered in this paper may deal with them
by using the couplers’ roll and pitch joints. In that case, the joint compliance and the strength
of the connections will play important roles similar to the couplers’ yaw joints.

6. Conclusion. In this paper, we dealt with locomotion of a multilegged modular robot.
In particular, we showed that a straight walk by this robot naturally changes into a mean-
dering walk by changes in the compliance of the yaw joints between the modules without
incorporation of any oscillatory inputs. Based on the Floquet theory, we first clarified that
this transition reflects that a straight walk is destabilized and undulatory motion is excited
due to a Hopf bifurcation. Then, we investigated the role of this dynamic property in achieving
maneuverability and agility, conducting an experiment in which the robot pursued a target
moving across the floor. By using the proposed simple controller, the robot accomplished
the task and performed high maneuverability and agile motions by making the most of the
dynamic characteristics inherent in it.

Videos of these numerical simulations are available at http://control.kuaero.kyoto-u.ac.
jp/member/aoi/.

Appendix A. Ground reaction force model. When the tip of the leg is in contact with the
ground, the robot receives a reaction force from the ground. Position vector z of the leg tip and
ground reaction force γ are expressed on the ground by z = [ z1 z2 z3 ]T and γ = [ γ1 γ2 γ3 ]T,
respectively. Ground reaction force γ3 in the vertical direction is modeled using a spring with
a damper [1, 5, 77], given by γ3 = −κvrtz3 −σvrtż3 during contact (z3 < 0); otherwise, γ3 = 0,
where κvrt and σvrt are constants.

A multilegged modular robot generates its steady walking motion essentially in a horizontal
plane by virtue of the support provided by its many legs. Therefore, ground reaction forces
in the horizontal direction are important in generating such a horizontal motion. Throughout
this paper, we employ a viscous damper model for the horizontal reaction force, expressed by
γi = −σhrzżi when γ3 > 0; otherwise, γi = 0 (i = 1, 2), where σhrz is a constant.

In addition to the viscous damper model, we use another two models to investigate whether
the dynamic characteristics of the robot considered in this paper are specific to such a ground
reaction force model (see section 3.3.3). One is a spring with a damper model similar to the
vertical direction [1, 5], expressed by γi = −κhrz(zi − zi) − σhrzżi during contact (i = 1, 2),
where κhrz is a constant and zi is the position where the leg tip is constrained. The other
is a Coulomb friction model, where the robot receives horizontal force γvz in the direction
of the derivative of z, given by γvz = −μγ3 during contact, where μ is the coefficient of
friction. This force is approximated by using a pseudo-Coulomb friction force [77], given
by γvz = −2μγ3 arctan(σhrzπvz/(2μγ3))/π during contact, where vz =

√
ż2
1 + ż2

2 . When

http://control.kuaero.kyoto-u.ac.jp/member/aoi/
http://control.kuaero.kyoto-u.ac.jp/member/aoi/
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Figure 16. Coordinate axes and vectors of the simplified model.

vz � μγ3/σhrz, γvz approaches −μγ3, which corresponds to a Coulomb friction model. On
the other hand, when the tip of the leg slips slightly on the ground and speed vz is slow, γvz
comes close to −σhrzvz, which corresponds to a viscous damper model. Since we consider the
walking motion of the robot where the tips of the legs hardly slip with respect to the ground
and speed vz is slow compared to the locomotion speed, we employ the viscous damper model
throughout this paper.

Appendix B. Equation of motion of the simplified model. In this appendix, we show
the equation of motion for the simplified model of the multilegged modular robot described
in section 3.2. First, we introduce the following coordinate axes and vectors (see Figure 16).
Coordinate axes {a0} = {a01 a02} are fixed to the ground, where axes a01 and a02 are
in the nominal walking direction and the lateral direction, respectively. Coordinate axes
{ai} = {ai1 ai2} (i = 1, . . . , n) are fixed in the body of Module i, whose origin is located
at Coupler (i − 1). Note that the origin of axes {a1} is at the same point on Module 1 as
the coordinate axes fixed to the other modules. Vector ri (i = 0, . . . , n − 1) is the distance
vector from the origin of axes {ai} to the origin of axes {ai+1}, expressed in axes {ai}, where
r0 = [x1 x2 ]T. Vector wi (i = 1, . . . , n) is the distance vector from the origin of axes {ai} to
the center of mass of Module i, expressed in axes {ai}. Vector lji (i = 1, . . . , n, j = 1, 2) is the
distance vector from the origin of axes {ai} to the tip of Leg j of Module i, expressed in axes
{ai}. Note that as assumed in section 3.2, the tips of the legs move along the trajectories
kinematically designed in axes {ai} and that vector lji becomes a periodic function of time t,

i.e., lji = lji (t), whose cycle is equal to step cycle τ .

Using Lagrangian equations, the equation of motion for state variable qT = [x1 x2 θ13 · · · θn3 ]
∈ R

n+2 is derived by

(B.1) K(q)q̈ + h(q, q̇) = u(q, q̇) + λ(q, q̇, t),

where K(q) ∈ R
(n+2)×(n+2) is the inertia matrix, h(q, q̇) ∈ R

n+2 is the nonlinear term, u(q, q̇) ∈
R
n+2 is the input torque term, and λ(q, q̇, t) ∈ R

n+2 is the ground reaction force. Note that
since the tips of the legs move periodically with respect to the body of each module, ground
reaction force λ becomes a function of time t. Specifically, inertia matrix K(q) is given by

(B.2) K(q) = HT{L(q)TML(q) + J}H + Jg,

where
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...

...
. . .

. . .

Rn,0(q) Rn,1(q)r̃1 · · · Rn,n−1(q)r̃n−1 o2

⎤

⎥
⎥
⎥
⎦
, L2 =

⎡

⎢
⎣

w̃1

O . . .

w̃n

⎤

⎥
⎦ ,

M = diag[m1 m1 m2 m2 · · · mn mn ] ∈ R
2n×2n,

J = diag[ 0 0 j1 j2 · · · jn ] ∈ R
(n+2)×(n+2),

Jg = diag[ 0 0 0 n2
gjg · · · n2

gjg ] ∈ R
(n+2)×(n+2);

mi and ji (i = 1, . . . , n) are, respectively, the mass and inertia of Module i, jg and ng are,
respectively, the rotor inertia and gear ratio of a motor, o2 ∈ R

2 is a zero vector, I2 ∈ R
2×2 is

a unit matrix, O is an appropriately sized zero matrix, Ri,j(q) ∈ R
2×2 (i, j = 1, . . . , n, i > j)

is the coordinate transform matrix of axes {ai} with respect to axes {aj} given by

(B.3) Ri,j(q) =

[
cos θi,j(q) sin θi,j(q)
− sin θi,j(q) cos θi,j(q)

]
i, j = 1, . . . , n, i > j,

where

θi,j(q) =

i∑

k=j+1

θk3,

and for vector b = [ b1 b2 ]T, b̃ is expressed as b̃ = [−b2 b1 ]T.
Nonlinear term h(q, q̇) becomes

(B.4) h(q, q̇) = Kt(q, q̇)q̇ + V (q, q̇)p(q, q̇),

where

Kt(q, q̇) = K̇(q),

V (q, q̇) =

⎡

⎢⎢⎢
⎣

O
ṽT
1 (q, q̇)

. . .

ṽT
n (q, q̇)

⎤

⎥⎥⎥
⎦
∈ R

(n+2)×2n,

[ vT
1 (q, q̇) · · · vT

n (q, q̇) ]T = L1(q)Hq̇ ∈ R
2n,

p(q, q̇) = B(q)TML(q)Hq̇ ∈ R
2n,

B(q) =

⎡

⎢⎢⎢
⎣

I2
R2,1(q) I2

...
. . .

. . .

Rn,1(q) · · · Rn,n−1(q) I2

⎤

⎥⎥⎥
⎦
∈ R

2n×2n.
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Input torque term u(q, q̇) is expressed by

(B.5) u(q, q̇) = −Pq −Dq̇,

where

P = diag[ 0 0 0 κ23 · · · κn3 ] ∈ R
(n+2)×(n+2),

D = diag[ 0 0 0 σ23 · · · σn3 ] ∈ R
(n+2)×(n+2).

Reaction force term λ(q, q̇, t) becomes equivalent to

(B.6) λ(q, q̇, t) = −HTLleg(q, t)
TΛleg(t){Lleg(q, t)Hq̇ + vleg(t)},

where

Lleg(q, t) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

R1,0(q) l̃11(t)

R1,0(q) l̃21(t)

R2,0(q) R2,1(q)r̃1 l̃12(t)

R2,0(q) R2,1(q)r̃1 l̃22(t)
...

...
. . .

. . .

Rn,0(q) Rn,1(q)r̃1 · · · Rn,n−1(q)r̃n−1 l̃1n(t)

Rn,0(q) Rn,1(q)r̃1 · · · Rn,n−1(q)r̃n−1 l̃2n(t)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

∈ R
4n×(n+2),

vleg(t) =
[
l̇11(t)

T l̇21(t)
T · · · l̇1n(t)T l̇2n(t)T

]T ∈ R
4n,

Λleg(t) = σhrz diag[ ε1
1(t) ε1

1(t) ε2
1(t) ε2

1(t) · · · ε1
n(t) ε1

n(t) ε2
n(t) ε2

n(t) ] ∈ R
4n×4n,

εji (t) =

{
1 if Leg j of Module i is in the stance phase,
0 otherwise,

i = 1, . . . , n, j = 1, 2,

and σhrz is the damping coefficient of the ground. For example, in the anti-phase gait pattern
(Δφcntrl = π), Leg j of Module i ((i, j) = (1, 1), (2, 2), (3, 1), (4, 2), . . . ) is in the stance phase
from t = 0 to t = τ/2 and vector lji (t) is given by

(B.7) lji (t) =
[
aji − vt bji

]T
, 0 ≤ t ≤ τ/2,

where v = s/(βτ), and aji and bji (i = 1, . . . , n, j = 1, 2) are the components of the distance
vector from the origin of axes {ai} to point AEP of the trajectory for Leg j of Module i.
On the other hand, Leg j of Module i ((i, j) = (1, 2), (2, 1), (3, 2), (4, 1), . . . ) is in turn in the
stance phase from t = τ/2 to t = τ , and vector lji (t) is expressed by

(B.8) lji (t) =
[
aji − v(t− τ/2) bji

]T
, τ/2 ≤ t ≤ τ.

In contrast to the anti-phase gait pattern, in the in-phase gait pattern (Δφcntrl = 0), Leg j of
Module i ((i, j) = (1, 1), (1, 2), (3, 1), (3, 2), . . . ) is in the stance phase from t = 0 to t = τ/2
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and Leg j of Module i ((i, j) = (2, 1), (2, 2), (4, 1), (4, 2), . . . ) is in the stance phase from
t = τ/2 to t = τ .

Appendix C. Linearization of the equation of motion of the simplified model. In this
section, we show the linearized equation of the equation of motion (B.1) for the simplified
model of the multilegged modular robot around the states of a straight walk. This is done to
investigate the transition mechanism from a straight to a meandering walk according to the
mechanical characteristics of the robot.

When we define state ξ ∈ R
2n+4 as ξT = [ q̇T qT ], state ξstr ∈ R

2n+4 of a straight walk
can be written as ξT

str = [ q̇T
str qT

str ] = [ v 0 · · · 0 vt + x10 0 · · · 0 ], where x10 is the state of x1

at t = 0. Perturbed state ξ ∈ R
2n+4 from a straight walk is defined as ξT = ξT

str + δξT, where
δξ = [ δq̇T δqT ]T ∈ R

2n+4 is the perturbation. By linearizing the equation of motion (B.1)
around state ξstr, we obtain

(C.1) K(qstr)δq̈ = −Pδq −Dδq̇ − Γleg(t){Lleg(qstr, t)Hδq̇ + Lleg t(qstr, q̇str, t)Hδq},

where

Γleg(t) = HTLleg(qstr, t)
TΛleg(t),

Lleg t(q, q̇, t) = L̇leg(q, t).

Equation (C.1) yields that

(C.2) δξ̇ = A(t)δξ,

where

A(t) =

[
A11(t) A12(t)
In+2 On+2

]
∈ R

(2n+4)×(2n+4),

A11(t) = −K(qstr)
−1{D + Γleg(t)Lleg(qstr, t)H},

A12(t) = −K(qstr)
−1{P + Γleg(t)Lleg t(qstr, q̇str, t)H},

and In+2 ∈ R
(n+2)×(n+2) and On+2 ∈ R

(n+2)×(n+2) are unit and zero matrices, respectively.
Since vector lji (t) is periodic and its cycle is equivalent to step cycle τ , and vector l̇ji (t) is
constant from (B.7) and (B.8), we achieve A(t + τ) = A(t).
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Bifurcation and Bistability in a Model of Hematopoietic Regulation∗

Caroline Colijn† and Michael C. Mackey‡

Abstract. Stem cells and their relationship with mature tissues are of increasing interest in the biomedical
sciences, but the dynamics of stem cell/tissue interactions are not well understood. We give a
generic stem cell/tissue model and examine the dynamics of a specific case of this, namely, a four-
compartment model of blood cell production and regulation. We apply the findings to cyclical
neutropenia and periodic chronic myelogenous leukemia, two diseases of the blood production sys-
tem. We track the position of the Hopf bifurcation believed to give rise to blood cell oscillations in
these diseases. Results account for the variable success of granulocyte-colony stimulating factor, a
common treatment for cyclical neutropenia, in reducing oscillations. The model displays bistability
of periodic solutions, presenting the opportunity to stabilize the system through a temporary per-
turbation that induces switching between locally stable solutions. It is found that oscillations can
be suppressed by properly timed pulses of increased amplification in the platelet line. The medi-
cal interpretation of this result is that temporary administration of thrombopoietin may suppress
the oscillations. Though it is neutrophil oscillations that characterize both diseases clinically, and
though it is probably a destabilization in the neutrophil line that initiates the oscillations, pulses in
the neutrophil amplification do not effectively suppress oscillations.

Key words. mathematical biology, delay differential equations, bifurcation, coupled oscillations, stem cells
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1. Introduction. Stem cells are of great interest in the biomedical sciences due to their
ability to develop into all of the cell types in the body. It has been suggested that therapies
using pluripotent stem cells could present cures for currently incurable degenerative diseases
such as Alzheimer’s and diabetes, among others. Recently, new sources for stem cells in
amniotic fluid [7] and fibroblast culture [24] have emerged; these findings could alleviate some
of the political debate about the ethics of stem cell research. The spatial and temporal
dynamics of stem cell proliferation and differentiation are not well understood, which presents
the opportunity for mathematicians to contribute to an exciting and rapidly growing field
with many open problems.

Stem cells, by definition, are pluripotential, and many stem cells (adult stem cells) are
self-renewing. In other words, they can differentiate and then mature into diverse tissue
types, and their population is able to sustain itself through proliferation. Consider a generic
situation as follows: a small population of stem cells is capable of differentiating and then,

∗Received by the editors September 9, 2006; accepted for publication (in revised form) by J. Keener March 6,
2007; published electronically June 1, 2007. This work was supported by MITACS (Canada) and the Natural Sciences
and Engineering Research Council of Canada.

http://www.siam.org/journals/siads/6-2/64007.html
†Department of Mathematics and Centre for Nonlinear Dynamics, McGill University, 3655 Promenade Sir William

Osler, Montreal, Canada H3G 1Y6 (ccolijn@gmail.com).
‡Departments of Physiology, Physics, and Mathematics, and Centre for Nonlinear Dynamics, McGill University,

3655 Promenade Sir William Osler, Montreal, Canada H3G 1Y6 (mackey@cnd.mcgill.ca).

378

http://www.siam.org/journals/siads/6-2/64007.html
mailto:ccolijn@gmail.com
mailto:mackey@cnd.mcgill.ca


BIFURCATION ANALYSIS OF A MODEL OF HEMATOPOIESIS 379

through a series of cell divisions, giving rise to N distinct tissue types. The rate at which
stem cells differentiate into a given cell type is a function of the existing populations of cells.
Furthermore, it takes some time, typically a number of days, for the complete maturation
process.

A generic model along these lines is

q̇ = −kqh(q) + μqτh(tτ ) − q

N∑

i=1

hi(X1, . . . , Xn),

∂xi
∂t

+
∂xi
∂a

= fi(x1, . . . , xn),

xi(0, t) = aiqτihi(X1τi
, . . . , Xnτi

),

xi(a, 0) = x0
i (a),

(1)

where

Xi(t) =

∫ ∞

0
xi(a, t)da.

Here, q represents quiescent stem cells, namely, those that are not undergoing mitosis (pro-
liferation). They can enter a proliferative phase, at rate kh(q); they then return a time τ
later having been multiplied by some factor μ > k. We use the notation qτ ≡ q(t − τ) for
delays. They may also differentiate into tissue types i = 1, . . . , N . In (1) the regulation of
stem cell differentiation into each tissue type is a function of the total tissue numbers Xi.
The quiescent stem cells q therefore have a loss term at rate hi(X1, . . . , XN ) for each tissue.
The tissue populations themselves are given by xi(a, t), where a represents the time since
maturation and t is time.

A salient feature of stem cell/tissue interactions is given in the first boundary condition
of (1): the factors ai represent “amplification” resulting from the many stages of cell division
between the stem cell compartment and the fully mature tissues. The number of mature cells,
Xi, is typically several orders of magnitude larger than the number of stem cells; i.e., the ai
are large. The tissue numbers are coupled to each other not only through their interactions
(given by fi) but by their delayed common origin in a small pool of stem cells.

The dynamics of models such as (1) are in general difficult to determine. Furthermore,
the tissue population dynamics may depend not only on time and age, as given here, but on
spatial properties as well. However, to the extent possible, it is desirable to understand to
what extent the stem cell dynamics are independent of the mature tissues, the strength of
effective coupling between tissues, the resilience of the system to increased loss of stem or
tissue cells, and of course the steady state(s), periodic solutions, and bifurcation structure of
the system.

Perhaps the simplest version of a model that includes stem cells as well as several fully
differentiated tissues is the hematopoietic (blood-producing) system. Here, the tissue types
are the circulating blood cells and the stem cells are the hematopoietic stem cells in the bone
marrow. Since blood circulates through the body on a time scale of minutes, on time scales
relevant to stem cell differentiation (which takes days) there are no spatial effects to speak of.
Furthermore, the feedback loops by which blood cell numbers are regulated are comparatively
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well known and simple, and we can model differentiation as hi(X1, . . . , Xn) = hi(Xi) so that
the rate of entry into each cell lineage is a function of mature numbers in that lineage only.

Though in this context it is relatively simple, the hematological system demonstrates in-
teresting observed dynamics. In several hematopoietic diseases, blood cell numbers oscillate
significantly, with the same period of oscillation occurring in the neutrophils (white blood
cells), platelets, and sometimes reticulocytes (red blood cell precursors). In cyclical neu-
tropenia (CN), neutrophil numbers reach dangerously low levels, oscillating with a period of
19–21 days in humans and 11–16 days in dogs. Longer periods of up to 50 days have been
observed [15]. Platelet levels oscillate around their mean value with the same period. In
periodic chronic myelogenous leukemia (PCML), leukocyte levels oscillate far above normal
values with very long periods, ranging from 40–80 days [11].

Previous modeling efforts and traditional biological research have made progress in under-
standing the dynamics of these diseases, but the precise nature and origins of the oscillations
remain disputed. This is in part because the dynamics of the hematopoietic stem cells have not
been well characterized. These are located inside the bone marrow, and so are comparatively
inaccessible. So, unlike the circulating blood cells, good time series data for the hematopoietic
stem cells (HSCs) are unavailable.

Bernard, Bélair, and Mackey [1] presented a mathematical model that coupled the HSCs
and circulating neutrophil population dynamics. Oscillations arose from a Hopf bifurcation
in the HSC compartment, and were consistent with some, but not all, observed features of
neutrophil oscillations in CN. Colijn and Mackey [5] presented a model of blood cell production
that included the HSCs, neutrophils, platelets, and erythrocytes, and found parameters that
were most important in fitting model simulations to data.

In section 2 we analyze a version of (1) analogous to that given in [5]. We perform
bifurcation analysis (section 3) with respect to the parameters that are most critical in CN, and
compare the hematopoietic stem cell compartment alone with the full model. In section 3.3, for
a point in parameter space characteristic of treated CN, we find three locally stable solutions:
two periodic branches and the steady state. This allows the exploration in section 4 of several
methods to perturb the system from an oscillating branch to the steady-state branch.

2. The model. A nondimensional model of the hematopoietic production system is given
by

dq

dt
= −qb1hq(q) + b1μ1q1hq(q1) − q {b2hn(n) + b3hp(p) + b4hr(r)} ,

dn

dt
= −γnn + anb2qτnmhn(nτnm),

dp

dt
= −γpp + apb3

{
qτpmhp(pτpm) − μ3qτpsumhp(pτpsum)

}
,

dr

dt
= −γrr + arb4 {qτrmhr(rτrm) − μ4qτrsumhr(rτrsum)} ,

(2)

where q, n, r, and p are nondimensional stem cells, neutrophils, erythrocytes, and platelets,
respectively. Subscripts indicate delays: q1 = q(t− 1) and so on.

The functions hq, hn, hr, and hp are Hill functions given by
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hq =
1

1 + q4
, hn =

θ1

θ1 + n
, hr =

1

1 + r6.96
, hp =

1

1 + p1.29
,

where the values of the exponents were determined by previous modeling efforts in the respec-
tive cell lines [22, 18, 1]. This model is a nondimensional version of that given in [6].

As in (1), quiescent pluripotential HSCs q can leave the quiescent compartment and enter
the proliferating compartment (at a rate b1hq(q)). After a proliferation time τs, which in these
units is 1, they re-enter the quiescent compartment having been multiplied by 2 and lost at a
rate γs during the time for which they were proliferating (μ1 = 2e−τsγs). Alternatively, they
can differentiate into each of the three peripheral cell lines, at rates hn(n), hp(p), and hr(r).
All of these rates are negative feedback functions. In each circulating compartment there is a
random loss rate (γn, γr, γp). The platelets and erythrocytes have an additional loss due to
senescence, resulting after integration over the maturation structure of these compartments,
in losses with delays τpsum and τrsum.

This model is a simplified version of (1) in several ways: the regulatory functions hi
are functions of only one tissue type, the coupling terms fi between the tissue types are
simply random loss terms with no intertissue interaction, and we have not explicitly included
maturation structure. The resulting system, (2), is a set of four coupled delay-differential
equations with six delays. In the appendix, a list of the parameter values and their dimensional
counterparts is given in Table 1, along with a list and description of the delays in the system.

3. Bifurcation analysis. The dynamics of the stem cell compartment have been found
to be critical in modeling CN and PCML [17, 14, 1, 6]. The stem cell parameters are not
well constrained by current observation, and indeed, even the structure of the first equations
of (1) and (2) are simplifications of a much more complex (and not fully understood) set
of dynamics. However, given the parameters that must change in order for the system to
mimic observed disease data [6], we have the opportunity to use bifurcation analysis to bet-
ter understand the relevant dynamics of the stem cells. The parameters of interest are the
stem cell death rate, which is inversely related to μ1, the rate of re-entry to the prolifera-
tive compartment b1, and the amount of differentiation out of the hematopoietic stem cell
compartment.

The neutrophil compartment (second equation of (2)) is also important in CN and PCML.
Changes in the amplification an in the neutrophil line are necessary to mimic CN, along
with changes in the stem cells. We wish to characterize the effects of changing an in the
comprehensive model for two reasons: we believe that reduced an is the central cause of
CN, and G-CSF, the most common treatment for CN, raises an, often to above its normal
steady-state value.

3.1. The stem cell compartment. One mechanism that has been suggested for the onset
of oscillations in neutropenia [15, 1, 6] is that there is an increase in apoptosis in the neutrophil
line which destabilizes the stem cell compartment. Apoptosis is preprogrammed cell death;
in this hypothesis, increased apoptosis affects cells during the maturation phase and fewer
cells reach maturity. The negative feedback hn(n) responds, creating a greater demand for
stem cells to differentiate into the neutrophil lineage. The stem cell compartment begins
to oscillate and the oscillations are subsequently observed in the neutrophils, platelets, and



382 CAROLINE COLIJN AND MICHAEL C. MACKEY

reticulocytes. An alternative mechanism suggested by [20] is that there is a failure in the
peripheral neutrophil regulation, i.e., in the n compartment.

To investigate this further, we study the effects of parameter changes on the stem cell
compartment when it is decoupled from the peripheral cell lines. This decoupled model for
the stem cells alone is given by

(3)
dq

dt
= − b1

1 + q4
q + μ1

b1
1 + q4

1

q1 − δq,

where δ is a constant summarizing the total differentiation out of the stem cell compartment
and into the peripheral lines. If apoptosis were to increase in any of the circulating cell lines,
the negative feedback would respond by increasing the differentiation out of the stem cell
compartment, corresponding to an increase in δ.

Equation (3) has a unique nontrivial positive steady-state solution q∗ given by

q∗(1 + q∗4) =
b1(μ1 − 1)

δ
.

In the range of interest here, q∗ ∼ 2 or more, so that q∗4 >> q∗ and we can write q∗ ∼ (λ1
δ )1/5,

where λ1 = b1(1−μ1). Equation (3) may be linearized about its steady state, with z = q−q∗,
to give

ż = αz − Λz1

with

α = b1h
′(q∗) − δ ∼ δ

5 − μ1

μ1 − 1

and

Λ = b1h
′(q∗) ∼ 4δ

μ1 − 1
.

Both α and Λ are positive. The characteristic equation for the eigenvalues σ is

σ = α− Λe−σ.

Letting σ = iω, the boundary at which instability occurs is defined by

ω = α tanω, Λ1 =
ω

sinω
,

and instability arises when Λ > Λ1. As δ increases, α increases. For small α, the solution
to ω = α tanω lies in the interval [0, π/2), where Λ1 = ω

sinω is positive. For α > 1, however,
ω ∈ [π, 3π/2) and Λ1 is negative. This ensures that Λ > Λ1. We therefore expect a Hopf
bifurcation when α = 1, or δ = 1/6 (when μ1 = 1.6, the normal value).

This confirms that an increase in apoptosis in one of the circulating cell lines can initiate
oscillations in the stem cells. We compute the stability of the periodic solution using DDE-
BIFTOOL [9, 10], and it is stable, though some of the Floquet multipliers are very close to 1
in magnitude, so that we may expect long transient approaches to the orbit. Note that α, Λ,
and therefore the position of the Hopf bifurcation do not depend on b1, the rate of re-entry
to the proliferative compartment (see Figure 2). However, below a critical value of b1 the
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Figure 1. Steady-state and periodic oscillations in the decoupled stem cell compartment. Where the steady-
state branch is shown as a thick line (left side), it is stable, and where it is thin (right side), it is unstable. The
maximum and minimum values of the oscillations in the quiescent (q) cells are shown for the resulting periodic
branch (a), and the period is shown in (b).

stem cells cannot maintain a positive steady state and the trivial solution is the only solution
to (3).

Figure 1 shows the steady-state branch of solutions (thick line: stable; thin line: unstable)
and the loss of stability at the bifurcation δ ∼ 1/6. Compared to the steady-state value of
δ = 1/8, the change required to initiate oscillations is not large, and certainly not unrealistic
biologically. To cause such a change in the differentiation function, the value of n need only
decrease by a factor of 1/3 from the healthy value. The period along the branch is shown in
Figure 1 in the right-hand plot and corresponds to the observed period of 13–50 days (4–16
units). Periods longer than those normally observed (> 10 units) occur only in a small part
of the parameter space, in correspondence with observation.

We now turn to the parameters μ1 and b1, tracking the position of the Hopf bifurcation as
b1, δ, and μ1 change. Figure 2 shows the results. In Figure 2(a), the “healthy” steady-state
solution is in the upper stable region shown on the plot. As μ1 decreases (the death rate in the
stem cell compartment rises), oscillations begin, and then cease for values of approximately
μ1 < 1. The steady-state solution in this lower region is the trivial solution, q ≡ 0, because
if the death rate γS rises too much, the stem cells can no longer maintain their population.
The colors shown in the oscillating regions of the plots in Figure 2 represent the period of
oscillations.

Figure 2(b) shows the stability curve and periods of oscillation resulting from the Hopf
bifurcation as δ increases. As the death rate in the stem cell compartment falls, μ1 rises and
the stem cells are better able to maintain a stable steady-state equilibrium in response to a
need for more circulating cells (an increase in δ). In Figure 2(c), there is a threshold value of
δ below which the system is always stable no matter what the value of b1, but at higher values
of δ, an increase in b1 can destabilize the system and result in the initiation of oscillations.
However, since the healthy value of b1 (22.4) is much above this range, we conclude that
oscillations are caused by an increase in δ rather than an increase in b1.
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Figure 2. Hopf bifurcation, position dependent on b1, μ1, and δ in the decoupled stem cell model of (3).
The colored regions are the regions of Hopf instability, and their boundaries give the location of the bifurcation.
The color indicates the period of oscillation.

Figure 3. Hopf bifurcation dependent on b1, μ1, and b2 in the full model of (2). Thick solid lines are the
location of the Hopf instability, colored regions are oscillatory, and the color indicates the period of oscillation.

3.2. The full model: Hopf bifurcations. We now wish to find the corresponding Hopf
bifurcation in the full model, if it exists, and compare its location to that in the stem cell
compartment alone, under corresponding parameter changes. Due to the complexity of the
model, this is done numerically. Also, δ is not constant in the full model; here, we can
explicitly raise b2 (increase output from the hematopoietic stem cells q) and/or decrease an.
The bifurcation occurs as an decreases below an = 21.5, and is again supercritical. Figure 3
shows its position under the analogous parameter changes to Figure 2.

The qualitative behavior of the full model is similar to that of the stem cell compartment
alone, and there are biological interpretations for the differences between the two. For example,
in Figure 3(a) oscillations begin as μ1 is decreased, and then give way to the trivial solution
below μ1 = 1. In the full model there is a region in the upper-left portion of the plot where
an increase in b1 can stabilize oscillations: an increased rate of re-entry to the proliferative
phase can compensate for increased stem cell apoptosis, unlike in Figure 2(a). In Figure 3(b),
the concavity of the Hopf curve is reversed, but otherwise the Hopf position as μ1 and b2 are
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Figure 4. Hopf position as an changes. Colored regions are oscillatory, and the color indicates the period
of oscillation.

changed is qualitatively the same. Figure 3(c) shows that unlike in the stem cell model alone,
an increase in b1 can again compensate for an increase in b2 and stabilize oscillations. The full
model is better able to recover from destabilizing changes than the stem cell model without
the coupling to the peripheral cell lines.

Decreasing b2 and increasing μ1, based on these results, are probably the two best methods
of stabilizing existing oscillations. However, the most common treatment for CN is the ad-
ministration of granulocyte-colony stimulating factor (G-CSF) [25, 13, 2, 19], which is known
to increase neutrophil levels by reducing apoptosis in the neutrophil precursors [13], and is
therefore modeled by an increase in the parameter an. We track the Hopf bifurcation with
respect to an; the results are shown in Figure 4. In each plot of the figure it is clear that
increasing an has the desired effect of stabilizing the oscillations, though significant increases
may be necessary if μ1 or b1 is small. If they are too small, oscillations may not be stabilized
at all.

In clinical data, G-CSF sometimes abolishes oscillations but may actually increase their
amplitude [16]. The bifurcation analysis accounts for this. We would hypothesize that when
G-CSF does not abolish oscillations, it is because there is not enough capacity for self-
maintenance in the stem cells: their apoptosis rate is too high, and/or their proliferation
rate is too low. Furthermore, the results shown in Figure 4(b) show that increasing b1 may
stabilize oscillations if a2 is high enough; clinically, stem cell factor would raise b1 and is, in
fact, sometimes used to treat CN.

In this section, we have found that oscillations begin if the death rate in the stem cell
compartment rises (μ1 decreases), if there is increased differentiation out of the stem cells (b2
increases), if there is a reduction in the proliferation rate in the stem cell compartment (b1
decreases), or if there is increased apoptosis in the neutrophil line (an decreases). In some
regions, an increase in b1 may recover stability, but this recovery is not possible in the reduced
model containing only the stem cells. The otherwise similar natures of the plots shown in this
and the previous section lend credibility to the claim that destabilizations in the stem cell
compartment are at the heart of oscillatory behavior in the hematological system.
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Figure 5. Two locally stable periodic branches when an = 58 and all other parameters are set to their
default values.

3.3. Multistability. Not only does G-CSF not always suppress oscillations, it may even
initiate them [16]. Furthermore, in a model containing only the stem cells and the neutrophils,
Bernard, Bélair, and Mackey [1] found that there was a small range of an where there is
bistability of two periodic solutions. Motivated by these results, we explore the existence of
multistability when an is increased from its normal value (35.6) to 58. This is a simple way to
mimic a patient undergoing G-CSF treatment. All the other parameters are left at the values
given in Table 1; this point in parameter space will be referred to as point P .

At point P , the steady-state solution is locally stable. However, we also find two locally
stable periodic orbits at P (see Figure 5). The low-amplitude orbit (Figure 5(a)) has a period
of 28 units, and the orbit shown in Figure 5(b) has a period of 14 units with a higher-frequency
oscillation at a period of 7 units, corresponding to the secondary bump in the stem cell profile.
A wide range of simulations using different initial conditions failed to uncover any other locally
stable periodic solutions.

The low-amplitude orbit is more reminiscent of treated neutropenia than the high-
amplitude orbit, where neutrophil levels at maximum are more than 30 times their steady-
state value (1 in these units). Also, the platelet levels in the high-amplitude branch are much
higher than are observed clinically, and for more of the oscillation, than in the low-amplitude
orbit.

4. Branch switching. The fact that multistability exists for this biologically reasonable
choice of parameter values naturally leads to the question of how the oscillations might be
stabilized; stabilization would correspond clinically to an end of disease symptoms. In this
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Figure 6. Basins of attraction for varying initial q and n values. Blue corresponds to the steady-state
branch, red to the low-amplitude branch, and green to the high-amplitude branch.

section we investigate the possibility of changing the initial function to guide which behavior
the system approaches, and then we examine the effects of temporary parameter changes on
the system when it is oscillating on the low-amplitude branch in Figure 5. In the computations,
we use a Runge–Kutta integration scheme with step sizes ranging from 0.005 to 0.05 (most
commonly 0.01) dimensionless time units, in Bard Ermentrout’s software xppaut.1

4.1. Effect of initial functions. Because the system in (2) has delays, it is necessary
to specify initial functions for each of the four variables, during the period [−τmax, 0]. We
first set all variables constant on [−τmax, 0] and examine the effect of the choice of these
constants. Figure 6 shows the results when only the initial values of q and n on [−τmax, 0]
(the initial numbers of stem cells and neutrophils, respectively) are changed; each branch is
assigned a color: blue for the stable steady-state solution, red for the low-amplitude orbit,
and green for the high-amplitude orbit. The same color scheme applies to figures showing
basins of attraction in this and subsequent sections. The lack of other colors (and hence of
other periods) is evidence that these three solutions are the only locally stable solutions at
this point in parameter space.

The most prominent feature of Figure 6 is that the initial value of n has almost no effect
on the eventual behavior of the system, even when n is increased up to three times the normal
value of 1. However, the initial population of stem cells has a significant effect between 0 and 4,
though the value at the steady state is 3.2. This is further indication that oscillations in CN
and PCML, and in the hematological system in general, are most strongly connected to the
dynamics of the stem cell compartment.

This result leads to the question of what the effects of nonconstant initial functions for
q, particularly periodic initial functions, would be. We next allow the initial function for q
to change, leaving the initial functions for n, r, and p constant at their healthy, steady-state
values. On [−τmax, 0], q is given by

(4) q(t) = Aq sin(2π
Tq
t) + Mq,

1http://www.math.pitt.edu/∼bard/xpp/xpp.html

http://www.math.pitt.edu/~bard/xpp/xpp.html
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Figure 7. Basins of attraction for various periodic initial functions. Only q is varying; the other variables
are constant on [−τmax, 0]. Blue is steady-state, red is the low-amplitude branch, and green is the high-amplitude
branch.

so that the three parameters defining this function are the amplitude of the oscillations,
Aq, the period, Tq, and the mean, Mq. Figure 7 shows the resulting basins of attraction.
In Figure 7(a), note that for most of the plotted range of periods and means the solution
stabilizes to the low-amplitude branch, where in Figure 7(b) most of the solutions stabilize
to the steady-state branch. Figure 7(c) shows the basins of attraction when the mean Mq

and the fraction Aq/Mq are varied; note that a value of Aq/Mq greater than 1 is not possible
because it would result in negative q values in the initial function for q on [−τmax, 0].

Figures 6 and 7 show the manner in which the initial function determines whether the
system ultimately oscillates (mimicking CN) or stabilizes (mimicking a healthy individual).
However, the stem cells, located in the bone marrow, are difficult to identify and manipulate,
and any such manipulation would presumably also change several parameters in the system
(and not only the values of q). It is therefore difficult to translate these results into realistic
medical interventions. In the following section we investigate temporary interventions and
their effect on the stability of the system.

4.2. Branch jumping by short-term parameter changes. We explore the possibility of
branch jumping, i.e., perturbing the system so that it moves from one solution to another,
using temporary pulses in the system parameters an, ar, and ap. These represent amplifi-
cation in the neutrophil, erythrocyte, and platelet lines, respectively, and they are chosen
because it is known that the administration of regulatory cytokines increases these amplifi-
cation factors via the inhibition of apoptosis: G-CSF increases the neutrophil amplification,
while erythropoietin and thrombopoietin have similar effects on the erythrocyte and platelet
lines, respectively [3, 21, 23]. Thrombopoietin and erythropoietin are not used to treat neu-
tropenia, because they are primilary associated with platelet and erythrocyte dynamics and
neutropenia is characterized by decreased neutrophil levels. Furthermore, the administration
of thrombopoietin causes an immune response [8], rendering it of limited value. However,
there may be other clinical interventions which would raise the platelet amplification ap in
the manner we investigate here.
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Figure 8. Stabilization of the low-amplitude branch with a pulse in ap of amplitude 40 and duration 4.75,
mimicking thrombopoietin administration, delivered at t = 50.

To simulate the effects of a brief administration of the relevant cytokines, we have com-
puted the basins of attraction for parameter functions of the form

(5) ai = abase
i + aamp

i H(t− t1)H(t2 − t),

where H(t) is the Heaviside function and i ∈ {n, r, p}. This function represents a change in
the parameter ai from abase

i , a base value, to abase
i + aamp

i during the time interval [t1, t2]. For
each basin computation, we choose an initial function well within the basin of attraction of the
periodic low-amplitude solution (Figure 5(a)). We define the phase to be 0 at time t1 = 200
to consistently examine the effect of the phase time at which the pulse is delivered. Because
each computation is performed from the same initial condition at the same parameter set,
this is unambiguous. Figure 8 shows an example of a successful stabilization using a pulse
of the parameter ap, according to (5). Note that the erythrocytes are considerably slower in
reaching equilibrium than the other variables, due to the long delay τRS in the erythrocyte
compartment.

Because G-CSF is the most common treatment for CN, one would suspect that pulses of
increased amplification an would have a significant effect on the qualitative behavior of the
solutions. However, oscillations are rarely suppressed using pulses in an. Figure 9 shows the
results of exploring various durations and amplitudes of the pulses. Note that the regions in
which the stabilization attempt was successful (blue areas in the figure) are small, and that
the amplitude of the pulse needs to be high. The normal value of an is 35.6, and so the values
required for stabilization represent an increase by a factor of 6 or more. This would translate
into a high dose of G-CSF, which would have to be precisely timed to stabilize the system.

Figure 10 shows similar basin of attraction plots for pulses in ar while varying the am-
plitude, duration, and phase of the pulse. Again, while stabilization is possible using a pulse
in ar, regions where the solution stabilizes are small and the amplitude of the pulse is large
compared to the healthy value of ar (∼ 1). However, the regions of stabilization are larger
and the pulses do not need to be as precisely timed as those in an. This gives the somewhat
counterintuitive result that stabilization of oscillations in CN and PCML may be more easily
accomplished with erythropoietin administration than with G-CSF, though the dosage would
have to be high to obtain the necessary large increases in ar.

The most promising stabilization results we have obtained have been with pulses using
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Figure 9. Basins of attraction for an an pulse, simulating G-CSF administration.

Figure 10. Basins of attraction for pulses in ar, simulating erythropoietin administration.

the parameter ap; Figure 11 shows the results. The blue regions, where the oscillations have
been stabilized by the pulse, are comparatively large. This indicates that the stabilization is
a robust phenomenon at this point (P ) in parameter space.

The normal value of ap is approximately 58 and the minimum additional pulse required
is only about 20, so that a comparatively small and achievable pulse size is sufficient. Fig-
ure 11(a) shows clearly that some points in the oscillation are more advantageous times at
which to deliver the pulse, namely, at phases 0, π/2, π, and 3π/2. Figure 11(b) shows that
changing the pulse duration shifts these bands. In Figure 11(c), it is interesting to note that
increasing the duration of the pulse does not necessarily increase the likelihood that stabi-
lization will occur. While it does appear that increasing the amplitude of the pulse makes
stabilization more likely, it is not usually the best way to stabilize the system. Changing the
duration or timing of the pulse is more effective.

With reference to (2), we can partially account for the somewhat surprising fact that
perturbations to the platelets are best able to suppress oscillations. Any increase in an, ap,
or ar will cause a decrease in δ, which we know from section 3.1 can stabilize the stem cell
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Figure 11. Basins of attraction for pulses in ap, simulating thrombopoietin administration.

compartment (at least, when considered on its own). Suppose that when an amplification ai
increases, the corresponding compartment n, r, or p responds by trying to “track” the change
and reach a new pseudosteady state. Then we can write

∂δ

∂an
=

∂δ

∂n

∂n

∂an
≈ −b22θ

2
1q

(θ + n)2(γnθ + 1)
= O(10−2),

∂δ

∂ap
=

∂δ

∂p

∂p

∂ap
≈ −b3spp

spq(1 − μ3)

(1 + psp)2(1+sp)psp
= O(10−3),

∂δ

∂ap
=

∂δ

∂p

∂p

∂ap
≈ −b3spp

spq(1 − μ3)

(1 + psp)2(1+sp)psp
= O(10−5).

(6)

A change in ap is far more effective than a change in ar at changing δ. In addition,
the time scales for the n and p equations (1/γn and 1/γp) are much faster than for the r
equation, as 1/γr ∼ O(103). The value of r thus does not respond quickly, and even if it
did, (6) indicates that the response would not be as strong as the platelet response. While
the neutrophil response time is adequate, the neutrophils are not in a pseudosteady state
on the low-amplitude branch; rather, when q is high they undergo high-frequency transient
oscillations (see Figure 5(a) and the discussion in [4]). They therefore do not have a consistent
effect on δ when an is raised.

In addition, it has been found that q undergoes relaxation oscillations and therefore has
slow and fast phases [12, 4]. This, together with the details of the response of p to an increase
in ap, probably accounts for the sensitivity of the results on the phase of oscillation; when q
is in the lower half of the slow portion of the oscillation, decreasing δ may have more effect
than when q is high.

5. Conclusions. Despite the potential complexity of stem cell/tissue models, the model
analyzed here for hematopoietic production and regulation shows some interpretable dynam-
ics. The location and behavior of the Hopf bifurcation believed to give rise to CN in the full
model occurs in the stem cell model when it is decoupled from the mature tissues, suggesting
a possible avenue for analysis of more complicated versions of the model given in (1). Inter-
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estingly, the inclusion of the tissue types is a stabilizing influence: the full model of (2) is
better able to recover from destabilizing changes than the decoupled model of (3).

The results presented here support the hypothesis that oscillations in dynamical hema-
tological diseases are driven by oscillations in the stem cell compartment. We find that
oscillations consistent with those observed for CN are initiated when an increase in demand
for circulating blood cells causes the stem cell compartment to undergo a Hopf bifurcation.
Our analysis accounts for the variable success of G-CSF in suppressing oscillations in CN.
When G-CSF fails to suppress oscillations, this may be due to a lack of regenerative capacity
in the hematopoeitic stem cells—a death rate that is too high, or too little re-entry into the
proliferative compartment, or a combination. Our results also account for why stem cell factor
may be a promising treatment for CN.

For G-CSF-treated CN, we find two locally stable periodic orbits and a locally stable
steady state. The choice of solution depends most strongly on the initial values of the stem
cells. We find that, using short-term pulses of increased amplification in any of the peripheral
lines, it is possible to suppress oscillations with temporary measures that have clear medical
interpretations. This is most easily accomplished with pulses of increased ap, the amplification
in the platelet line, mimicking temporary administration of thrombopoietin. While throm-
bopoietin may not be promising due to the initiation of an immune response that targets it,
other interventions that temporarily raise platelet numbers could be considered. The timing
of the pulse is important, but because the regions in parameter space where the stabilization
is successful are quite large, finding an appropriate time is not difficult. These results suggest
that combining G-CSF with short-term platelet-enhancing drugs may be a promising approach
to abolishing oscillations. These somewhat surprising effects of tissue level perturbations on
the full model may be understood in terms of their effects on the decoupled stem cell model:
perturbations that would stabilize the decoupled stem cell model are more able to switch the
full model from oscillatory to stable dynamics than those that would not.
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Appendix.

Table 1
Definitions and typical values of the dimensionless parameters of the model. Dimensional parameters

correspond to those given in [6].

Symbol Description Dimensional equivalent Typical value

b1 stem cell proliferation τsk0 22.4
b2 neutrophil differentiation factor τsf0 1.1
b3 platelet differentiation factor τS κ̄P 3.3
b4 erythrocyte differentiation factor τS κ̄R 3.3
θ1 Hill function parameter θ/N∗ 0.055
sp Hill exponent m 1.29
sr Hill exponent r 6.96
μ1 proliferation with loss factor 2e−γSτS 1.6
μ3 loss factor e−γP τPS 0.24
μ4 loss factor e−γRτRS 0.9
γn neutrophil death rate τSγN 6.7
γr erythrocyte death rate τSγR 0.003
γp platelet death rate τSγP 0.42
an neutrophil amplification ANθ2/N

∗
1 35.63

ap platelet amplification AP θ2K
1/sp
P 58

ar erythrocyte amplification ARθ2K
1/sr
R 1.1

τs stem cell proliferation time τs/τS 1
τnm neutrophil maturation time τNM/τS 1.25
τpm platelet maturation time τPM/τS 2.5
τps platelet aging time to senescence τPS/τS 5.9

τpsum τpm + τps 8.4
τrm erythrocyte maturation time τRM/τS 2.1
τrs erythrocyte aging time to senescence τRS/τS 42.9

τrsum τrm + τrs 45

q∗ stem cell steady-state value Q∗/θ2 3.6
n∗ neutrophil steady-state value N∗/N∗ 1

p∗ platelet steady-state value P ∗K1/sp
p 21

r∗ erythrocyte steady-state value R∗K1/sr
r 2.2
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Abstract. A reliable and efficient method of distinguishing between chaotic and nonchaotic behavior in noise-
contaminated, but essentially stationary and deterministic, time series data has far reaching appli-
cations. Recently, we proposed a new method of detecting chaos which applies directly to the time
series data and does not require phase space reconstruction. To illustrate the effectiveness of the
method for experimental data, we analyze data from a bipolar motor.

Key words. testing for chaos, deterministic dynamical systems, experimental data, nonlinear time series

AMS subject classifications. 37M10, 65P20, 37D45

DOI. 10.1137/060672571

The standard technique of distinguishing between regular and chaotic dynamics in de-
terministic time series data is to calculate the maximal Lyapunov exponent [1, 7, 14]. In
the case of physical and biological applications, where the underlying dynamics is unknown,
phase space reconstruction [1, 7, 16, 18, 19] is a necessary first step in computing Lyapunov
exponents. However, there are problems inherent in phase space reconstruction, as discussed
in detail in [6, 17].

Recently, we proposed a new method [9] of detecting chaos which applies directly to the
time series data and does not require phase space reconstruction. Moreover, the dimension
and origin of the dynamical system are irrelevant. The input is the time series data and the
output is 0 or 1 depending on whether the dynamics is nonchaotic or chaotic. This 0-1 test for
chaos is equally applicable to maps, ordinary and partial differential equations, and generally
to data sets arising from deterministic systems. Of utmost importance is the effectiveness of
the method for experimental data. To illustrate our method we analyze data coming from an
experimental set up of a bipolar motor in an alternating magnetic field.

We first describe our test. Consider a scalar observable Φ(n). In an experiment, Φ(n) is
a discrete set of measurement data. Choose c > 0 and define

(1) p(n) =
n∑

j=1

Φ(j) cos jc

for n = 1, 2, . . . . We claim that (i) p(n) is bounded if the underlying dynamics is nonchaotic
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(e.g., periodic or quasiperiodic) and (ii) p(n) behaves asymptotically like Brownian motion if
the underlying dynamics is chaotic. Later, we briefly explain the justification behind these
claims. For the moment, we suppose that the claims are correct and show how to proceed.

The form of our test (1) which involves only the observable Φ(n) highlights the universality
of the test; the origin and nature of the data fed into the diagnostic system (1) are irrelevant
for the test. The method is independent of the observable; almost any choice of Φ will suf-
fice [9]. Moreover, the dimension of the underlying dynamical system does not pose practical
limitations on the method as is the case for traditional methods involving phase space recon-
struction [17]. Of course, it is necessary (as with all other methods) that (i) initial transients
have died out so that the trajectories are on (or close to) the attractor at time zero, and
(ii) the time series is long enough to allow for asymptotic behavior of p(n). In particular, it is
required that the data is essentially stationary as well as deterministic. High-dimensionality
of the attractor may impact (ii), since the time series must be sufficient in length that the
dynamics explores enough of the attractor; but this is an intrinsic part of the problem and
not a drawback of the method.

To determine the character of the growth of the function p(n) defined in (1), i.e., its
diffusive behavior, it is natural to look at the mean square displacement of p(n), defined to
be M(n) = limN→∞ 1

N

∑N
j=1 [p(j + n) − p(j)]2. If the behavior of p(n) is asymptotically

Brownian, i.e., the underlying dynamics is chaotic, then M(n) grows linearly in time; if the
behavior is bounded, i.e., the underlying dynamics is nonchaotic, then M(n) is also bounded.
The asymptotic growth rate K of M(n) can be numerically determined by means of linear
regression of logM(n) versus log n. This allows for a clear distinction of a nonchaotic and a
chaotic system as either K = 0 or K = 1.

To justify the 0-1 test for chaos, note that the function p(n) can be viewed as a component
of the solution to the skew product system

θ(n + 1) = θ(n) + c,

p(n + 1) = p(n) + Φ(n) cos θ(n),(2)

q(n + 1) = q(n) + Φ(n) sin θ(n).

Here (θ, p, q) represent coordinates on the Euclidean group E(2) of rotations θ and translations
(p, q) in the plane. It has been shown [13] that typically the dynamics on the group extension
is sublinear and is (i) bounded if the underlying dynamics is nonchaotic and (ii) unbounded
(but sublinear) if the underlying dynamics is chaotic. Moreover, the p and q components each
behave asymptotically like Brownian motion on the line if the chaotic attractor is uniformly
hyperbolic [8]. A nondegeneracy result [13] ensures that for chaotic dynamics the variance
of the Brownian motion is nonzero for almost all choices of c > 0 and observable Φ. Recent
work [12, 5] indicates that these statements remain valid for large classes of nonuniformly
hyperbolic systems, such as Hénon-like attractors. Roughly speaking, to obtain K = 1 it
suffices that the underlying system has a faster than quadratic rate of decay of correlations
[2, 4, 9].

One might ask why it is not better to work with, instead of the E(2)-extension, the simpler
R-extension p(n+1) = p(n)+Φ(n), which can again be used to detect for chaos [9]. However,
p(n) grows linearly and it is necessary to subtract the linear term before computing M(n).



APPLICATION OF 0-1 TEST TO EXPERIMENTAL DATA 397

Failure to do so produces the growth rate K = 2 regardless of whether the dynamics is regular
or chaotic. The inclusion of the rotation θ kills off the linear growth.

In previous work [9] we illustrated the 0-1 test for chaos with numerically obtained data
sets by simulating maps, ordinary differential equations, and partial differential equations,
thereby showing the applicability to high-dimensional systems. Furthermore, we showed that
a modified version of the test works very favorably for noisy systems when compared to
traditional phase space reconstruction methods [10]. Here, we demonstrate the effectiveness
of the modified test for experimental data.

To obtain experimental data, we constructed a bipolar motor, where a dipole magnet is
suspended in a spatially uniform, linearly polarized oscillating magnetic field [3]. The motor
consists of a short cylindrical ferrite permanent magnet located between a pair of Helmholtz
coils so that it is free to rotate about an axis normal to the magnetic field of the coils, with
the magnetic axis of the magnet perpendicular to the axis of rotation (see Figure 1). The
magnetic moment of this magnet was determined to be 3.70 joule/tesla by measuring the
oscillation of the magnet in a fixed magnetic field. A magnetic field varying sinusoidally with
frequency ω and peak value 4.91 × 10−3 tesla was generated by driving the Helmholtz coils
with a Pasco PI-9587C low-frequency digital function generator/amplifier combination. We
use the frequency ω as a parameter. To measure the angular position ϑ of the dipole magnet,
we digitally recorded with a 25 frames/second digital video camera a spot painted on an
aluminium disc mounted coaxially at the top of the rotor axle.

This experiment is the realization of the forced ordinary differential equation ϑ̈ + γϑ̇ +
(μB/I) sinϑ cosωt = 0, where ϑ is the angle between the dipole moment μ and the magnetic
field B, and I is the moment of inertia. Here, the damping is assumed to be proportional to
the angular velocity with a constant rate γ. The observable Φ in the experiment corresponds
to the function cosϑ (up to a constant phase).

Using Φ = cosϑ as our observable, we took recordings for 9 minutes, which amounts to
13500 data points. We measured the autocorrelation of the data and found it to be over-
sampled; the e-folding time [11] was τ = 5, and we therefore created a (shorter) time series
consisting of 2700 data points. (We note that when the data is collected over a small interval
of time, it is important that the data is not oversampled, since the mean square displacement
scales as M(n) = V n + o(n), where V = 0 in the regular case and V � 1 in the oversampled
chaotic case.) We found that our test also works with a data set recorded over 3 minutes,
which amounts to N = 900 data points after taking every 5th data point.

In Figure 2, we show experimentally obtained phase plots exhibiting periodic and chaotic
dynamics for different values of the frequency ω. One may question the need for our test
as one can clearly distinguish chaotic from regular dynamics by looking at the phase plots
in Figure 2. However, this is possible only for low-dimensional systems, and even then it is
problematic for systems with quasiperiodic dynamics. We showed previously [10] that our
test distinguishes between quasiperiodic and chaotic dynamics in high-dimensional systems.
In this paper, it is our aim to show that the test works for real world problems which are
inevitably contaminated by noise.

To illustrate the mathematics behind the test, we show in Figure 3 the bounded/Brownian-
like dynamics of the translation components (p, q) of the E(2) extension (2) corresponding
to the periodic/chaotic dynamics in Figure 2. We made the arbitrary choice c = 1.95 in
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Figure 1. Schematic diagram of the experimental setup of the bipolar motor. C: Helmholtz coil pair used to
provide an oscillating magnetic field B. (For clarity, the coils are shown farther apart than they would be in the
Helmholtz configuration, where the (mean) coil separation is set equal to the (mean) coil radius.) FGA: Pasco
PI-9587C function generator/amplifier. M: Ferrite permanent magnet, where N and S indicate the orientation
of its magnetic moment. D: Indicator disc for angular position of the ferrite magnet. The position of the black
spot on this white-painted disk is recorded by the video camera. AA′: Axis of rotation of the ferrite magnet.

computing the trajectories shown in Figure 3. To produce this figure we took the data set
consisting of 2700 points.

In Figure 4, we show the mean square displacement corresponding to Figure 3 (again for
c = 1.95 but now using the data set consisting of N = 900 points) clearly showing the bounded
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Figure 2. Experimentally obtained phase plots consisting of 13500 data points for different values of the
forcing frequency ω. The moment of inertia is I = 4.42 × 10−4kg m2, the magnetic moment is μ = 3.70J/T,
the maximal magnetic field is B = 4.91 × 10−3T, and the damping coefficient is γ = 0.046Hz. The forcing
frequencies are (left) ω = 0.9Hz and (right) ω = 0.6Hz.
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p
Figure 3. The dynamics of the translation components (p, q) of the E(2) extension. (Left) Bounded

trajectories are shown corresponding to periodic dynamics at ω = 0.9Hz. (Right) Brownian-like trajectories are
shown corresponding to chaotic dynamics at ω = 0.6Hz. Both cases show 2700 data points and are calculated
for c = 1.95.

behavior for regular dynamics and the linear growth for chaotic dynamics. In practice [10],
we take n = 10, 11, 12, . . . , 90 to ensure that 0 � n � N = 900 in the definition of M(n). The
asymptotic growth rate K of the mean square displacement is determined by fitting a straight
line to the curve logM(n) versus log n through minimizing the absolute deviation. This has
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Figure 5. Dependence of the asymptotic growth rate K on the frequency c. (Left) Regular dynamics at
0.9Hz and (right) chaotic dynamics at 0.6Hz.

the advantage, compared to a least square fit, that outliers are weighted less [15], which is
desirable as the linear behavior of M(n) is valid only for n � 1 and can deviate strongly for
small n.

Since the test is 2π-periodic in c, we choose c from (0, 2π). In Figure 5, we plot K as a
function of c where c is sampled uniformly with Δ c = 0.005 between 0.005 and 6.28. The
figure shows that the test is essentially independent of the specific choice of c and that we
are justified in taking randomly chosen values of c. Only exceptional resonant values of c
yield values of K which do not fit the picture of K = 0 for regular dynamics and K = 1 for
chaotic dynamics. Resonances with a corresponding value of K = 2 occur if the frequency c
is commensurate with a nonlinear frequency of the underlying dynamical system (particularly
for values c = 0 and c = 2π for data with nonzero mean). Figure 5 illustrates this resonance
phenomenon. To avoid these resonances distorting the “true” value of K, we perform the test
for several different values of c and then take the median value of K. We use the median
rather than the mean, since the median gives less weight to the strong outliers stemming from
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Figure 6. Dependence of the asymptotic growth rate K on the length of the time series N . (Left) Periodic

case ω = 0.9Hz. (Right) Chaotic case ω = 0.6Hz. We used the data set corresponding to the full 9 minutes of
recording, taking every 5th data point, so the maximum value of N is 2700.

resonances. In practice, 100 random choices of c suffice [10].

Using the experimental data and the method described above, we computed K = 0.02 for
the case ω = 0.9Hz and K = 0.92 for the case ω = 0.6Hz, clearly indicating regular dynamics
for the first parameter value and chaotic dynamics for the second parameter value.

In Figure 6, we show the dependence of the median value for K as a function of N for
both cases. One can clearly see the improvement of the test with increasing N . Note that
for the regular case in Figure 6 (left), K is not converging to 0. This is due to the noise
present in our data. However, values of 0.02 are sufficiently close to 0 to allow for a binary
distinction with chaotic values around of K which exceed 0.9. (See [10] for a discussion on
data contaminated by measurement noise for our test.)

We have established a simple, inexpensive test for chaos and tested its efficiency with an
analysis of experimental data obtained from a bipolar motor. The computational effort is
of low cost, both in terms of programming efforts and in terms of actual computation time.
This is a binary test that distinguishes purely between nonchaotic and chaotic dynamics by
means of the quantity K taking values close to either 0 or 1. The most powerful aspects of our
method are that there are no practical limitations arising from the nature and dimension of
the deterministic data under consideration (except the intrinsic problem, mentioned earlier,
that the time series needs to be sufficiently long that the dynamics explores enough of the
attractor) and that the test is robust to contamination by noise.
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Abstract. In many applications of practical interest, for example, in control theory, economics, electronics, and
neural networks, the dynamics of the system under consideration can be modeled by an endomor-
phism, which is a discrete smooth map that does not have a uniquely defined inverse; one also speaks
simply of a noninvertible map. In contrast to the better known case of a dynamical system given by
a planar diffeomorphism, many questions concerning the possible dynamics and bifurcations of pla-
nar endomorphisms remain open. In this paper we make a contribution to the bifurcation theory of
planar endomorphisms. Namely, we present the unfoldings of a codimension-two bifurcation, which
we call the cusp-cusp bifurcation, that occurs generically in families of endomorphisms of the plane.
The cusp-cusp bifurcation acts as an organizing center that involves the relevant codimension-one
bifurcations. The central singularity is an interaction of two different types of cusps. First, an en-
domorphism typically folds the phase space along curves J0 where the Jacobian of the map is zero.
The image J1 of J0 may contain a cusp point, which persists under perturbation; the literature
also speaks of a map of type Z1 < Z3. The second type of cusp occurs when a forward invariant
curve W , such as a segment of an unstable manifold, crosses J0 in a direction tangent to the zero
eigenvector. Then the image of W will typically contain a cusp. This situation is of codimension one
and generically leads to a loop in the unfolding. The central singularity that defines the cusp-cusp
bifurcation is, hence, defined by a tangency of an invariant curve W with J0 at the preimage of the
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in the phase space. To this end, we define a suitable notion of equivalence that distinguishes between
the different possible local phase portraits of the invariant curve relative to the cusp on J1. Our
approach makes use of local singularity theory to derive and analyze completely a normal form of
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1. Introduction. Many situations of practical interest are modeled mathematically by a
map on a suitable phase space. In this case time is thought to be discrete and the time
evolution of an initial point is given by the iterates of the map. We consider here the case
that the dynamics is generated by an endomorphism, that is, by a smooth map that does
not have a (uniquely defined) inverse. As is common in the literature, we simply speak of a
noninvertible map. Note that the theory of endomorphisms of the real line is well developed,
with the logistic map being the most famous example. However, much less is known about the
possible dynamics and bifurcations of endomorphisms on R

n for n ≥ 2. We are concerned here
with the case of a noninvertible planar map that maps R

2 to itself. Such maps arise naturally
as models in several areas of application, including control theory [1, 8, 9], economics [2, 3],
radiophysics [23], and neural networks [34]. Noninvertibility easily occurs in applications that
feed back sampled data using too large a sampling time. This is effectively equivalent to the
case that a vector field model is integrated with too large an integration step [22].

In a region where a planar endomorphism has a well-defined branch of an inverse it may
display all the dynamical complexity of a planar diffeomorphism, that is, of a smooth planar
map with a smooth inverse. As is now well known, planar diffeomorphisms typically show
complicated dynamics, including chaos; see, for example, [13, 30] as entry points to the exten-
sive literature. Famous examples of planar diffeomorphisms are the Hénon map [16] and the
Ikeda map [17], as well as Poincaré maps of periodically driven systems, such as the forced
pendulum, Van der Pol, and Duffing oscillators [13, 38].

The main question in the study of planar endomorphisms is what extra dynamical features
may occur beyond what is known for planar diffeomorphisms. While there have been quite a
number of studies of specific planar endomorphisms, much less is known about the generic dy-
namics and bifurcations of planar endomorphisms that must be expected in a typical example.
In short, there is, as yet, no systematic bifurcation theory for planar endomorphisms.

To be specific, consider a family of endomorphisms of the plane

f : R
2 × R

m → R
2,(1.1)

(x, λ) �→ f(x, λ),

where λ ∈ R
m is an m-dimensional parameter, and f is a smooth map. We consider the case

that f is not a diffeomorphism, which means that the Jacobian Df of f has a nonzero kernel.
We define the (nonempty) singular locus

(1.2) J0 := ker(Df ) =
{
x ∈ R

2 | Df (x) is singular
}
.

The image J1 := f(J0) is called the critical locus. In the literature the critical locus J1 is also
referred to as critical curve [29] or Ligne Critique (LC) [26], while J0 is also referred to as the
curve of merging preimages [29] or LC−1 [26]. Technically, LC ⊂ J1 and LC−1 ⊂ J0, but for
this paper it is sufficient to consider them equal. This is justified by their properties, which
follow immediately from the implicit function theorem.

Proposition 1.1 (generic properties of J0 and J1). Generically, that is, for a generic fam-
ily f and parameter λ in general position, the singular locus J0 is a smooth curve where
dim(ker(Df )) = 1. The eigenvector of the eigenvalue 0 is transverse to J0 except at isolated
points, called precusp points, where it is tangent to J0. Therefore, the critical locus J1 consists
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of smooth curve segments that meet at isolated cusp points, which are the images of the precusp
points.

Generally speaking, noninvertibility gives rise to regions with different numbers of inverses.
The critical locus J1 divides the phase plane R

2 into regions with a constant number of
preimages. These regions are usually labeled by Zk, where k is the number of preimages in
that region [10, 26]. Generically, that is, except at the cusp points, the map f folds the phase
plane along the smooth curve J0, which is mapped to J1. Therefore, the number of preimages
differs locally by two on either side of J1 [4]. As one moves from one region into the next by
crossing a fold curve the number of preimages changes to k ± 2.

In the interior of a region Zk for k ≥ 1 one can select a single branch of the inverse,
so that the map f is locally a diffeomorphism. New phenomena, which do not occur for
diffeomorphisms, may arise when a (forward) invariant object, such as a fixed point, periodic
orbit, or invariant manifold, interacts with the boundary of the region of definition of the
inverse branch. Therefore, the bifurcation theory of endomorphisms can be thought of as the
study of the interaction of dynamical objects and their images with J0 and J1, respectively.

The literature on noninvertible planar maps consists largely of case studies in specific
examples that reveal specific phenomena and a number of codimension-one bifurcations. A
lot of attention has been devoted to the structure of basins of attraction. Because a basin
may consist of disconnected regions or be multiply connected, it is often referred to as a “sea”
possibly with “islands” in it, or as “land” with “lakes” [19, 26]; connectivity properties are
characterized with an “island number” or “lake number” [26]. However, as was shown in
[6, 7], changes to the basin boundary are due to two types of tangencies, called inner and
outer tangencies, of a stable set (the generalization of the stable manifold of a saddle point)
with J1.

Another topic that received a lot of interest as typical for noninvertible maps are self-
intersections and associated “loops” of (forward) invariant sets; see [10, 11, 18, 24, 27], and [22],
where loops are referred to as “antennae.” The main interest is in bifurcations leading to the
destruction of an invariant curve (also called “IC” or “torus”), which is the closure of the
unstable manifolds of a suitable periodic orbit if the dynamics on the curve is phase locked.
To define an unstable manifold of an endomorphism consider a generic saddle point p of f
(or a suitable iterate of f). Genericity of p means in particular that p /∈ J0. Therefore, there
exists the local unstable manifold W u

loc(p) associated with the unique inverse branch that fixes
p. The global unstable manifold W u(x0) can then be defined as

(1.3) W u(p) =

∞⋃

n=1

fn(W u
loc(p)).

Note that forward images under f are unique, so that W u(p) is indeed forward invariant.
Furthermore, W u(p) is generically an immersed manifold; see, for example, [37]. Even though
W u(p) may have structurally stable transverse self-intersections, it is justified to speak of
W u(p) as the global unstable manifold. In particular, W u(p) can be computed numerically
by any algorithm that works for diffeomorphisms; see also [6, 7]. Indeed, depending on how
an unstable manifold or other invariant curve crosses J0, a loop in its image may be the
result. The codimension-one bifurcation that creates a small loop was analyzed in [10, 11, 24];
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we refer to it as the loop-creation bifurcation and it is discussed in more detail in section 2.
Due to forward invariance of W u(p), typically an infinite number of loops is created in the
loop-creation bifurcation, which may give rise to a rather spectacular loss of smoothness of
an invariant curve. In combination with other mechanisms (as known for diffeomorphisms) of
the break-up of tori, one finds phenomena such as the “appearance of loops on an unstable
manifold, and the reappearance of an attractor, this time chaotic with loops” [11, p. 107]; this
type of attractor has been called a “weakly chaotic ring” [10, 27].

In this paper we make a contribution to the bifurcation theory of planar endomorphisms
by providing the unfolding of a codimension-two bifurcation, which we call the cusp-cusp
bifurcation. Our study was motivated by the properties of a well-referenced example of a
noninvertible system, namely, the discrete-time adaptive control system discussed in [1, 8, 9].
More specifically, in [10] a loop of the unstable manifold of a saddle point is found that
surrounds a cusp point C1 on J1. Several other codimension-one bifurcations are found near
this situation, including a loop-creation bifurcation and the passing of the invariant curve
through the cusp point. These bifurcations and the generic phase portraits near them are
illustrated in [10] near the cusp point C1 on J1 as well as near the precusp point C0 on J0,
where f(C0) = C1. We identify the cusp-cusp bifurcation as the organizing center of the
observed dynamics in the sense that the known codimension-one bifurcations occur in its
unfolding.

Specifically, at a cusp-cusp bifurcation there is a quadratic tangency of an invariant curve
W with the singular locus J0 exactly at the precusp point C0. This situation corresponds
to a cusp of f(W ) exactly at the cusp C1 on J1—hence the name of this bifurcation; see
Figure 4(a) and Figure 20(a) and (b). The situation is of codimension two because one
parameter is needed to ensure a tangency of W with J0, while another parameter must be
adjusted to ensure that this tangency occurs at C0. Recall that the existence of an isolated
cusp point on J1 is a generic property, that is, a cusp point is stable under small parameter
variations. Therefore, we assume that the unfolding parameters of the cusp-cusp bifurcation
do not lead to bifurcations of the cusp point (such as the disappearance of the cusp point in
a swallowtail bifurcation).

We derive a normal form of the cusp-cusp bifurcation by considering the interaction of a
parabola (representing W locally) under the action of a normal-form map given by projections
via the graph of the function f in R

4 near a generic cusp point. This surface can best be viewed
in a projection of R

4 onto R
3, where it takes the form of a generic two-dimensional surface with

a cusp as known from singularity theory [4]; see Figure 3. In this setup both the cusp point
C1 and the precusp point C0 are at the origin and the curve J0 is a fixed parabola with C0 as
its maximum. The unfolding or primary parameters in the normal form are the vertical and
horizontal positions of the maximum or minimum of the parabola representing W , while its
“steepness” (relative to the curve J0) plays the role of a higher-order or secondary parameter
in the normal form. Depending on its value we distinguish eight different kinds of cusp-cusp
bifurcations with associated two-parameter unfoldings. All unfoldings (cases i to viii) are
presented as two-parameter diagrams with associated representative phase portraits, that is,
configurations of W near J0 and f(W ) near J1. We also show that the phase portraits found
in [10] are organized by a cusp-cusp bifurcation of type vii.

Singularity theory is the main tool in our analysis of the cusp-cusp bifurcation. It has
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proven its use in the bifurcation analysis of invertible maps and vector fields, where classic
singularities occur in the product of phase space and parameter space; see [12] and also [5]
for a recent example. The question in the present setting is how a noninvertible planar map
is folding the phase plane over itself. In other words, one needs to study projections via a
surface, namely, the smooth image of the domain, in a higher-dimensional space. This point of
view has been adopted before, for example, in [39]. The action of a noninvertible planar map
near any of the fold curves that make up J1 can be understood by considering projections via a
surface in R

3 with a generic fold line [14, 15]. Planar quadratic maps with bounded critical sets
are considered in [28]. The papers [31, 33] study connections between the complex quadratic
family and more general two-parameter families of maps of the plane R

2. In [7] projections
via a folded surface were used to identify two types of codimension-one tangency bifurcations
of a stable set with J1 that are responsible for rearrangements of the basins of attractions of
a noninvertible map. The study presented here is very much in the same spirit. Note that
near folds and cusps, the situations considered here, the surface via which one projects can
be embedded in R

3, rather than in R
4, which greatly helps with visualizing the local map.

Another important ingredient of our study is a suitable notion of equivalence that allows
one to define codimension-one bifurcations in this context. We consider here equivalence as
given by the position of the oriented invariant curve relative to J1; see Definition 3.4.

The paper is organized as follows. In section 2 we discuss some mathematical background,
including the normal form of a smooth map near a cusp point. In section 3 we introduce
the normal-form setting of the cusp-cusp bifurcation, as well as our notion of equivalence of
invariant curves relative to J1. In section 4 we discuss the codimension-one bifurcations that
occur near a cusp-cusp bifurcation, and in section 5 we present all cases of two-parameter
unfoldings. The adaptive control system from [10] is studied in section 6 to show how our
results manifest themselves in practice. We conclude in section 7, where we also point out
directions for future research. The numerical methods that we use in section 6 are discussed
in Appendix A.

2. Mathematical setting and cusp normal-form map. In order to understand the folding
properties of f we consider the line field E associated with J0, defined by

(2.1) E = {l(e0(x), x) | x ∈ J0},

where l(v, p) is the line through the point p given by the vector v, and e0(x) is the eigenvector
of the eigenvalue 0 of Df (x). As stated in Proposition 1.1, every line Ex := l(e0(x), x) is
transverse to J0 at generic x ∈ J0.

Now consider a curve W crossing J0 transversely at a generic point x0 in the sense of
Proposition 1.1. If W is not tangent to Ex0 then the image f(W ) under f is quadratically
tangent to J1 at the point f(x0). This tangency at f(x0) is structurally stable, because it
corresponds to the projection of a curve that crosses a fold [4]. The exceptional case is given
by the line field E . Any curve W that crosses J0 tangent to E has its tangent vector mapped
to the zero vector by Df (x0). Then f(W ) will have a cusp at f(x0), unless the two branches
of W on either side of J0 happen to map exactly on top of each other (which is not generic).
The “direction” of the cusp, that is, the limiting direction of the induced tangent vector to
f(W ) as the cusp point f(x0) is approached, is determined by the curvature of W .
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Figure 1. Sketches of the situation before (a), at (b), and after (c) a codimension-one loop creation, where
in the top row the invariant curve W (red) becomes tangent at x0 to the line field E (green lines). The bottom
row shows the respective images of the top row and illustrates the resulting creation of a little loop of f(W ) (red
curve).

To illustrate the concept we present in Figure 1 the one-parameter unfolding of the loop-
creation bifurcation; the top row shows a neighborhood of a transverse intersection point x0

of a forward invariant curve W with J0, and the bottom row a neighborhood around f(x0)
on J1. Note that both W and f(W ) have a direction, indicated by arrows, which needs to be
specified to understand the action of the map. Generically, the tangent dW (x0) of W at x0

is transverse to the line Ex0 , which means that f(W ) has a quadratic tangency with J1; see
Figure 1(a) and (c). However, when l(dW (x0), x0) = Ex0 then f(W ) has a cusp at f(x0) ∈ J1;
see Figure 1(b). In the unfolding of this codimension-one situation a small loop of f(W ) is
created (or destroyed) near f(x0), which explains the name of this bifurcation.

2.1. Characterization of a cusp of J1. We now consider the basic setting of this paper,
namely, an isolated generic cusp point C1 on J1 and, thus, an isolated precusp point C0 on J0.
The situation is sketched in Figure 2(a) and (b) in neighborhoods U and V around C0 and C1,
respectively. Note that J1 has a second preimage, denoted Ĵ0 ⊂ f−1(J1), in the neighborhood
U , which is tangent to J0 at the precusp point C0. The three regions below J0 and in between
Ĵ0 and J0 get mapped to the single region with three preimages, which is the region under the
cusp point C1 and bounded by J1. This situation is referred to in the literature as a map of
type Z1 < Z3. We remark that any map of type Zk < Zk+2 for k ≥ 1 has the same properties
locally near the cusp point, but with (k− 1) additional sheets of inverses that play no role in
the local unfolding.

Figure 2 also shows the line field E near J0. Notice that the line EC0 is not transverse
to J0. Therefore, the defining property of the cusp-cusp bifurcation, namely, a quadratic
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Figure 2. The line field E (green lines) at J0 (black curve) along with the second preimage Ĵ0 (gray curve)
in a neighborhood U of the precusp point C0 (a), and a neighborhood V of the cusp point C1 on the image J1

(black curve) of J0 and Ĵ0 (b). Panels (c) and (d) show the situation for the normal-form map (2.2), where

J0 and Ĵ0 are parabolas and the leaves of E are given by {y = const}.

tangency of an invariant curve W with J0 at C0, can be interpreted as defining a degenerate
loop bifurcation.

2.2. Cusp normal-form map. As is known from singularity theory [4], a generic smooth
planar map with a cusp point can locally near the precusp point be brought to the normal
form

(x, y) �→ (u, v) = (axy − bx3, y)

by a smooth change of variables, for any positive nonzero constants a and b. We make a
convenient choice; namely, we consider the normal-form map defined as

(2.2) F :

(
x
y

)
�→

(
z
y

)
=

( −x3 − 3xy
y

)
.

The (x, y)-plane corresponds to a local neighborhood of C0 and the (z, y)-plane to a local
neighborhood of C1. Both C0 and C1 are located at the origin. The exact form of (2.2) was
chosen such that the Jacobian

DF

(
x
y

)
=

[ −3x2 − 3y −3x
0 1

]

is singular along the particularly simple critical curve

(2.3) J0 := {y = −x2}.
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J0

Ĵ0

J1

W

f(W )

z

y

x

C1

C0

S

.

.

Figure 3. Visualization in (x, y, z)-space of how the normal-form map (2.2) can be interpreted as a projec-
tion via the cusp surface S (light gray). The curve W (red) in the (x, y)-plane is mapped to the curve F (W )
(red) in the (z, y)-plane; the example is phase portrait 31 of Figure 9.

The image of the parabola J0 is the standard cusp

(2.4) J1 := {z = ±2(
√−y)3 | y ≤ 0}.

A straightforward calculation shows that it has the second preimage

(2.5) Ĵ0 := {y = −1
4x

2}.

The line field E does not depend on x and consists simply of the lines l((1, 0)T , x).

The situation for the normal-form map F is shown in Figure 2(c) and (d) in neighborhoods
around C0 and C1, respectively. Note that the coordinate change that transforms a generic
map f near a cusp point into its normal form F deforms the curves J0 and Ĵ0 to parabolas
and the curve J1 to a standard cusp. Furthermore, it “straightens out” the line field E to
horizontal lines.

Figure 3 shows how the action of the map F can be interpreted geometrically as a pro-
jection via the cusp surface S in (x, y, z)-space given by −x3 − 3xy − z = 0. Note that S is a
graph over the (x, y)-plane but not over the (z, y)-plane. Any point (x0, y0) in the (x, y)-plane
corresponds to a unique point on S under projection in the z-direction. It is then mapped to
the unique point F (x0, y0) under projection in the x-direction. Conversely, a point (z0, y0) in
the (z, y)-plane lifts to a single point on S in the region of unique preimages, to two points
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on S if (z0, y0) ∈ J1, and to three points on S in the region of three preimages. Notice also
the (projection of) the curves J0 and Ĵ0 on S.

Figure 3 also shows how a parabola W in the (x, y)-plane “around” the precusp point C0

maps under F . The result is a curve F (W ) in the (z, y)-plane with a self-intersection and
two tangencies with J1, one at either side of the cusp point C1. This can be understood by
considering the projection of the parabola onto the cusp surface S, and then down to the
(z, y)-plane.

3. Normal-form setting of the cusp-cusp bifurcation. At the cusp-cusp bifurcation there
is a tangency of an invariant curve W with the curve J0 at a precusp point C0. As a conse-
quence, f(W ) has a cusp exactly at the cusp point C1 on J1. This codimension-two bifurcation
can be classified as a global bifurcation, because it involves an invariant curve. Nevertheless,
we can consider a normal-form setting in the small neighborhoods U and V of C0 and C1,
respectively, by replacing f near C0 with the normal-form map F as given by (2.2). Then
the curves J0 and Ĵ0 are the parabolas given by (2.3) and (2.5) and the points C0 and C1 are
at the origin of the (x, y)- and (z, y)-planes, respectively. Furthermore, the tangency of W
with J0 at C0 is generically quadratic. As a consequence, in any unfolding the intersections
of W with J0 and Ĵ0 in a sufficiently small neighborhood U are determined entirely by the
quadratic nature of the curve W . Therefore, from now on we consider the quadratic normal
form for W in the (x, y)-plane given by

(3.1) W := {y = γ(x− a)2 + b}.
Here the parameters a, b ∈ R are the primary unfolding parameters and γ ∈ R is a higher-order
or secondary parameter that determines the “steepness” of W relative to the fixed parabolas
J0 and Ĵ0. The invariant curve in the neighborhood V of C1 is simply given by F (W ). Note
that the maximum (for γ < 0) or minimum (for γ > 0) of W lies at (x, y) = (a, b); the
cusp-cusp bifurcation occurs for a = b = 0.

The normal-form setting of the cusp-cusp bifurcation is now given as the study of all
possible different configurations of F (W ) relative to J1 and C1 as a function of the unfolding
parameters a and b, and for fixed generic values of the higher-order term γ. These different
configurations correspond one-to-one to different types of intersections of W with J0 and Ĵ0;
see Definition 3.4.

Throughout this paper we use the convention that the orientation of W is from left to
right, that is, in the direction of increasing x. The orientation of F (W ) is induced by this
convention. Notice that the map F reverses the orientation of the invariant curve in Figure 3,
which is illustrated by the arrows of W and F (W ). We have the following general result.

Proposition 3.1 (orientation of F (W )). For any a and b the image F (W ) of an (oriented)
parabola W of the form (3.1) is oriented from left to right if γ < −1

3 and from right to left for
γ > −1

3 ; see also Figure 4(c)–(e).
Proof. The curve

(3.2) R0 :=

{
y = −1

3
x2

}

in the (x, y)-plane is mapped under the normal-form map F in a two-to-one fashion to the
line segment {z = 0 and y ≤ 0} in the (z, y)-plane. The region above R0 is mapped to the
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(z, y)-plane in an orientation reversing way, that is, positive x are mapped to negative z. By
contrast, the region below R0 is mapped to the (z, y)-plane in an orientation preserving way.
The result follows, since the segments for sufficiently large |x | of a parabola of the form (3.1)
both lie in either one of the two regions.

3.1. The cusp-cusp singularity. The nature of the cusp-cusp singularity for (a, b) = (0, 0)
depends on the higher-order term γ of (3.1). For (a, b) = (0, 0) and for generic γ the cusp
point C1 is the only intersection point of F (W ) and J1. The exception is that F (W ) ≡ J1,
which happens when either W = J0 or W = Ĵ0. We further distinguish different cases of the
cusp-cusp singularity depending on

• the orientation of F (W ),
• whether the curve F (W ) is below or above J1, and
• whether or not the cusp of F (W ) at C1 points upward or downward.

Proposition 3.2 (cusp-cusp singularity). There are five intervals on the γ-line of generic
cusp-cusp singularities for (a, b) = (0, 0) in (3.1). The boundary points between these in-
tervals are given by γ = −1, γ = −1

3 , γ = −1
4 , and γ = 0.

Proof. According to Proposition 3.1 the orientation of F (W ) changes when W crosses R0,
which gives rise to the boundary point γ = −1

3 . Furthermore, for W = J0 or W = Ĵ0 we have
that F (W ) = J1, which gives rise to the boundary points γ = −1 and γ = −1

4 , respectively.

For W above Ĵ0, that is, for γ > −1
4 , the curve F (W ) lies above J1. It follows immediately

from (2.2) that the cusp of F (W ) is approached from the direction of negative y for any γ < 0
and from the direction of positive y for γ > 0. The situation for γ = 0 is degenerate in that
F (W ) does not have a cusp at all.

Proposition 3.2 is illustrated in Figure 4, where panels (a), (c), (e), (g), and (i) show the
generic cases for (a, b) = (0, 0). Note that panels (a) and (c) do not differ either in position
or in orientation in the (z, y)-plane. The difference is that the corresponding curve lies on
different sheets of the cusp surface S (see also Figure 3), and, as we will see in section 5, this
leads to different two-parameter unfoldings. Figure 4(b), (d), (f), and (h) show the degenerate
situations at the boundary points, namely, the situations when W = J0, W = R0, W = Ĵ0,
and W ≡ 0, respectively.

3.2. Notion of equivalence. In order to speak of typical or generic situations and their
bifurcations we now define what we mean by equivalence. Our definition is in the spirit of [33],
where a notion of equivalence was defined with respect to certain bifurcation phenomena.
Specifically, we formalize the approach from the literature of distinguishing between different
configurations of an invariant curve relative to J1 and C1. Namely, we consider a curve f(W )
in a neighborhood of C1, which is the image of a curve W in a neighborhood of the associated
precusp point C0. For notational convenience we give the definition in the context of the
normal-form setting, which has the advantage of leaving J0 and J1 fixed. However, it can be
extended in a straightforward manner to define equivalence of two general invariant curves
relative to J1 in two respective neighborhoods of a cusp point and the corresponding precusp
point.

Definition 3.3 (generic event). Consider the image F (W ) of the (oriented) parabola W giv-
en by (3.1) under the normal-form map F . A generic event is
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Figure 4. Sketches of all generic and nongeneric cases of the cusp-cusp singularity; see Proposition 3.2.
The left-hand panels show W (red curve) near the precusp point C0 in the (x, y)-plane, and the right-hand

panels show f(W ) (red curve) in relation to J1 in the (z, y)-plane. The curves J0 and J1 are black, Ĵ0 is gray,
and R0 is dashed and double-covers the dashed straight line; the arrows show the direction of parametrization
by x. Shown are γ < −1 (a), γ = −1 (b), −1 < γ < − 1

3
(c), γ = − 1

3
(d), − 1

3
< γ < − 1

4
(e), γ = − 1

4
(f),

− 1
4
< γ < 0 (g), γ = 0 (h), and 0 < γ (i). For the generic cases in panels (a), (c), (e), (g), and (i) the

associated two-parameter unfoldings of Figure 8 are indicated.

• a quadratic tangency of F (W ) with J1 at a generic point on J1 (in a neighborhood of
which J1 is locally a smooth curve),

• a transverse intersection of F (W ) with J1 at a generic point on J1, or
• an isolated self-intersection of F (W ).

In the first two cases we say that two such generic events are of the same type if the respective
tangency or intersection points

1. both lie on the same side of the cusp point C1 on J1, that is, both occur for z < 0 or
both for z > 0, and

2. they are passed by F (W ) (locally) in the same direction, that is, both toward increasing
z or both toward decreasing z.
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We are now able to define equivalence based on the notion of generic events. Note that a
cusp on W is not a generic event.

Definition 3.4 (equivalence of an invariant curve relative to J1). Consider two images F (W )

and F (W̃ ) of two (oriented) parabolas W and W̃ given by (3.1) under the normal-form map

F . We say that the curves F (W ) and F (W̃ ) are equivalent with respect to J1 if they

1. have the same induced orientation, and
2. both encounter the same types of generic events in the same order.

The task for the remainder of this paper is to find all equivalence classes of phase portraits
according to this notion of equivalence. Specifically, we need to find all generic two-parameter
unfoldings in the (a, b)-plane for different choices of the higher-order term γ in (3.1). We start
with a straightforward result on the possible number of events.

Proposition 3.5 (number of events). In the normal-form setting of the cusp-cusp bifurca-
tion, that is, for W given by (3.1) and any a, b, and generic γ, that is, for γ /∈ {−1,−2

3 ,−1
2 ,

−1
3 ,−1

4 , 0, 1}, there are at most

• two (quadratic) tangencies of F (W ) with J1,
• two transverse intersections of F (W ) with J1, and
• one self-intersection of F (W ).

Proof. The curves W , J0, and Ĵ0 are parabolas and graphs over the x-axis. Therefore,
for any a, b, and γ, W can have at most two intersections with J0 or Ĵ0, which limits the
respective number of tangencies and intersections of F (W ) with J1 to two as well.

Any self-intersection of F (W ) must lie in the region under J1, that is, in the z-interval
between the two (if they exist) unique folds of F (W ) with respect to z. Furthermore, a self-
intersection is due to a pair of points on W with the same y-value. According to (3.1) and (2.2)
the curve F (W ) covers its y-range in a two-to-one fashion with a single maximum or a single
minimum (depending on the sign of γ). Since F (W ) has either zero or two folds with respect
to z, there can be at most one such pair of points with the same y-value, namely, exactly
when the single maximum/minimum of F (W ) lies in between the two fold points.

4. Codimension-one bifurcations. Definition 3.4 gives rise to codimension-one bifurca-
tions that correspond to a transition between equivalence classes of equivalence of the curve
F (W ) relative to J1. There are five basic codimension-one bifurcations where the change
is local; that is, it occurs in a small neighborhood of the bifurcation point in phase cross
parameter space. Furthermore, we find bifurcations at infinity and a transition due to the
degeneracy of the parametrization (3.1).

4.1. The basic codimension-one bifurcations. A great advantage of the normal-form
setting is that it is possible to compute the loci of all these bifurcations explicitly.

Proposition 4.1 (basic codimension-one bifurcations). In the normal-form setting of the
cusp-cusp bifurcation there are exactly five codimension-one bifurcations for (a, b) 
= (0, 0)
in (3.1) that correspond to a local change of events as defined in Definition 3.4. They are
illustrated in Figures 5 and 6.

1. The cusp transition, denoted by C, where the curve W passes through J0 at the precusp
point C0, which means that F (W ) passes exactly through the cusp point C1 on J1; see
Figure 5(a). The locus of this bifurcation in the (a, b)-plane is the parabola
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Figure 5. Arrangement of W and F (W ) (red curves) at the cusp-transition bifurcation C (a), the loop-
creation bifurcation L (b), and the intersection-at-tangency bifurcation I (c). As indicated, these three bifurca-
tions are assigned colors cyan, black, and magenta, respectively.

(4.1) b = cC(γ) a2 = −γ a2.

2. The loop-creation bifurcation, denoted by L, where W crosses J0 tangent to the (hor-
izontal) line field E; see Figure 5(b). The locus of this bifurcation in the (a, b)-plane
is the parabola

(4.2) b = cL(γ) a2 = −a2.

3. The intersection-at-tangency bifurcation, denoted by I, where F (W ) self-intersects at
a tangency point with J1; see Figure 5(c). The locus of this bifurcation in the (a, b)-
plane is the parabola

(4.3) b = cI(γ) a2 = −(9γ + 4) a2.
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Figure 6. Arrangement of W and F (W ) (red curves) at the tangency-creation bifurcation T (a), and
the enter-exit bifurcation E (b). As indicated, these two bifurcations are assigned colors orange and green,
respectively.

4. The tangency-creation bifurcation, denoted by T , where W is tangent to J0; see Fig-
ure 6(a). The locus of this bifurcation in the (a, b)-plane is the parabola

(4.4) b = cT (γ) a2 = − γ

1 + γ
a2.

5. The enter-exit bifurcation, denoted by E, where W is tangent to Ĵ0; see Figure 6(b).
The locus of this bifurcation in the (a, b)-plane is the parabola

(4.5) b = cE(γ) a2 = − γ

1 + 4γ
a2.

Proof. Each of these bifurcations is defined by a codimension-one condition on the parabola
W as given by (3.1), so that their loci can be computed explicitly.

1. By definition of the cusp-transition bifurcation, W passes through the precusp point
C0 at (x, y) = (0, 0). Substitution into (3.1) gives the locus.

2. Since the line field E of the normal-form map F consists of horizontal lines, a loop-
creation bifurcation occurs when the extremum at (x, y) = (a, b) of W lies on J0. Substitution
into (3.1) gives the locus.

3. A transversal crossing of W and J0, say, at (x0, y0), corresponds to a tangency of F (W )
with J1. Hence, an intersection-at-tangency bifurcation occurs when W intersects Ĵ0 at the
same y-value, that is, at some point (x1, y0). From (2.2), (2.3), and (2.5) we conclude that
then x1 = −2x0, and we determine x0 from

γ(x0 − a)2 + b = γ(−2x0 − a)2 + b
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as x0 = −2a. Hence, in order for (x0, y0) to lie on J0, a and b should be such that

y0 = γ(x0 − a)2 + b = −x2
0 ⇔ y0 = 9γa2 + b = −4a2,

which gives the locus.
4. At the tangency-creation bifurcation W is tangent to J0 at, say, (xt, yt) ∈ J0 ∩ W .

Since the slopes of W and J0 at (xt, yt) must be equal, we conclude from (2.3) that

{
yt = γ(xt − a)2 + b = −x2

t ,
2γ(xt − a) = −2xt,

⇔
{

yt = γ a2

(1+γ)2
+ b = − a2γ2

(1+γ)2
,

xt = aγ
1+γ ,

and this gives the locus.
5. The locus of tangency of W with Ĵ0 can be derived exactly as for the tangency with

J0, by using (2.5) instead of (2.3).
Finally, there are only these five codimension-one bifurcations because, generically in the

normal form setting, W can only either intersect J0 and Ĵ0 transversely or have a quadratic
tangency with J0 or Ĵ0. In particular, higher-codimension singularities, for example, cubic
tangencies, are not possible in the normal-form setting.

Indeed, the codimension-one bifurcations of Proposition 4.1 give rise to different configu-
rations of F (W ) and J1. The first three bifurcations involve transverse intersection of W and
J0. At the cusp-transition bifurcation, a tangency point of F (W ) with J1 moves from the left
to the right of the cusp point C1. At the loop-creation bifurcation a small loop, that is, a self-
intersection, is created; see also Figure 1. At the intersection-at-tangency bifurcation there
is an exchange of the order along F (W ) between a self-intersection of F (W ) and a (generic)
tangency between F (W ) and J1. The other two bifurcations correspond to codimension-one
tangencies of W with J0 and Ĵ0. At a tangency-creation two transverse intersections of W and
J0 and, hence, two (generic) tangencies between F (W ) and J1, are created. At the enter-exit
bifurcation two transverse intersections of F (W ) and J1 are created.

4.2. Representation on the Poincaré disk and bifurcations at infinity. Events as de-
fined in Definition 3.4 can move outside a fixed neighborhood of interest, which changes the
equivalence type of F (W ) inside this neighborhood by changing the number of events that
one encounters. In order to represent the entire phase portrait in a compact region, we now
introduce the representation of the (x, y)- and (z, y)-planes on the Poincaré disk. The repre-
sentation on the Poincaré disk is quite popular in bifurcation theory, because any dynamically
relevant objects can be kept track of even if they bifurcate at (the circle representing) infinity;
see, for example, [21].

The Poincaré disk is obtained by “closing off” the plane R
2 with a circle that represents

the asymptotic directions of curves at infinity. The phase plane is then represented on the
unit disk, where points eiφ on the unit circle correspond to the directional limits φ. In the
present situation we are concerned with the curve W relative to J0 and Ĵ0, all of which are
parabolas and graphs over the horizontal x-axis. Hence, the directional limits of J0 and Ĵ0

for x → ±∞ are −π/2, so that these curves start and end on the Poincaré disk at the point
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Figure 7. The local interaction of W (red curve) with J0 (black curve) and Ĵ0 (gray curve) in a neighborhood
U (a) corresponds to the local interaction of F (W ) (red curve) with J1 (black curve) in a neighborhood V (b).
Panels (c) and (d) show the same situation sketched on the Poincaré disk. The example is phase portrait 31;
compare with Figure 3.

−i = e−πi/2. Similarly, the curve W starts and ends at −i for γ < 0 and at i for γ > 0. The
curve J1, on the other hand, has the directional limits 0 and π, and the same is true for the
image of any parabola as given by (3.1) for any values of a, b, and γ. Therefore, J1 and F (W )
have the limits −1 and +1 on the Poincaré disk. The situation is illustrated in Figure 7 for
the phase portrait from Figure 3, that is, for γ > 0. Panel (a) of Figure 7 shows the local
picture near J0 and panel (c) the corresponding picture on the Poincaré disk. The respective
images are shown in panels (b) and (d).

We have the following result concerning bifurcations of phase portraits on the Poincaré
disk.

Proposition 4.2 (bifurcations at infinity). In the normal-form setting of the cusp-cusp bifur-
cation with W given by (3.1) there are three bifurcations at infinity on the Poincaré disk that
change the equivalence class according to Definition 3.4.

1. The tangency at infinity, where a generic tangency of F (W ) with J1 moves via infinity
from one side of the cusp point C1 to the other. The locus of this bifurcation is given
by γ = −1, which is the vertical asymptote of the coefficient of the tangency creation
cT (γ) = − γ

1+γ ; see (4.4) and, for example, the transition between phase portraits 2
and 9 in Figure 9.

2. The intersection at infinity, where a transverse intersection of F (W ) and J1 moves via
infinity from one side of the cusp point C1 to the other. The locus of this bifurcation
is given by γ = −1

4 , which is the vertical asymptote of the coefficient of the enter-exit
bifurcation cE(γ) = − γ

1+4γ ; see (4.5) and, for example, the transition between phase
portraits 15 and 22 in Figure 9.
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3. The self-intersection at infinity, where a self-intersection of F (W ) bifurcates at the
boundary of the Poincaré disk. This happens by a swap between the begin and end
points of F (W ) at ±1, and this also results in a change of direction of F (W ). The
locus of this bifurcation is given by γ = −1

3 , which corresponds to the crossing of W
and R0; see (3.2) and, for example, the transition between phase portraits 7 and 15 in
Figure 9.

Proof. The respective changes (of phase portraits) and their loci follow immediately from
the fact that the loci of the tangency bifurcation and the enter-exit bifurcation have asymp-
totes.

For any fixed values of a and b the limits for x → ±∞ of the parabola W lie below the
curve R0 if γ < −1

3 , and above the curve R0 if γ > −1
3 . This means that the directional limits

of F (W ) change when γ crosses −1
3 . Effectively, the two ends of F (W ) reconnect differently

to the points ±1 on the boundary of the Poincaré disk. Note that for the degenerate case
of γ = −1

3 they both approach the curve {z = 0}, that is, the point −i on the boundary of
the Poincaré disk. One can view this as an “ambivalent connection” to the points ±1 via the
lower quarters of the circle at infinity.

4.3. Inversion near the cusp. As we discuss now, there is one more possibility for tran-
sitions between equivalence classes of F (W ). Recall that according to Proposition 3.2 the
passage through the degenerate case γ = 0 changes the type of the central singularity for
(a, b) = (0, 0). This also has consequences for F (W ) if (a, b) 
= (0, 0).

Proposition 4.3 (inversion near cusp). The parabola W given by (3.1) has a maximum for
γ < 0 and a minimum for γ > 0. As a result, near the cusp point C1 on J1 the curve F (W )
has a local maximum for γ < 0 and a local minimum for γ > 0. We call the transition through
the degenerate case γ = 0 the inversion near the cusp, and it results in a change of the phase
portrait in the case that F (W ) interacts with J1; see, for example, the transition between phase
portraits 24 and 29 in Figure 9.

Note that the inversion near the cusp is not a bifurcation in a classical sense. Rather it is
the vanishing of the quadratic term which changes the direction in which F (W ) approaches
a neighborhood of the cusp point C1. This manifests itself quite dramatically as a type of
“inversion” in this neighborhood. There are actually only three different transitions featuring
an inversion near the cusp; see Figures 8 and 9, and compare panels 24 with 29, 25 with 30, and
26 with 31. We refer to the inversion near the cusp loosely as a bifurcation (albeit an unusual
one) of codimension one, because it forms a codimension-one boundary between equivalence
classes of F (W ) in (a, b, γ)-space.

5. Two-parameter unfoldings in the (a, b)-plane. The five codimension-one bifurcations
of section 4.1 are all given by parabolas b = c∗(γ) a2 through the origin. Hence, the bifurcation
diagram in the (a, b)-plane is determined entirely by the ordering of the respective bifurcations,
which is given by the sizes of the coefficients c∗(γ). In Figure 8 we show all information on
the cusp-cusp unfolding (in the normal-form setting) in a convenient and very condensed
representation by plotting the graphs of the functions c∗(γ). This corresponds geometrically
to showing how the slices {a = ±1} in the (a, b)-plane change with γ. The different bifurcations
are shown in different colors as introduced in Figures 5 and 6. In this representation the other
bifurcations in sections 4.2 and 4.3 are vertical lines since they do not depend on a and b.
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Figure 8. Division of the (γ, c∗(γ))-plane into regions of different phase portraits for a > 0, which are shown
in Figure 9; see Proposition 5.1. The γ-axis is divided into regions of different two-parameter unfoldings, cases
i–viii, which are shown individually in Figures 10 to 17. The colors of the dividing codimension-one bifurcations
from Proposition 4.1 are as introduced in Figures 5 and 6; the dash-colored vertical lines at γ = −1 and γ = − 1

4

and the dark-purple vertical line at γ = − 1
3

are the respective bifurcations at infinity from Proposition 4.2; the
vertical dark blue line is the inversion near the cusp from Proposition 4.3.

The set of all bifurcation curves divides the (γ, c∗(γ))-plane into 32 regions of equivalent
phase portraits; the insets show enlargements of two rather small regions. Representatives of
all 32 phase portraits that one finds for a > 0 are shown as sketches on the Poincaré disk in
Figure 9. Since all bifurcation curves in the (a, b)-plane are parabolas through the origin, the
bifurcation diagram is symmetric under the operation a �→ −a. It follows directly from (2.2)
and (3.1) that the corresponding phase portraits for a < 0 are obtained by reflecting the curve
F (W ) on the y-axis on the (z, y)-plane without changing its orientation, so that all events
(see Definition 3.3) now occur on the opposite side of C1 and in the reverse order. We call
the thusly obtained phase portrait the conjugate phase portrait and denote it by a bar across
the number. Note that a phase portrait and its conjugate are generally not equivalent.

The unfoldings represented in Figures 8 and 9 were obtained by a combination of analysis
and topological arguments—guided by exploration on the computer. We stress again that in
the normal-form setting all bifurcation curves can be found analytically. Furthermore, phase
portraits can be explored simply by plotting F (W ) relative to J1 for appropriate values of a,
b, and γ. The overall result can be summarized as follows.
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Figure 9. Sketches on the Poincaré disk of all generic phase portraits for a > 0 of F (W ) (red curve)
in relation to J1 (black curve); the arrows show the direction of parametrization by x. The respective phase
portraits for a < 0 are obtained by the operation of conjugation.
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Proposition 5.1 (two-parameter unfoldings). There are eight two-parameter unfoldings in
the (a, b)-plane, denoted i–viii, as shown in Figure 8. The boundary points between the
respective intervals of the γ-line are −1, −2

3 , −1
2 , −1

3 , −1
4 , 0, and 1.

Proof. According to Propositions 4.2 and 4.3, the points γ = −1, γ = −1
3 , γ = −1

4 ,
and γ = 0 give rise to changes of the equivalence class of phase portraits and, hence, of
neighboring two-parameter unfoldings in the (a, b)-plane. It follows from (4.1) and (4.3)
that cC(γ) and cI(γ) intersect at γ = −1

2 , where the cusp transition and the intersection-
at-tangency bifurcation change their order. Similarly, from (4.1) and (4.2), cC(γ) and cL(γ)
intersect at γ = 1, where the cusp transition and the loop creation change their order. Finally,
from (4.3) and (4.4) we conclude that cI(γ) is tangent to cT (γ) at γ = −2

3 . This means that the
intersection-at-tangency happens at a double-tangency point on J1. Therefore, the intersection
at γ = −2

3 is a genuine codimension-two point that leads to a change in the phase portraits.
Indeed, for (a, b) in between the tangency-creation and intersection-at-tangency bifurcation
curves, the self-intersection of F (W ) lies closer to C1 than the two tangencies of F (W ) with
J1 if γ < −2

3 , while it lies furthest away from C1 if γ > −2
3 ; compare phase portraits 8 and 13

in Figures 11 and 12, respectively.

The two-parameter unfoldings i–viii in the (a, b)-plane are shown individually in Figures
10 to 17. In each figure, the middle panel shows how the colored codimension-two bifurcation
curves of Proposition 4.1 divide the (a, b)-plane into regions of different phase portraits. The
surrounding panels on the left show the respective configurations of W near C0 and those on
the right that of F (W ) near C1. Both the bifurcation curves and the configurations of W
and F (W ) were drawn in MATLAB directly from their respective formulas. In this way, one
gets an impression of actual shapes and sizes. In particular, we chose a fixed neighborhood of
C0 and its image, which is a fixed neighborhood of C1. Hence, all panels in Figures 10 to 17
can be directly compared in terms of scale; where necessary, insets provide enlargements of
how F (W ) lies relative to J1. A slight disadvantage of choosing a fixed neighborhood for all
cases is that an intersection of W with J0 or Ĵ0, and thus the corresponding generic event,
may have “moved” outside of a panel. All phase portraits shown in Figures 10 to 17 are for
a > 0, as was the case for the sketches in Figure 9 (which contain all occurring generic events).
Note that crossing the line a = 0 above or below all bifurcation curves does not constitute a
bifurcation, so that the respective phase portraits must be invariant under conjugation. The
fact that this is indeed the case is evidence of the consistency of the unfoldings in Figures 10
to 17.

As mentioned, the phase portraits for a < 0 can be obtained by conjugation, but a
conjugate phase portrait may be equivalent to a different phase portrait for a > 0. The
following phase portraits do not result in new phase portraits under conjugation with respect
to the original list of 32 for a > 0 in Figure 9.

• invariant under conjugation: 1, 6, 7, 12, 15, 20, 21, 26, and 31.
• identities under conjugation: 22 = 27, 23 = 28, and 24 = 29.

As a result, there are 17 new classes of phase portraits that one obtains under conjugation
from the original list for a > 0, namely,

• 2, 3, 4, 5, 8, 9, 10, 11, 13, 14, 16, 17, 18, 19, 25, 30, and 32.

This means that there is a total of 51 different phase portraits according to Definition 3.4.
If one chooses to consider conjugate phase portraits to be the same, that is, one does not
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Figure 10. Case i: −∞ < γ < −1. The two-parameter unfolding in the (a, b)-plane with the bifurcation
curves C (cyan), L (black), I (magenta), T (orange), and E (green); compare with Figures 5 and 6. Repre-
sentative phase portraits near C0 are presented counterclockwise from the second image at the top, and near
C1 clockwise from the third image at the top; shown are W and F (W ) (red curves), J0 and J1 (black curves),

and Ĵ0 (gray curve). The data is for γ = −1.5, with phase portraits for (a, b) = (0.2, 1.7), (a, b) = (0.7, 1.7),
(a, b) = (2.0, 1.7), (a, b) = (2.0,−1.7), (a, b) = (0.7,−1.1), and (a, b) = (0.2,−1.7), respectively.

distinguish between the two parts of J1 (either side of the cusp point) on which the intersections
and tangencies occur, then there is a total of 29 phase portraits.

5.1. Relevance of normal-form unfoldings. The map F is the normal form for any endo-
morphism f in a sufficiently small neighborhood of a generic cusp point C1 on J1. Furthermore,
at the cusp-cusp bifurcation the tangency of the smooth invariant curve W with J0 at the
precusp point is quadratic. Therefore, we have the following.

Corollary 5.2. Consider a family of planar endomorphisms fλ with a cusp-cusp bifurcation
at the parameter point (λ∗

1, λ
∗
2), that is, a quadratic tangency of an invariant curve W to a

precusp point C0 on J0. Then there exist sufficiently small neighborhoods U of C0 and V of
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Figure 11. Case ii: −1 < γ < − 2
3
. The two-parameter unfolding in the (a, b)-plane with the bifurcation

curves C (cyan), L (black), I (magenta), T (orange), and E (green); compare with Figures 5 and 6. Repre-
sentative phase portraits near C0 are presented counterclockwise from the second image at the top, and near
C1 clockwise from the third image at the top; shown are W and F (W ) (red curves), J0 and J1 (black curves),

and Ĵ0 (gray curve). The data is for γ = −0.9, with phase portraits for (a, b) = (0.2, 1.7), (a, b) = (0.2, 0.3),
(a, b) = (0.8, 1.7), (a, b) = (2.0, 1.7), (a, b) = (2.0,−1.7), and (a, b) = (1.0,−1.7), respectively.

the cusp point C1 = f(C0) such that the following hold:

1. Generically, one of the cases i–viii of two-parameter unfoldings occurs as the bifur-
cation diagram of f in V . Which case occurs depends on the exact position of the
two-jet of the curve W at the cusp-cusp bifurcation relative to the normal-form coor-
dinate systems generated by the two-jets of J0 and Ĵ0.

2. For each of the cases i–viii the parameters λ1 and λ2 generically unfold the cusp-cusp
bifurcation in a sufficiently small neighborhood Λ of (λ∗

1, λ
∗
2). In particular, by varying

λ1 and λ2 all respective classes of phase portraits can be found in V .
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Figure 12. Case iii: − 2
3
< γ < − 1

2
. The two-parameter unfolding in the (a, b)-plane with the bifurcation

curves C (cyan), L (black), I (magenta), T (orange), and E (green); compare with Figures 5 and 6. Repre-
sentative phase portraits near C0 are presented counterclockwise from the second image at the top, and near
C1 clockwise from the third image at the top; shown are W and F (W ) (red curves), J0 and J1 (black curves),

and Ĵ0 (gray curve). The data is for γ = −0.53, with phase portraits for (a, b) = (0.5, 1.7), (a, b) = (1.3, 1.7),
(a, b) = (1.5, 1.7), (a, b) = (1.7, 0.8), (a, b) = (1.7,−1.7), and (a, b) = (1.0,−1.7), respectively.

Proof. Consider the coefficient of the two-jet of W at C0 relative to the normal-form
coordinate systems generated by the two-jets of J0 and Ĵ0. If this coefficient lies in one of
the open regions representing cases i–viii, then this is an open condition. Since the two-jet of
W depends continuously on (λ1, λ2), its coefficient does not leave the respective open region
for (λ∗

1, λ
∗
2) as long as Λ is a sufficiently small neighborhood. Furthermore, generically the

map from (λ1, λ2) to (a, b) is a local diffeomorphism. Hence, generically, (λ1, λ2) unfolds the
cusp-cusp bifurcation.

Proposition 5.2 is in the spirit of local bifurcation theory: it states that the generic open
regions corresponding to cases i–viii are stable under perturbation of the purely quadratic
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Figure 13. Case iv: − 1
2
< γ < − 1

3
. The two-parameter unfolding in the (a, b)-plane with the bifurcation

curves C (cyan), L (black), I (magenta), T (orange), and E (green); compare with Figures 5 and 6. Repre-
sentative phase portraits near C0 are presented counterclockwise from the second image at the top, and near
C1 clockwise from the third image at the top; shown are W and F (W ) (red curves), J0 and J1 (black curves),

and Ĵ0 (gray curve). The data is for c = −0.4, with phase portraits for (a, b) = (1.1, 1.7), (a, b) = (1.8, 1.7),
(a, b) = (1.1,−0.3), (a, b) = (1.1,−0.6), (a, b) = (1.1,−0.9), and (a, b) = (0.6,−0.9), respectively.

character of the normal form, so that they must be expected in practical situations. Note
also that, no matter which case of unfolding occurs, the five codimension-one bifurcations of
Proposition 4.1 are, generically, part of the bifurcation diagram of f in V . When λ1 and λ2

are changed outside Λ then an intersection or (generic) tangency of f(W ) with J1 may leave
the neighborhood V . This corresponds to bifurcations at infinity; see Proposition 4.2.

The open regions of the normal-form setting are stable under perturbation, but this may or
may not be true for the boundaries between them; see Figure 8. First, we expect the tangency
between the curves cI(γ) and cT (γ) at γ = −2

3 to be preserved under perturbations, because
it corresponds to a genuine codimension-two bifurcation, namely, a simultaneous tangency-
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Figure 14. Case v: − 1
3
< γ < − 1

4
. The two-parameter unfolding in the (a, b)-plane with the bifurcation

curves C (cyan), L (black), I (magenta), T (orange), and E (green); compare with Figures 5 and 6. Repre-
sentative phase portraits near C0 are presented counterclockwise from the second image at the top, and near
C1 clockwise from the third image at the top; shown are W and F (W ) (red curves), J0 and J1 (black curves),

and Ĵ0 (gray curve). The data is for γ = −0.27, with phase portraits for (a, b) = (1.2, 1.7), (a, b) = (2.3, 1.7),
(a, b) = (1.2,−1.0), (a, b) = (1.2,−2.0), (a, b) = (1.0,−2.0), and (a, b) = (0.6,−2.0), respectively.

creation and intersection-at-tangency bifurcation. On the other hand, the tangency between
the curves cE(γ), cT (γ), and cC(γ) at γ = 0 should be destroyed by generic perturbations.
However, as follows from the definition of the bifurcations involved, the order of the bifurca-
tions cannot change. Similarly, we expect that the tangency between the curves cE(γ) and
cI(γ) at γ = −1

3 exactly at the intersection with cL(γ) will be destroyed, while the order of the
curves cE(γ) and cI(γ) will be maintained. Overall, new regions may be created that feature
phase portraits that do not occur in the normal form. However, because the invariant curve
W is assumed to have a quadratic tangency (which is a generic assumption), the perturbation
of the boundary curves in Figure 8 is small and goes to zero as the cusp-cusp point (λ∗

1, λ
∗
2) is
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Figure 15. Case vi: − 1
4
< γ < 0. The two-parameter unfolding in the (a, b)-plane with the bifurcation

curves C (cyan), L (black), I (magenta), T (orange), and E (green); compare with Figures 5 and 6. Repre-
sentative phase portraits near C0 are presented counterclockwise from the second image at the top, and near
C1 clockwise from the third image at the top; shown are W and F (W ) (red curves), J0 and J1 (black curves),

and Ĵ0 (gray curve). The data is for γ = −0.1, with phase portraits for (a, b) = (1.0, 1.7), (a, b) = (3.5, 1.7),
(a, b) = (4.0, 1.7), (a, b) = (4.0,−1.0), (a, b) = (1.6,−4.0), and (a, b) = (0.5,−4.0), respectively.

approached. In other words, sufficiently close to (λ∗
1, λ

∗
2), one should expect to see “only” the

two-parameter unfoldings i–viii presented.

In any practical application of Proposition 5.2 it will be interesting to see how big the
neighborhoods Λ and V are. Indeed, the larger they can be chosen, the easier it is to identify
the different types of phase portraits that must occur near the cusp-cusp bifurcation. In
practice, it is possible to deduce which case one is dealing with by carefully finding the
respective phase portraits in V , as we will see from the example in the next section.

6. Cusp-cusp bifurcation in an adaptive control system. As a concrete example we
consider the one-dimensional first-order approximation of a linear, time-invariant, single-input,
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Figure 16. Case vii: 0 < γ < 1.0. The two-parameter unfolding in the (a, b)-plane with the bifurcation
curves C (cyan), L (black), I (magenta), T (orange), and E (green); compare with Figures 5 and 6. Repre-
sentative phase portraits near C0 are presented counterclockwise from the second image at the top, and near
C1 clockwise from the third image at the top; shown are W and F (W ) (red curves), J0 and J1 (black curves),

and Ĵ0 (gray curve). The data is for γ = 0.5, with phase portraits for b = −8.0 and a = 7.5, a = 6.0, a = 4.5,
a = 3.5, a = 2.0, and a = 0.5, respectively.

single-output process with a unit time delay introduced in [9]. In this example, the plant
contains an unknown parameter that must be estimated using input-output data available
from previous time intervals. The objective is to design a controller that will track a constant
nonzero reference signal. In nondimensional form, this leads to the planar endomorphism

(6.1) g :

(
x
y

)
�→

( −xy + η

βy + px(−yx+η−1)
c+x2

)

,

where x is the output signal—which should equal 1 if the controller achieves its objective—and
y corresponds to the estimation of the unknown parameter in the system. The parameter η
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Figure 17. Case viii: 1.0 < γ < ∞. The two-parameter unfolding in the (a, b)-plane with the bifurcation
curves C (cyan), L (black), I (magenta), T (orange), and E (green); compare with Figures 5 and 6. Repre-
sentative phase portraits near C0 are presented counterclockwise from the second image at the top, and near
C1 clockwise from the third image at the top; shown are W and F (W ) (red curves), J0 and J1 (black curves),

and Ĵ0 (gray curve). The data is for γ = 2.0, with phase portraits for b = −8.0 and a = 6.5, a = 4.5, a = 3.2,
a = 2.3, a = 1.5, and a = 0.3, respectively.

corresponds to a constant disturbance of the system, and p is directly related to the adaptation
gain. The parameters β and c determine the effectiveness of the feedback controller; β = 1
was used in [9]. The noninvertibility of the map is due to the time delay, or sampling time,
when constructing the feedback.

The three-parameter family with β = 1 was also studied in the tutorial paper [10], where
it was shown that a saddle exists with an unstable manifold that interacts with a cusp on J1.
The phase portraits in [10] were a direct motivation for us to investigate the codimension-two
bifurcation organizing this type of behavior, namely, the cusp-cusp bifurcation. Our study
of the possible unfoldings in section 4 indicates that the family (6.1) for β = 1 displays the
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Figure 18. Global phase portrait of the map g of (6.1) for p = 0.81, c = 1.2, η = −0.153, and β = 1.0005.
Shown is how the unstable manifold Wu(Γ) (red curve) of the saddle period-30 orbit Γ (green crosses) interacts

with the curves J0 (black curve), Ĵ0 (gray curve), and J1 (black cusped curve). The situation is close to a
cusp-cusp bifurcation, as is evidenced by how Wu(Γ) approaches the cusp point C1.

arrangements of an invariant curve near a cusp point C1 that can be found in unfolding vii.
The respective phase portraits are part of a scenario that involves the unstable manifold of a
period-30 orbit inside a resonance tongue in some appropriate parameter plane. Unfortunately,
while this unstable manifold has a quadratic tangency with J0 very close to the precusp point
C0, it is not possible to vary the parameters such that the tangency occurs exactly at C0

before leaving the narrow period-30 resonance tongue.

In order to find a cusp-cusp bifurcation for the family (6.1) it is necessary to vary β.
Specifically, we consider the (η, β)-plane for fixed p = 0.81 and c = 1.2. By starting at
(η, β) = (−0.14, 1.0), we found a cusp-cusp point at (η, β) ≈ (−0.14439095, 1.00181158).
Figure 18 shows the general arrangement of the period-30 orbit Γ (green crosses) and its
unstable manifold W u(Γ) (red curves) for p = 0.81, c = 1.2, η = −0.153, and β = 1.0005.
Successive images on the orbit Γ alternate from left to right, move up the middle of the figure,
and then separate around the outsides. There are 15 points on each of the two “circles”
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Figure 19. Panel (a) shows the bifurcation diagram in the (η, β)-plane of (6.1) for fixed p = 0.81 and
c = 1.2. A period-30 resonance tongue emanates from a Neimark–Sacker bifurcation NS (gray curve) and is
bounded by saddle-node curves SN (purple). The curves C of cusp transition (cyan) and L of loop creation
(black) inside the tongue are tangent at a cusp-cusp bifurcation point (black dot). Panels (b)–(d) are for
(η, β) = (−0.153, 1.0005) and show enlargements of Figure 18. The period-30 saddle p0 (green cross) and its
unstable manifold Wu(p0) (red curve) are shown in panel (b) near C0. They map to p1 (green cross) and
Wu(p1) (red curve) under g, which are shown near C1 in panels (c) and the enlargement of (d).

surrounding a period-2 orbit (not shown). Also shown are the curves J0, Ĵ0, and J1; see also
Figure 21 for the global arrangements of these curves. On the scale of Figure 18 it appears
that the system is very close to a quadratic tangency of W u(Γ) at the precusp point C0 on
J0 and a resulting cusp-cusp singularity at C1 on J1. From Proposition 3.2 and Figure 4 we
conclude, with the direction of cuspidal appearance of W u(Γ) near C1, that we must expect
an unfolding of either case vii or case viii.

As part of our subsequent analysis of (6.1) we computed the bifurcation diagram of Fig-
ure 19(a) in the (η, β)-plane for fixed p = 0.81 and c = 1.2; see Appendix A for details of
the numerical algorithms. Figure 19(a) shows a curve NS of Neimark–Sacker bifurcations
along which a torus bifurcates. The resonance tongue of the period-30 orbit emanates from
a resonance point on NS and is bounded by two saddle-node bifurcations of periodic orbits,
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denoted SN. Shown in black is the curve L of loop-creation, which is very close to the cyan
curve C of cusp-transition. The black dot is the codimension-two cusp-cusp point, where
these two codimension-one curves are tangent. To obtain the phase portraits relating to the
cusp-cusp bifurcation, one needs to identify a relevant part of the unstable manifold W u(Γ).
These are the lower left branch of the unstable manifold W u(p0) of the point p0 ∈ Γ, and its
image, the lower left branch of W u(p1) of the point p1 = g(p0) ∈ Γ. Portions of these two
local manifolds are shown in relation to J0 and J1 in Figure 19(b) and (c), respectively, for
the case (η, β) = (−0.153, 1.0005) from Figure 18.

Note from Figure 19(b) that W u(p0) makes a number of close passes “around” C0. This
explains that Figure 19(d) shows several invariant curves locally near C1 that all form loops as
in phase portrait 31, namely, one loop for each “pass” of W u(p0) around C0; When parameters
are changed, it appears possible to create further cusp-cusp points, namely, at tangencies of
different segments of W u(p0) with J0 at C0.

In Figure 20 we show the numerically obtained unfolding of the “first” such cusp-cusp
bifurcation point, where W u(p0) has a quadratic tangency with J0 and Ĵ0 at the precusp point
C0 when it first enters a neighborhood of C0; see panel (a). The cusp-cusp bifurcation was
determined numerically as (η, β) ≈ (−0.14439095, 1.00181158). The central panel shows the
bifurcation diagram around this point in the rescaled (ηr, βr)-plane, where ηr is the distance
from the cusp point in the η-direction and βr is defined as the distance in the β-direction
from the curve L. In this representation the curve L appears as the horizontal ηr-axis and
the cusp-cusp singularity is at the origin, and this allows for a good comparison with the
two-parameter unfoldings of the normal-form setting. Notice the largely differing scales of the
axes, which corresponds to the fact that the curves L (black) and C (cyan) are very close
to each other; compare with Figure 19(a). The remaining curves I, T , and E are sketched
in Figure 20, because they have not been found directly. Rather, they were determined
indirectly by a careful examination of the phase portraits associated with the (ηr, βr)-plane.
Indeed their existence can be deduced from the existence of the respective phase portraits of
W u(p1) relative to J1 near the cusp point C1, which are shown in the surrounding panels of
Figure 20. Overall we conclude that the unfolding of the cusp-cusp bifurcation in Figure 20
is topologically the same as case vii in Figure 16.

We finish by showing in Figure 21 a global view of the period-30 saddle orbit Γ of g with
is unstable manifold W u(Γ) as well as the part of its stable set W s(Γ) that is connected to
Γ. Notice how the complicated structure of homoclinic and heteroclinic orbits interacts with
J1, including the cusp point C1. A parameter-dependent study of this structure can lead to
dramatic changes in the dynamics; see [36]. The interplay between features of diffeomorphisms
and the folding nature due to noninvertibility is responsible for the interest in the break-up
of invariant curves of endomorphisms; see, for example, [10, 11, 24, 27, 22]. It should be clear
from Figure 21 that many interesting questions remain for future research.

7. Conclusions. In this paper we have identified and analyzed a codimension-two bi-
furcation—the cusp-cusp bifurcation—that arises in generic planar endomorphisms f . This
bifurcation is due to the feature of folding of the phase plane along the singular curve J0. Its
image J1 generically has isolated cusp points, which are associated with precusp points on J0

where the eigenvector of the eigenvalue zero of the Jacobian Df is tangent to the curve J0.
The cusp-cusp bifurcation occurs when an invariant curve W is tangent to J0 exactly at a
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Figure 20. The main panel is the bifurcation diagram in the rescaled (ηr, βr)-plane for fixed p = 0.81
and c = 1.2, where ηr is the distance from the cusp point and βr the β-distance from the curve L of loop
creation. In this representation the cusp-cusp bifurcation point (η, β) ≈ (−0.14439095, 1.00181158) is at the
origin. The solid curves C of cusp transition (cyan) and L of loop creation (black) were continued numerically,
while the dashes curves I (magenta), T (orange) and E (green) were found by a systematic exploration of the
(ηr, βr)-plane. In combination with the surrounding representative phase portraits (for ηr < 0), the bifurcation
diagram can be identified as an unfolding of case vii. Panel (a) shows a global overview for η = −0.153 and
β = 0.999727 of Wu(p0) near C0, and panel (b) of Wu(p1) near C1. At this scale panels (a) and (b) are
quite representative for all regions of the bifurcation diagram. The exact structure of the interaction of Wu(p1)
with J1 comes to light only in the enlargements shown in the other panels, which are for η = −0.153 and
β = 0.999727 (case 21), β = 0.999729 (case 27), β = 0.999732 (case 28), β = 0.999738 (case 29), β = 0.9998
(case 30), and β = 1.0005 (case 31).

precusp point C0. This forces the images f(W ) of the invariant curve to have a cusp exactly
at the cusp point C1 on J1.

Under perturbation, the cusp point C1 on J1 persists, but the image f(W ) may have many
different configurations relative to C1 and J1. We chose to define an equivalence relation be-
tween two phase portraits in terms of ordered “generic events” along the image of the invariant
curve f(W ) (see Definitions 3.3 and 3.4). In particular, the codimension-one bifurcations, of
which there are five, can be defined rigorously. Our definition makes equivalences easy to ver-
ify in specific examples and applications. In particular, it agrees with the distinctions between
the different phase portraits and the descriptions of codimension-one bifurcations that have
been reported in the literature. Specifically, in the adaptive control example we presented it
was straightforward to establish the equivalence of the observed phase images with the re-
spective normal-form unfolding. The technical challenge here was to achieve numerically the
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Figure 21. Global phase portrait of the map g of (6.1) for p = 0.81, c = 1.2, η = −0.153, and β = 1.0005,
showing the unstable manifold Wu(Γ) (red curve) and also the stable set W s(Γ) (blue curves) of the period-30
orbit Γ (green crosses); compare with Figure 18.

required resolution of J1 and the unstable manifold segments.

All possible phase portraits in a local neighborhood of C1 are organized into eight different
classes of two-parameter unfoldings. Which case occurs depends on the relative positions of
W , J0, and Ĵ0 at the bifurcation point. We presented these unfoldings and the associated
32 classes of phase portraits (with an additional 17 that may be obtained by conjugation).
Our approach has been to represent the quadratic tangency of W with J0 at C0 by a parabola
of a given steepness, which is a suitable approximation in a small enough neighborhood of
the cusp-cusp point. In combination with the normal form of a map with a cusp singularity
this allowed us to introduce a normal-form setting of the codimension-two bifurcation. The
unfolding parameters in this setting are the horizontal and vertical positions of the maximum
or minimum of the parabola (a and b in (3.1)), where J0 and Ĵ0 are fixed parabolas and C0 is at
the origin. The relative position of the parabola W is represented by the quadratic coefficient
γ. Depending on the value of γ, we found the eight cases i–viii. The main results in the paper
are represented and illustrated by the division of the γ-line in Figure 8, the list of possible
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phase portraits in Figure 9, and the images of the eight unfoldings in Figures 10 through 17.
How these unfoldings manifest themselves in a practical example was demonstrated with a
planar, noninvertible model from adaptive control.

Within the theoretical and numerical framework presented here, it should be possible to
locate and continue the respective bifurcation curves in a variety of examples, even nonin-
vertible maps without a cusp point on J1. This means that one may encounter additional
codimension-two bifurcations as organizing centers. As we have already briefly mentioned,
new bifurcations—of codimension two and three—will also be associated with the boundaries
between the different unfoldings presented here. We believe that new bifurcations of planar
endomorphisms (for example, homoclinic bifurcations [36]) could be investigated using the
same singularity tools utilized in this paper.

Finally, we mention endomorphisms with phase spaces of dimension larger than two, of
which there are hardly any examples in the literature. The reason seems to be that the way
phase space is folded is much more complicated and particularly difficult to visualize. We
believe that the bifurcation analysis of such noninvertible dynamical systems can only be
tackled effectively with tools from singularity theory in the spirit of the study presented here.
This presents an interesting and serious challenge for future research.

Appendix A. Numerical methods. The unstable manifolds in Figures 18 and 21 (red
curves) were computed with the method from [20]. The stable sets shown in Figure 21 (blue
curves) were computed with the Search Circle algorithm introduced in [6], which does not
require the inverse of the map. In fact, shown are the primary manifolds of the 30 periodic
points, that is, the unique pieces of the stable set (of the 30th iterate) that contains the
respective periodic point; see [6] for details. The bifurcation curves for the adaptive control
example Figure 19(a) were computed with the software package TBC [32]. Standard con-
tinuation techniques were used to compute the Neimark–Sacker and saddle-node bifurcation
curves.

In this section we explain how to continue the curves of loop-creation bifurcation and cusp-
transition bifurcation, and to detect the codimension-two cusp-cusp point. To this end we first
formulate abstract bifurcation conditions and then discuss their implementation. Conditions
for other bifurcations can be formulated and implemented similarly within this framework.

A.1. Abstract bifurcation conditions. For the endomorphism f we consider the Jacobian
determinant function J(x) = det(Df(x)). The critical curve J0 is implicitly defined by J0 ≡
{x ∈ R

2 : J(x) = 0}; see (1.2). The tangent to J0 at a point x ∈ J0 is then given by the
perpendicular to the gradient, (∇J(x))⊥. Thus, the defining condition for C0 to be a precusp
point on J0 is that

(A.1) Df(C0) · (∇J(C0))
⊥ =

(
0
0

)
.

To specify the interaction of J0 with the unstable manifold we assume that p ∈ R
2 is a

saddle point of f (or of an appropriate iterate of f) and we let

α : [0,∞) → R
2,

t �→ α(t)
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be a parametrization of a branch of the unstable manifold W u(p), where α(0) = p. Further-
more, we assume that W u(p) intersects the critical curve J0 at a point α(t∗).

We can now formulate the loop-creation condition as

(A.2) Df(α(t∗)) ·α′(t∗) =

(
0
0

)
,

which ensures that W u(p) crosses J0 tangent to the zero eigenvector, that is, the line field E ;
see also Proposition 4.1.

Similarly, we formulate the cusp-transition condition as

(A.3) Df(α(t∗)) · (∇J(α(t∗)))⊥ =

(
0
0

)
,

which ensures that the crossing point is exactly C0.
At the codimension-two cusp-cusp point itself, both α′(t∗) and (∇J(α(t∗)))⊥ are zero

eigenvectors; that is, both (A.2) and (A.3) must hold. However, requiring the latter as a
condition for a cusp-cusp point turns out to be overdetermined. All we really need is either
(A.2) or (A.3), along with ensuring the parallel-vectors condition

(A.4) α′(t∗) · ∇J(α(t∗)) = 0.

A.2. Implementation. The defining conditions for all three noninvertible bifurcations
described above, the loop-creation, the cusp-transition, and the cusp-cusp point, are solved
numerically by Newton’s method. We use the variables

(A.5) x0,x1, . . . ,xk, μ1, μ2,

where the phase variables xi ∈ R
2 and the parameters μ = (μ1, μ2) ∈ R

2. In total these are
2k + 4 scalar variables.

Each system of equations that we construct must, therefore, satisfy 2k+4 scalar equations.
We first list the relevant equations.

1. The condition that x0 is a period-q point gives the two scalar equations:

(A.6) f q
μ(x0) − x0 = 0.

2. We require that x1 be in the unstable eigenspace, which is the common approximation
for the condition that x1 ∈ W u

loc(x0); see [25, 35] for proofs of why this also holds for
noninvertible maps. This gives the single scalar equation

(A.7)
x1 − x0

‖x1 − x0‖ · v⊥ = 0,

where v⊥ is a unit vector perpendicular to the unstable eigenvector v of x0.
3. The condition that x1, . . . ,xk is an orbit for f q

μ (which lies on W u(x0) if x1 does) gives
rise to the 2k − 2 scalar equations

(A.8) f q
μ(xi) − xi+1 = 0, i = 1, . . . , k − 1.

Note that q needs to be replaced here with 2q if the unstable eigenvalue is negative.
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4. The condition xk = C0 gives rise to the two scalar equations

(A.9) Df q
μ(xk) · (∇(Jμ(xk)))

⊥ =

(
0
0

)
.

The partial derivatives in the gradient are computed using a forward difference quo-
tient.

5. The condition that W u
loc(x0) undergoes a loop-creation associated with xk gives rise

to the two scalar equations

(A.10) Df q
μ(xk) · tk =

(
0
0

)
.

Here, the vector tk = Df q(k−1)(x1) · (x1 − x0)/‖Df q(k−1)(x1) · (x1 − x0)‖ is an ap-
proximation to a unit tangent vector of the unstable manifold at xk. This equation
is intended to be used with (A.7) so that x1 − x0 is an eigenvector at x0 and thus an
approximation to a tangent vector to the unstable manifold at x1 if x1 is close to x0.

6. The condition that the tangent to W u
loc(x0) and the gradient of the Jacobian function

are perpendicular gives rise to the single scalar equation

(A.11) (∇(Jμ(xk))) · tk = 0.

7. We also require the standard pseudo-arclength continuation condition that convergence
from the initial guess for Newton’s method is perpendicular to the pseudo tangent T
to the bifurcation curve being computed. This gives rise to the single scalar equation

(A.12) T · ((xk, μ1, μ2) − (xk, μ1, μ2)0) = 0.

Here we approximate the tangent vector T by the direction through the last two
computed points. In our case, we project the tangent vector to the four-dimensional
product of phase and parameter space, where xk is considered to be the phase space
“representative” for the orbit; the zero subscript of the second tuple indicates that
this is the initial guess provided to Newton’s method.

For each of the three bifurcations from section A.1 we require that the 2k+1 equations (A.6),
(A.7), and (A.8) are satisfied. Furthermore, these bifurcations are defined by additional
requirements as follows:

• The codimension-one cusp-transition bifurcation is determined by (A.9) and (A.12),
• the codimension-one loop-creation bifurcation is determined by (A.10) and (A.12), and
• the codimension-two cusp-cusp point is determined by (A.11) along with either (A.9)

or (A.10).
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Mathematical Modeling of the GnRH Pulse and Surge Generator∗
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Abstract. We propose a mathematical model allowing for the alternating pulse and surge pattern of gonad-
otropin releasing hormone (GnRH) secretion. The model is based on the coupling between two
systems running on different time scales. The faster system corresponds to the average activity of
GnRH neurons, while the slower one corresponds to the average activity of regulatory neurons. The
analysis of the slow/fast dynamics exhibited within and between both systems allows for explaining
the sequence of different secretion patterns (slow oscillations, fast oscillations, and periodical surge)
of GnRH secretion as a hysteresis loop. Specifications on the model parameter values are derived
from physiological knowledge in terms of amplitude, frequency, and plateau length of oscillations.
The behavior of the model is finally illustrated by numerical simulations reproducing natural ovarian
cycles and either direct or indirect actions of ovarian steroids on GnRH secretion.
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neuroendocrinology, GnRH pulsatility, GnRH surge
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1. Introduction.

1.1. Endocrine background. The reproductive function involves tightly and finely con-
trolled processes. The reproductive axis, usually called the gonadotrope axis, includes the
hypothalamus, within the central nervous system, the pituitary gland, and the gonads (ovaries
in females and testes in males). Specific hypothalamic neurons secrete the gonadotropin re-
leasing hormone (GnRH) in a pulsatile manner. The pulsatile GnRH secretion pattern ensues
from the synchronization of the secretory activity of individual GnRH neurons. The release of
GnRH into the pituitary portal blood induces the secretion of the luteinizing hormone (LH)
and follicle stimulating hormone (FSH) by the pituitary gland. The changes in the frequency
of GnRH pulses (between 1 pulse per hour and 1 pulse every 6 hours in the course of an ovarian
cycle) has a fundamental role in the differential control of the secretion of both gonadotropins:
the secretion of LH is enhanced by higher frequencies, while that of FSH is enhanced by lower
frequencies [13]. On the gonadic level, FSH and LH sustain germ cell production and hormone
secretion. In turn, hormones secreted by the gonads modulate the secretion of GnRH, LH,
and FSH within entangled feedback loops.

In females, the frequency of GnRH pulses is subject to the control exerted by ovarian
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steroids—estradiol and progesterone. Progesterone slows down GnRH pulsatility [12], which
leads to a slower frequency during the luteal phase (when progesterone levels are high) com-
pared to the follicular phase [7]. On the contrary, estradiol speeds up GnRH pulse frequency,
but at the expense of a decrease in pulse amplitude [6], so that the whole feedback effect on
rate secretion is rather inhibitory (negative estradiol feedback).

The GnRH secretion pattern alters dramatically once per ovarian cycle, resulting in the
GnRH surge characterized by massive continuous release of GnRH in response to increasing
levels of estradiol [10] (positive estradiol feedback). The GnRH surge triggers the LH surge,
which is responsible for ovulation, leading to the release of fertilizable oocytes.

The estradiol signal is conveyed to GnRH neurons by regulatory neurons (also designed
as interneurons) either directly or after other neuronal relays. Transmission from interneu-
rons calls to many different neurotransmitters (see review in [8, 16]). The balance between
stimulatory and inhibitory signals emanating from interneurons controls the behavior of the
GnRH network [8].

Recently, an especially interesting type of regulatory neurons has been discovered. Kiss-
peptin neurons act on GnRH neurons via the G-protein coupled receptor GPR54 [5]. They
are very good candidates for relaying both positive and negative estradiol feedback, since they
react to estradiol in opposite ways according to the anatomic area of the hypothalamus where
they lie.

1.2. Model objectives. We aim at formulating a phenomenological, data-driven model of
GnRH secretion. This paper focuses on the coupling between the GnRH neuron network and
the regulatory interneuron network. Each network is represented by the behavior of a single
average neuron. The key point in the design of the model consists in entering as reasonable
input 2 coupled systems (a slow one with a faster one) to generate a definite sequence of events
in the model output: GnRH secretion. This coupling yields a 3 time-scaled model, which is
able to capture not only the cyclic transition from a pulsatile to a surge secretion pattern
of GnRH but also the increase in the pulsatility frequency between the luteal and follicular
phases. It also separates a specific dynamical state corresponding to pulsatility resumption
after the surge. Besides, parametrization of the model is subject to physiological specifications
expressed as constraints on the GnRH output and allows us to reproduce the direct (on the
GnRH network) or indirect (via the regulatory network) effects of ovarian steroid hormones
(estradiol and progesterone) on GnRH secretion.

In summary, we aim at reproducing a synthetic mathematical representation of the GnRH
secretion pattern, fitting available observations—in agreement with schematic “hand-made”
representations such as that proposed by Herbison (top of Figure 4 in [8]).

The paper is organized as follows. In section 2, we introduce the equations of the model.
We comment on the numerical simulations in section 3 to motivate the analysis of the bifur-
cations in a model-derived 2-scaled system in section 4. We finally address the question of
amplitude and frequency control in section 5.

2. Model design and analysis.

2.1. Coupling oscillatory neuronal dynamics. We consider the following four-dimensional
(4D) dynamical system:
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εδẋ = −y + f(x),(2.1a)

εẏ = a0x + a1y + a2 + cX,(2.1b)

εγẊ = −Y + F (X),(2.1c)

Ẏ = b0X + b1Y + b2,(2.1d)

z(t) = χ{y(t)>ys}.

Equations (2.1a) and (2.1b) correspond to a fast system representing an average GnRH
neuron, while (2.1c) and (2.1d) correspond to the slower system representing an average regu-
latory neuron. The x, X variables represent the neuron electrical activities (action potential),
while the y, Y variables relate to ionic and secretory dynamics. The fast variables are assumed
to have two stable stationary points separated by a saddle. Their bistability is accounted for
by the cubic functions f(x) and F (x). The intrinsic dynamics of the slow variables follows
a growth law of very small velocity (a1 � 1). In each system, the fast and slow variables
act reciprocally on each other. The coupling between both systems is mediated through the
unilateral influence of the slow regulatory neurons onto the fast GnRH ones (cX term in
(2.1b)). The coupling term aggregates the global balance between inhibitory and stimulatory
neuronal inputs onto the GnRH neurons. The global system exhibits 3 time scales given by
εδ, ε, and 1. Constant γ is close to 1.

In many cell types, the reaching of threshold intracellular calcium concentrations is known
to trigger secretion. As far as GnRH secretion is concerned, much evidence for the inducing
effect of calcium has also been gathered (see discussion in [17] for details). Hence, we associate
GnRH secretion to a threshold ionic activity y = ys and finally keep as representative GnRH
signal z(t) = χ{y(t)>ys}.

2.2. Mechanisms underlying the pulse to surge transition.

2.2.1. Bifurcations in the fast GnRH system. System (2.1a)–(2.1d) can be analyzed in
the general setting of fast-slow dynamics. The slow variable X then enters the fast system
(2.1a)–(2.1b) as a parameter. Bifurcations may thus arise as the X parameter varies. The
fast system (after changing time t into εt) also exhibits fast-slow dynamics features due to the
δ time scale:

δẋ = −y + f(x),(2.2a)

ẏ = a0x + a1y + a2 + cX,(2.2b)

with f(x) = ν0x
3 + ν1x

2 + ν2x.(2.2c)

The fast nullcline ẋ = 0 has a cubic shape and the stationary points are obtained as intersec-
tions of this cubic nullcline with the other nullcline ẏ = 0, a straight line which moves in the
plane depending on the values of the slow variable X. Without loss of generality, we assume
that limx→−∞ f(x) = +∞. We also assume that the parameters (a0, a1) are chosen in such a
way that there is one single stationary point whatever the value of X may be (see Figure 1).
Intersection points of the cubic nullcline with the line nullcline are solutions of the equation

(2.3) f(x) +
a0

a1
x +

(cX + a2)

a1
= 0.
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Let x0 = s(X) denote the unique solution to (2.3). We now derive from classical arguments
the nature of the stationary point (s(X), f(s(X))). The eigenvalues of the linearized system
are solutions of the characteristic polynomial

λ2 −
[
f ′(x0)

δ
+ a1

]
λ +

1

δ
[a0 + a1f

′(x0)] = 0.

If the following conditions are fulfilled, two roots are complex conjugates with a negative real
part: ⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f ′(x0)

δ
+ a1 < 0,

a0

δ
+

a1

δ
f ′(x0) > 0,

[
f ′(x0)

δ
− a1

]2

− 4
a0

δ
< 0.

Let x−
0 and x+

0 denote the two roots of the equation

f ′(x)

δ
+ a1 = 0.

Then, if s(X) < x−
0 , the stationary point is a stable focus. If X varies in such a way that

x0 = s(X) crosses the value x−
0 , the system (2.2a)–(2.2b) undergoes a Hopf bifurcation, and

the stationary point becomes unstable as a stable limit cycle appears. This stable limit cycle
disappears when x0 > x+

0 and the stationary point becomes stable again. This reasoning is
illustrated in Figure 1.

2.2.2. Limit cycle of the slow system. The dynamics of the X variable is such that, if
the straight-line nullcline sweeps the (x, y) phase plane (from left to right and right to left)
periodically, the Hopf bifurcations occur themselves periodically.

The qualitative analysis of the slow dynamics is analogous to that of the fast dynamics.
We assume that the parameters (b0, b1, b2) are fixed so that there is one single stationary
point (X0, F (X0)) which is an unstable focus (allowing the slow system to display a stable
limit cycle): ⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

F ′(X0)

γ
+ b1 > 0,

b0

γ
+

b1

γ
F ′(X0) > 0,

[
F ′(X0)

γ
− b1

]2

− 4
b0

γ
< 0,

where F (x) = μ0X
3+μ1X

2+μ2X. The oscillation associated to this limit cycle is of relaxation
type (as in the van der Pol system). The dynamics along the limit cycle displays slow and
fast parts alternatively (see Figure 2).

2.2.3. Dynamics of the coupled system. The different phases of the limit cycle exhibited
by the slow regulatory system (see Figure 2) drive the global behavior of the fast GnRH system
(see Figure 3):
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Figure 1. Nullclines of the fast system. The pink solid line corresponds to the ẋ = 0 nullcline and the
cyan solid line to the ẏ = 0 nullcline for X = 0 (no coupling). The green solid line corresponds to the curve
y = f ′(x). The (x−

0 , x+
0 ) roots of f ′(x) = −a1δ ≈ 0 roughly correspond to the intersection points of the green

line with the black horizontal line. As the value of X varies, the cyan nullcline sweeps the x-axis within or
outside the [x−

0 , x+
0 ] interval, between extreme positions delimited by the brown and blue straight lines. Clicking

on the above image displays the accompanying animation (67382 01.mov [3.03MB]).
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Figure 2. Slow (X,Y ) limit cycle. The blue line corresponds to the limit cycle in the (X,Y ) plane. The
slow parts of the cycle correspond to branches of the cubic nullcline represented by pink diamonds (phases 2
and 4), and the fast parts correspond to the jumps from one branch of the cubic to the other (phases 1 and 3).

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/67382_01.mov
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/67382_01.mov
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Table 1
Numerical values of the model parameters.

ε 1/40 δ 1/80 γ 1
a0 1 a1 0.01 a2 1.18
b0 1 b1 0.04 b2 1
ν0 −1 ν1 0 ν2 4
μ0 −1 μ1 0 μ2 4
c 1.05 ys 2.8

1. the first phase of the cycle, where X increases abruptly, corresponds to the ascending
part of the surge;

2. the second phase of the cycle, where X decreases slowly, corresponds to the duration
of the surge;

3. the third phase of the cycle, where X decreases abruptly, corresponds to the decreasing
part of the surge;

4. the fourth and most lasting phase of the cycle, where X increases slowly, encompasses
two different GnRH secretion patterns:
(a) as long as X ≥ x+

0 , the GnRH level is almost constant, since the fast system
admits a stable steady state and the sweeping dynamics of the straight line ẏ = 0
lies in a slow phase; hence this phase explains the existence of a plateau after the
surge (we provide as additional material a video illustrating that point);

(b) when X < x+
0 the pulsatility of GnRH is recovered and the pulse frequency

increases with X.

3. Numerical simulations. The numerical values of the model parameters can be con-
strained by physiological specifications regarding the features (frequency, amplitude, and
plateau length) of the GnRH secretory patterns [7]. The GnRH output should be charac-
terized by

• the pulse duration to pulse frequency ratio,
• the pulse amplitude to surge amplitude ratio,
• the surge frequency to pulse frequency ratio, and
• the surge duration to whole-ovarian-cycle duration.

A set of parameters subject to such constraints is displayed in Table 1, and the corresponding
model outputs are illustrated in Figures 3, 4, and 5.

The main qualitative features captured by the model consist in
1. the cyclic transition from a pulse to a surge secretion pattern, which occurs after a

short transitory period and seems not to be subject to initial conditions;
2. a delay before resumption of pulsatility; and
3. the increase in pulse frequency from the luteal (postsurge) phase to the follicular

(presurge) phase (see Figure 6).
If the first two properties (pulse to surge alternating and pulsatility resumption delay) were
expected from the study derived in section 2, the third one (frequency increase) remains
unexplained at this point, even if it is consistent with endocrinological data. We now explain
the mechanisms underlying those properties from the bifurcation analysis of a 2-scaled system
derived from the model.
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Figure 3. Outputs from the coupled systems. Pink line: X(t). Cyan line: y(t).
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Figure 4. Long-term outputs from the coupled systems. Pink line: X(t). Cyan line: y(t).

4. Bifurcation analysis of a model-derived 2-scaled system. Our approach is adapted
from the “geometrical dissection” [1] that has been successfully applied to several models in
Computational Neurosciences, especially those dealing with bursting oscillations.

In classical slow/fast systems, the slow variable is “frozen” and intervenes as a parameter
in the study of the bifurcations of the fast system. In a similar way, we consider the fast
three-dimensional (3D) system with two time scales,
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Figure 5. GnRH secretion pattern. The secretory activity of GnRH
neurons occurs for threshold ionic activity z(t) = χ{y(t)>ys}.
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Figure 6. Decrease in inter-
pulse intervals from the luteal to the
follicular phase (top: from time 100
to time 337; bottom: from time 475
to time 710).

δẋ = −y + f(x),(4.1a)

ẏ = a0x + a1y + a2 + cX,(4.1b)

γẊ = −Y + F (X),(4.1c)

where Y acts as a varying parameter. Below, we restrict our study to the case where the
other parameter values are fixed and close to those of Table 1. This fast system breaks
into an independent, one-dimensional (1D) system (4.1c), and a two-dimensional (2D) system
(4.1a)–(4.1b) forced by the 1D system.

Depending on the Y value, Y = F (X) may have one, two, or three roots. Accordingly,
(4.1c) displays either one of the two possible attracting points (denoted, respectively, by
X−(Y ) and X+(Y )) or both of them separated by a repulsive point (denoted by X0(Y )). A
saddle-node bifurcation occurs for the values of Y corresponding to the ordinates of the local
extrema of the cubic function: (X, Y ) = ±(2/

√
3, 16/(3

√
3)). The whole analysis of Y -driven

bifurcations in the 3D system (4.1a)–(4.1c) is summarized in Table 2. Assuming a1 ≈ 0, we
introduce x−(Y ), x0(Y ), and x+(Y ) as the x values associated, respectively, with X−(Y ),
X0(Y ), and X+(Y ), from xi = −(a2 + cXi)/a0, i = −, 0, +.

• For −∞ < Y < −16/(3
√

3), equation (4.1c) admits the attractive node X+(Y ) as
single stationary point, and x+(Y ) > x+

0 ≈ 1.15 (cf. legend of Figure 1). It ensues
from the study of subsection 2.2.1 that the 2D system (4.1a)–(4.1b) exhibits a stable
focus, so that the 3D system (4.1a)–(4.1c) displays one single stable stationary point.

• When Y = −16/(3
√

3), X+(Y ) = 4
√

3, x+(Y ) ≈ −3.60, equation (4.1c) undergoes
a saddle-node bifurcation. The X0(Y ) saddle and the X−(Y ) attractive node appear
and dissociate from the coincident point X0(Y ) = X−(Y ) = −2/

√
3, associated with

x0(Y ) = x−(Y ) = −0.032. Both x0(Y ) and x−(Y ) belong to the
[
x−

0 ; x+
0

]
interval

(cf. legend of Figure 1), for which the 2D system displays an unstable focus and a
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Table 2
Bifurcations in the 3D system (4.1a)–(4.1c) according to the Y value. 1D corresponds to (4.1c), 2D to

system (4.1a)–(4.1b), and 3D to system (4.1a)–(4.1c). X−(Y ), X0(Y ), and X+(Y ) are the three possible roots
of F (X) = Y , and x−(Y ), x0(Y ), and x+(Y ) are the corresponding x values, with xi = −(a2 + cXi)/a0,
i = −, 0,+. The grey superimposed oriented line describes the hysteresis loop in the original 4D system
(2.1a)–(2.1d). Numbers in bold font correspond to exact values, and numbers in standard font correspond to
approximate values. The • symbol stands for saddle-node bifurcation, the � symbol for Hopf bifurcation, and
the � symbol for saddle-node bifurcation of periodic orbits. The circled numbers refer to the sequence of phases
listed in subsection 2.2.3.
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stable limit cycle. The 3D system thus exhibits simultaneously an attractive stationary
point associated to X+(Y ), an unstable stationary point together with a hyperbolic
periodic orbit associated to X0(Y ), and a hyperbolic stationary point together with
an attractive periodic orbit associated to X−(Y ). Hence Y = −16/(3

√
3) is also a

bifurcation point for the 3D system, which triggers both a saddle-node bifurcation of
periodic orbits and a saddle-node bifurcation of stationary points.

• As Y keeps increasing, x0(Y ) reaches the value of the abscissa of the f(x) cubic local
minimum, where x0(Y ) = −2/

√
3 ≡ x−

0 , X0(Y ) ≈ −0.024, and Y ≈ −0.096. The 2D
system undergoes a Hopf bifurcation. In the 3D system, the hyperbolic periodic orbit
and the unstable stationary point coalesce into a hyperbolic stationary point.

• As Y increases further, x−(Y ) reaches the value of the abscissa of the f(x) cubic local
maximum, where x−(Y ) = 2/

√
3 ≡ x+

0 , X−(Y ) ≈ −2.22, and Y ≈ 2.1. The 2D system
undergoes another Hopf bifurcation. In the 3D system, the attractive periodic orbit
and the hyperbolic stationary point coalesce into an attractive stationary point.

• Finally, when Y = −16/(3
√

3), equation (4.1c) undergoes a saddle-node bifurcation
again. The X0(Y ) saddle and the X+(Y ) attractive node disappear beyond the coin-
cident point X0(Y ) = X+(Y ) = 2/

√
3, associated with x0(Y ) = x−(Y ) = −2.39.

We now go back to the 4D system (2.1a)–(2.1d) to unravel the hysteresis loop underlying
the sequence of phases listed in subsection 2.2.3.

• In phase 1, Y remains almost constant and system (4.1a)–(4.1c) displays the single
attractive point associated to X+(Y ), corresponding to the ascending part of the surge.

• As X+(Y ) decreases slowly, the solution of the 4D system remains close to the at-
tractive point, corresponding to the duration of the surge (phase 2), until this node
disappears through a saddle-node bifurcation. Then the solution switches to the other
attractive node X−(Y ), corresponding to the decreasing part of the surge (phase 3).

• In phase 4, as X−(Y ) increases slowly, the solution remains close to the attractive
point associated to X−(Y ), corresponding to the plateau. Eventually, this attractive
point disappears into an attractive periodic orbit via a Hopf bifurcation, initiating the
pulsatile phase.

• As phase 1 starts again, X speeds up and the pulse frequency increases. At some
point the attractive periodic orbit disappears into a saddle-node bifurcation of periodic
orbits. The solution of the 4D system then jumps back to the single attractive node
associated to X+(Y ) and recovers the ascending part of the surge.

5. Identification of parameter targets for steroid control. In this section we derive some
tools that will be useful in controlling the amplitude and frequency of oscillations in either
the slow regulatory system or the GnRH system and hence in mimicking either indirect or
direct effects of steroid feedback.

5.1. Amplitude and frequency of the slow regulatory oscillations.

5.1.1. Amplitude of the slow limit cycle. Let us first derive a parametric expression of
the F (X) cubic as a function of its extrema. Denote by −α and β the roots of F ′(X) = 0.
Without loss of generality, we assume α > 0 and β > 0 and choose the cubic function F (X)
so that it passes through the origin and takes minus unity as coefficient for the higher (cubic)
power:
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Figure 7. Amplitude and period of the slow limit cycle (X,Y ). The period of the slow (X,Y ) limit
cycle is computed from the time taken to go along the path A(−β2, F (−β2))—B(−α, F (−α))—C(α2, F (α2))—
D(β, F (β)), with F ′(α) = F ′(β) = 0, F (α2) = F (α), F (β2) = F (β). The global amplitude of X corresponds to
α2 + β2, and the surge-related amplitude corresponds to α2 + α = β + β2.

F (X) = −X3 + μ1X
2 + μ2X with μ1 > 0, μ2 > 0, and μ0 = −1,

F ′(X) = −3X2 + 2μ1X + μ2

= −3(X + α)(X − β)

= −3
[
X2 + X(α − β) − αβ

]
,

F (X) = −X3 − 3

2
(α − β)X2 + 3αβX.

Hence α and β are the positive roots of

{
3αβ = μ2,

3β2 − 2μ1β − μ2 = 0

so that

α =
μ2

μ1 +
√

μ2
1 + 3μ2

and β =
μ1 +

√
μ2

1 + 3μ2

3
.

To compute the amplitude of the X variable, we now seek the points of the cubic verifying
either F (X) = F (−α) or F (X) = F (β), and F ′(X) �= 0 (see Figure 7):

F (X) = F (−α) = −1

2
α2(α + 3β) ⇔ (X − α)2

[
X − 1

2
(α + 3β)

]
= 0,
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F (X) = F (β) =
1

2
β2(β + 3α) ⇔ (X − β)2

[
X +

1

2
(β + 3α)

]
= 0.

Define

α2 ≡ 1

2
(α + 3β) and β2 ≡ 1

2
(β + 3α).

Then F (α2) = F (−α), F (−β2) = F (β), and the global amplitude of X is thus given by
α2 + β2 = 2(α + β), while the fast jump amplitude (related to the surge amplitude in the
GnRH system) is given by α2 + α = β + β2 = 3

2(α + β). In the symmetric case where α = β,
those amplitudes respectively reduce to 4α and 3α.

5.1.2. Period of the slow limit cycle. The frequency of the regulatory oscillations drives
the frequency of the GnRH surge. The period of the slow cycle (i.e., the time taken to move
along the whole cycle) in X indeed corresponds to the period of the GnRH surge.

Let us denote by T the period of the (X, Y ) limit cycle. The time TX taken to move along
the slow part (i.e., along the branches of the cubic function F ) of the cycle can be computed
as

TX =

∫ F (−α)

F (−β2)

dY

b0X + b1Y + b2
+

∫ F (β)

F (α2)

dY

b0X + b1Y + b2

=

∫ −α

−β2

F ′(X)dX

b0X + b1F (X) + b2
+

∫ β

α2

F ′(X)dX

b0X + b1F (X) + b2
.

It is worth noticing that, within the TX duration, the time taken to climb up the descending
(right) branch of the cubic (integration from F (α2) to F (β)) corresponds to the duration of
the surge.

The time TY taken to move along the quasi-horizontal fast parts (corresponding to the
jumps from one branch of the cubic function to another) of the (X, Y ) limit cycle can be
computed as

TY =

∫ α2

−α

γdX

F (X) − Y
+

∫ −β2

β

γdX

F (X) − Y
.

Alternatively, TY can be estimated as ≈ 2εγ TX , according to the ratio of time constants in
(2.1c) and (2.1d).

The whole (X, Y ) limit cycle period can be computed finally from T = TX + TY .

5.1.3. Changes in amplitude and frequency according to a prescribed ratio. From the
previous analysis, we are able to assess numerically the frequency and amplitude of the slow
(X, Y ) limit cycle for any arbitrary parameter set. We now make a further remark.

Given the system

γẊ = F (X) − Y,

ẏ = b0X + b1Y + b2,

one can find
{
γ̄, f̄ , b̄0, b̄1, b̄2

}
to transform it into another system,

γ̄Ẋ = F̄ (X) − Y,(5.1a)

Ẏ = b̄0X + b̄1Y + b̄2,(5.1b)
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oscillating with prescribed λ1 frequency and λ2 amplitude ratios.

This change of variables leads to

γ̄ = λ1γ,

b̄0 = λ1b0,

b̄1 = λ1b1,

b̄2 = b2
λ1

λ2
,

μ̄0 = λ2
2μ0,

μ̄1 = λ2μ1.

In other words, the new system reads

γλ1Ẋ = −Y + λ2
2μ0x

3 + λ2μ1x
2 + μ2x,

Ẏ = λ1

(
b0X + b1Y +

b2

λ2

)
.

The transformation does not modify the number of intersection points between the ẋ = 0
and ẏ = 0 nullclines, so that the qualitative behavior of the system is preserved.

5.2. Targeting parameters for steroid effect. The model allows us to distinguish between
two possible pathways for steroid feedback on GnRH secretion, either directly, by acting on
the parameters of the faster system, or indirectly, by acting on those of the slower one. The
former way is dedicated to the control of the frequency and amplitude of GnRH pulses, while
the latter is dedicated to the control of the onset time and size of the GnRH surge.

5.2.1. Steroid-like direct effects. Targeting adequate model parameters in the fast sys-
tem in an acute way allows us to transiently alter the amplitude and frequency of GnRH
pulses.

Figure 8 illustrates the effect of a parameter-targeting bolus (λ1 = 2, λ2 = 1.5) from time
525 to 575 leading to a frequency-increased, amplitude-decreased pulsatile regime. Such an
output can be compared with experimental results gathered in [6].1 These effects consist in
a reduction of GnRH pulse amplitude and a stimulatory action on GnRH pulse frequency, as
accounted for by the model results.

Figure 9 illustrates the effect of a parameter-targeting bolus (λ1 = 0.5, λ2 = 0.5) from
time 525 to 575 leading to a frequency-decreased, amplitude-increased pulsatile regime. Such
an output can be compared by experimental results gathered in [12].2 These effects consist in
a stimulatory action on GnRH pulse amplitude and a decrease in GnRH pulse frequency, as
accounted for again by the model results.

Care should be taken in the mechanistic interpretation of those simulations. Direct effect
in the models should be interpreted as acute effects rather than direct steroid effects on GnRH

1Where estradiol effects on GnRH secretory characteristics are summarized in Figure 3 of [6] and GnRH
portal time series are displayed in Figure 2 of [6].

2Where progesterone effects on GnRH secretory characteristics are summarized in Figure 4 of [12].
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Figure 8. Direct estradiol-like effect on portal GnRH output (left) and y output (top right and enlarged on
bottom right). The parameter values were acutely altered in a bolus way from time 525 to 575.
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Figure 9. Direct progesterone-like effect on portal GnRH output (left) and y output (top right and enlarged
on bottom right). The parameter values were acutely altered in a bolus way from time 525 to 575.

neurons, whether they are nuclear-initiated, through steroid receptors,3 or membrane-initiated
(a recently discovered signaling pathway [14]). But at the least, the simulations correspond
to physiological short-term effect implying at most a few neuronal delays on short time scales,
in contrast to the indirect, long-term effects described below.

5.2.2. Steroid-like indirect effects. Targeting adequate parameters in the slow system in
a chronic way allows us to reproduce the known effects of progesterone on the surge amplitude
and delay for surge onset. Figure 10 illustrates the effect of decreasing the amplitude and
increasing the frequency of the oscillations in the X regulatory variable. This leads to a
decrease in the delay between two consecutive GnRH surges as well as in the surge amplitude.
Such combined effects mimic those that have been observed in an experimental study of the
long term effect of progesterone priming [4], which compared the GnRH surge after exposure

3GnRH neurons are endowed with type β estradiol receptors [9] but do not own progesterone receptors [15].
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Figure 10. Effect of progesterone-like priming on surge onset and amplitude. Top panel: Reference sit-
uation. The bottom panel situation corresponds to the absence of progesterone priming, with shortened surge
onset and decreased surge amplitude. Pink line: X(t). Cyan line: y(t). Blue line: GnRH output.

or not to progesterone. In the absence of progesterone priming, the size of the GnRH surge
was decreased and its onset shortened.

6. Conclusion. We addressed in this paper the question of how the GnRH generator
switches from a pulsatile to a surge secretion mode. Such a question arises on the physiological
scale when considering the behavior of average GnRH neurons whose synchronization is taken
for granted. Zeeman, Weckesser, and Gokhman [18] tackled the question of the GnRH-induced
LH surge on the pituitary gland level, considering the GnRH self-priming on gonadotroph cells
as a resonance phenomenon. The question of synchronization has been addressed in a recent
paper [11].

On the hypothalamic level, only the variability in the frequency of GnRH pulses (rather
than its control) has been, up to now, the focus of mathematical models based on nonlinear
dynamics [2, 3]. Our modeling approach is comparable to these previous ones in the sense
that it also considers the effect of the average activity of one group of neurons on the activity
of another group. But the way by which this effect is introduced differs. They used as
external inputs an impulsion train, whereas we assume that both groups can be represented
by the same type of equations (of FitzHugh–Nagumo type) but with different time scales.
Following a 3 time-scaled approach, we have managed to account not only for the alternating
pulse and surge pattern of GnRH secretion but also for the frequency increase in the pulsatile
regime. We have also unraveled the possible existence of a pause before pulsatility resumption
after the surge, which could be investigated from an experimental viewpoint. Hence the
capacity of our model to display complex features interpretable against experimental evidence
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suggests that such a modeling approach may be a useful complement to experimental studies
of neuroendocrine systems.
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Spurious Lyapunov Exponents Computed from Data∗
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Abstract. Lyapunov exponents can be difficult to determine from experimental data. In particular, when using
embedding theory to build chaotic attractors in a reconstruction space, extra “spurious” Lyapunov
exponents can arise that are not Lyapunov exponents of the original system. By studying the
local linearization matrices that are key to a popular method for computing Lyapunov exponents,
we determine explicit formulas for the spurious exponents in certain cases. Notably, when a two-
dimensional system with Lyapunov exponents λ and μ is reconstructed in a five-dimensional space by
a generic embedding, the reconstructed system has exponents λ, μ, 2λ, λ+μ, and 2μ. In particular,
when μ < 0 < λ, we have exponents 2μ < μ < λ + μ < λ < 2λ. The importance of this is that,
for a generic embedding, the true exponents λ and μ are neither the largest nor smallest values nor
even in the middle of this list. We view this result as a caution to those who wish to separate the
spurious exponents from the true, especially since we rarely know a priori how many exponents are
spurious.
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1. Introduction. In the analysis of observed physical systems, it has become standard
practice to study an auxiliary system reconstructed from a time series of measured data.
Successful reconstruction of the original system’s attractor is the basis of the method for
Lyapunov exponent calculation proposed by Eckmann and Ruelle [1] (see also [2]) and by Sano
and Sawada [3]. However, since the reconstructed attractor often lies in a larger-dimensional
space than the original system, the calculations produce too many exponents. This leads to
an important question: how do we distinguish the true Lyapunov exponents of the underlying
system from the extra “spurious” ones present for the reconstructed system? For the present
paper, we shall assume that we have ideal conditions, namely, that we know the dimension
of the underlying dynamics, that the Lyapunov exponents of the underlying dynamics exist,
that there is no noise, that we have infinitely long data trajectories, and that numerical
methods converge to the right objects. In other words, we attempt to determine the values
that the Eckmann–Ruelle procedure should ideally produce if all practical issues could be
satisfactorily addressed. In this paper, we answer the above question for one specific case:
when a two-dimensional dynamical system is reconstructed in five-dimensional space. A two-
dimensional system (such as the Hénon map) has two Lyapunov exponents, denoted λ and
μ. The Eckmann–Ruelle procedure yields five exponents since the reconstruction space is R
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We show that for a generic embedding (in the ideal case) these five exponents are λ, μ, 2λ,
λ + μ, and 2μ.

At this point, we make several observations. First, given five numbers, if one were told
that they must be λ, μ, 2λ, λ + μ, and 2μ for some λ and μ, it would be straightforward to
determine the corresponding values of λ and μ. More importantly, if μ < 0 < λ, then the
computed exponents will be ordered

2μ < μ < λ + μ < λ < 2λ,

and both the largest and smallest exponents will be spurious. This observation should serve
as a caution to the users of these methods: even under ideal circumstances, size criteria will
not let you select the true exponents, especially when you do not know how many exponents
are spurious. Others have also shown that the largest exponent can be spurious, for example
Dechert and Gençay [4], who gave an explicit example of an embedding from R

2 into R
3 where

the spurious exponent could be arranged to take any value and in particular could be larger
than the largest true exponent. It follows from our results that generically the largest exponent
of the reconstructed dynamics will be spurious (when one of the exponents is positive), and
that this property is independent of the reconstruction.

Our arguments extend naturally to other cases as well [5]. For example, when a one-
dimensional system (such as the logistic map) with Lyapunov exponent λ is reconstructed in
m-dimensional space, the Eckmann–Ruelle procedure will produce the m exponents λ, 2λ, . . . ,
mλ. Observations in [2, pp. 4976–4978] allude to such a formula. In addition, since time-delay
embeddings are a special case of measurement function (consisting of time-delayed versions
of a scalar measurement [6, 7]), our results hold true for these popular embeddings as well.
These results were announced in [8] and are presented here in more detail. Numerical studies
are reported in [9], where noise is added.

The “Eckmann–Ruelle” algorithm presented in [2] for computing Lyapunov exponents
has three major steps. First, one reconstructs the attractor in some m-dimensional Euclidean
space of measurements. (The attractor reconstruction process will be described in more de-
tail in section 2.) Along the reconstructed attractor, there is a time-τ map F , which takes
the m-vector Pt at time t to the m-vector Pt+τ at time t + τ . This map F represents the
reconstructed dynamics, and F (Pt) is defined to be Pt+τ . In the second step, one computes a
local linearization matrix for F at each point P of the reconstructed attractor by finding the
m×m matrix M (depending on P ) that satisfies as closely as possible

Pt+τ − F (P ) ≈ M(Pt − P ) for all t for which Pt is close to P.

We call this best local linearization M = M(P ) at P the “Eckmann–Ruelle linearization”
at P . In the last step (which will be discussed in more detail in section 3), one computes
the Lyapunov exponents of F from a matrix product of these local linearizations. Write
Mi = M(Pt+iτ ) for the best local linearization matrix (i.e., the Eckmann–Ruelle linearization)
at the point Pt+iτ in the trajectory. Then, the Lyapunov exponents (including the spurious
ones) are the values achieved by

lim
n→∞

1

n
ln ‖Mn−1Mn−2 · · ·M1M0v‖



SPURIOUS LYAPUNOV EXPONENTS COMPUTED FROM DATA 459

–2

–1

1

2

–2 –1 1 2

(a)

1.6

1.7

1.8

1.9

2

–2

–1

0

1

2

t

–2
–1

0
1

2
s

(b)

Figure 1. A simple function π from R
2 to R

3 reconstructs the true attractor of the underlying dynamics
(a Hénon attractor shown in (a)) as a set in R

3 (shown in (b)). The surface indicated by dashed lines is the
image of the plane. The reconstructed attractor lies within this lower-dimensional surface.

for (unit) vectors v ∈ R
m. Almost all vectors v will yield the largest exponent, but a hyper-

plane in R
m will contain vectors yielding the other exponents.

This procedure will produce one exponent for each dimension of the reconstruction space.
To understand the numbers produced by the algorithm, it is crucial to determine the Eck-
mann–Ruelle linearizations. At first glance, one might think these linearizations should be
derivative matrices, DFP , but this is not the case (unless the underlying phase space and
the reconstruction space have the same dimension). Suppose, for example, that an attractor
reconstructed in m-dimensional Euclidean space lies within a lower-dimensional surface in R

m;
see Figure 1. The reconstructed dynamics are well defined on this surface, but they are not
defined off of it, and so the classical m×m derivative matrix DFP will not exist. Therefore,



460 JOSHUA A. TEMPKIN AND JAMES A. YORKE

the local linearizations cannot be derivative matrices.
In this paper, we study the local linearization matrices. For our main case, a reconstruction

from R
2 into R

5, we will show that these matrices have several important properties. First
and foremost, the linearizations of the reconstructed dynamics are surprisingly good in the
following sense (see Theorem 2.2 in section 2). For any matrix L, we can determine how good
a linearization L is by finding the largest integer k such that

(1) F (Pt) − F (P ) − L (Pt − P ) = O
(
‖Pt − P‖k

)
as Pt → P.

(We write g(x) = O(‖x‖k) as x → 0 to mean that there exists a constant C such that ‖g(x)‖ ≤
C‖x‖k for all x in some neighborhood of 0.) For most matrices L in (1), we expect k = 1. For
the traditional derivative L = DFP , we expect k = 2 (when it exists). However, the Eckmann–
Ruelle linearization L = M(P ) often has k larger than this. In the case of a two-dimensional
system reconstructed in five dimensions, we show k = 3. In the case of a one-dimensional
system reconstructed in m dimensions, we find k = m + 1 [5, 8]. The second important
property of these linearizations is that there are natural coordinate systems with respect to
which the linearization matrices have a special upper-triangular matrix representation. This
upper-triangular form allows us to easily compute the Lyapunov exponents. Moreover, for
generic embeddings, these exponents will be completely independent of the specific embedding
used in the reconstruction, depending only on the dynamics of the original system. This key
property allows us to derive explicit formulas for the Lyapunov exponents produced by the
Eckmann–Ruelle procedure in the low noise limit. We show how to obtain these formulas in
section 3.

In practice, one implements the Eckmann–Ruelle algorithm by computing local lineariza-
tion matrices using reconstructed trajectories of the dynamical system. Mera and Morán [10]
find conditions ensuring the convergence of this algorithm. We assume that the local lineariza-
tion matrices computed using reconstructed trajectories converge to the Eckmann–Ruelle
linearizations. Convergence is assumed to facilitate the study of the output of the Eckmann–
Ruelle algorithm. See also Sauer and Yorke [9] for the case where noise is present.

In [4], Dechert and Gençay showed that the true Lyapunov exponents should be a subset of
the computed exponents. Several other methods for determining which exponents are spurious
have already been put forward. Parlitz [11] proposed that recomputing the exponents using the
reversed time series would make the true exponents switch sign. However, Kantz and Schreiber
report [12, p. 183] that Parlitz’s results have been difficult to verify. In our main case, all
five exponents would change sign when time is reversed, including the spurious exponents.
Bryant, Brown, and Abarbanel suggested that the local “thickness” of the data set could help
identify spurious exponents [13, p. 2792]. Other authors have proposed removing the extra
dimensions present in the reconstruction by projecting the reconstructed dynamics to the
attractor’s tangent space (see [14, pp. 336–339] and [15, pp. 2156–2157]). Mera and Morán
[10, 16] discuss the convergence of this projection method. Ott and Yorke [17, section 7] prove
that the spurious exponents may be identified simply by examining the tangent space at a
single point of the reconstructed trajectory. Each true exponent corresponds to a Lyapunov
vector in the tangent space. Furthermore, “tangent space” is defined there even for cases
where the attractor is not a manifold. Whether this approach is practical or numerically
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feasible is not known, but we intend to implement these ideas in a future project.
Our paper is structured in the following manner. In section 2, we determine the linear map

that provides the best local linearization to the reconstructed dynamics. In section 3, we give
the matrix representation alluded to above and derive formulas for the Lyapunov exponents
produced by the algorithm. Section 4 presents numerical studies illustrating the theoretical
results.

2. Local linearizations.

2.1. Attractor reconstruction. The attractor reconstruction process begins by choosing
a number m and observing the present state p of the underlying system with that number m
of independent measurements πi(p), i = 1, . . . ,m. For each point p in the phase space, there is
an m-dimensional vector π(p) = (π1(p), . . . , πm(p)). This produces a measurement function π
that associates points in R

m with points in the phase space of the underlying dynamical system.
Under certain generic conditions [18], the original dynamical phase space attractor A will be
topologically equivalent to its “reconstructed” image π(A) in m-dimensional Euclidean space.
These generic conditions typically force the reconstruction space to have larger dimension than
the underlying attractor. In the situations that interest us, the generic measurement function
can be taken to be a diffeomorphism from the underlying phase space into m-dimensional
Euclidean space R

m. An example of a nongeneric map from R
2 to R

5 is where R
2 maps

into a linear subspace of dimension less than 5. Our results do not hold for these atypical
cases. In practice, of course, an experimenter does not know the measurement function that
arises from the attractor reconstruction process. This is why we focus on generic measurement
functions π.

The set of measurement vectors π(p) in the reconstructed attractor π(A) can be studied
for geometrical and dynamical properties. Looking to the reconstructed attractor for dynam-
ical properties of the original attractor was suggested in 1985 by Eckmann and Ruelle and
coworkers [1, 2] and also by Sano and Sawada [3]. It is usually necessary that the number m
of measurements be chosen large enough that there is a one-to-one correspondence between
points of the original attractor and points of the reconstructed attractor [18]. This require-
ment often forces the reconstruction space to have larger dimension than the original system.
In these cases, Lyapunov exponent calculations in the reconstruction space produce m real
numbers, not all of which can be Lyapunov exponents of the original dynamical system. For
example, when a two-dimensional dynamical system is reconstructed in five dimensions, typi-
cal methods compute five “exponents” in the reconstruction space. At most two of these can
be Lyapunov exponents of the original system; the other numbers are “spurious” exponents.
Our goal is to distinguish the spurious exponents from the true exponents.

2.2. Delay coordinates. As electronics and computer power increase, experimenters find
it easier to make several independent measurements of the system being observed. However,
Takens [6] built a theory based on his observation that for generic systems it is possible to
create multiple measurements from one, as follows. Assume that π1(p) is a (scalar) measure-
ment and that Xτ (p) denotes the point where the trajectory now at p was at time τ ago. We
can then define π2(p) = π1(Xτ (p)) and πr+1(p) = π1(Xrτ (p)) for integers r > 0. The vector
π(p) = (π1(p), . . . , πm(p)) is an m-dimensional measurement function in the above sense. If
p(t) denotes a trajectory and h(t) = π1(p(t)) is the recorded measurement, then π(p(t)) may
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be written (h(t), h(t− τ), . . . , h(t− [m− 1]τ), which is referred to as a “delay coordinate em-
bedding.” See [6] for restrictions on the set of periodic orbits when using this approach. In the
present paper, the reader interested in the single measurement case can make the translation
using the πr+1 function above. It is, however, preferable to make more measurements when
they can be made with equal accuracy. Furthermore, [18] emphasizes that to minimize the
effects of noise, it is best either to choose τ small and m large or to replace p(t) with the
average of p over an interval [t − τ, t]. Eckmann and Ruelle and coworkers emphasize this
delay coordinate approach, though their ideas are equally applicable to the more general case
of independent measurements.

2.3. Notation. We adopt the convention that lower-case letters refer to the underlying
system (Figure 1(a)), while upper-case letters refer to the reconstructed system (Figure 1(b)).
For example, P = π(p) is the point in the reconstructed phase space R

m corresponding to the
point p in the underlying phase space. We represent the dynamical flow on the underlying
phase space by the time-τ map f for some τ . The measurement function π maps the underlying
phase space into R

m for some m. In R
m, there is an induced time-τ flow map F = πfπ−1

that maps each π(p) to π(f(p)), and we refer to F as the reconstructed dynamics. Assuming
that π is a one-to-one correspondence on the underlying phase space (i.e., that p �= q implies
π(p) �= π(q)), the map F is well defined on the reconstructed phase space. Finally, we say
that a function is Ck if it has k continuous derivatives.

2.4. Local linearizations. A simple example where f(p) = 2p (mod 2π) on the interval
[0, 2π] allows us to describe the general problem. We reconstruct this interval in R

2 via the
measurement function π(p) = (cos(p), sin(p)). The observed dynamics F = πfπ−1 maps
points on the unit circle. What are the (computed) Lyapunov exponents of this example?
Most algorithms will compute two numbers, at most one of which can be correct.

This question is central to our discussion: for any point P = π(p) on the unit circle
π([0, 2π]), which 2×2 matrix provides the best local linearization of F around P (in the sense
of (1))? Since F is not defined off the unit circle, the traditional derivative of F does not
exist. On the other hand, the linearizations of F are 2 × 2 matrices, while the derivatives
of the original system f are 1 × 1. It follows that no linearization of F can be a derivative
matrix. What, then, is the best local linearization of F near P (if one even exists)? In this
section, we show how to determine this best local linearization.

We examine the special case when a two-dimensional dynamical system f on the unit
square [0, 1] × [0, 1] is reconstructed into five-dimensional space. For convenience, we shall
denote this unit square in R

2 by Sqr. We make the following specific assumptions about f , π,
and a point P = π(p) in R

5:
(A1) f maps Sqr into itself, and f is C3.
(A2) π is a C3 diffeomorphism of Sqr into R

5. In particular, for any point P ∈ π(Sqr), the
set π−1(P ) contains exactly one point.

(A3) The first- and second-order partial derivative vectors for π at p = (x, y), namely,

πx(p) :=
∂π

∂x
(p), πy(p) :=

∂π

∂y
(p),

πxx(p) :=
∂2π

∂x2
(p), πxy(p) :=

∂2π

∂x∂y
(p), πyy(p) :=

∂2π

∂2y
(p),
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are linearly independent in R
5.

Property (A3) is generic in the space of C3 functions from Sqr into R
5. Since π is a diffeo-

morphism, there is a constant Cπ > 1 such that if Pi = π(pi) with pi ∈ Sqr, i = 1, 2, then

(2)
1

Cπ
‖P1 − P2‖ ≤ ‖p1 − p2‖ ≤ Cπ‖P1 − P2‖.

This inequality will be useful in translating statements back and forth between the underlying
space and the reconstruction space.

We begin our analysis by examining the Taylor expansion of π about a point P = π(p) in
R

5 for which (A3) holds. Any point P +ΔP in π(Sqr) near P can be written with h = (h1, h2)
in R

2:

P + ΔP = π (p + h)

= P + h1πx(p) + h2πy(p) +
1

2
h2

1πxx(p)

+ h1h2πxy(p) +
1

2
h2

2πyy(p) + O
(‖h‖3

)
.

By hypothesis (A3), the vectors πx(p), πy(p), πxx(p), πxy(p), and πyy(p) are linearly indepen-
dent and form a basis for R

5, which we call the canonical embedding basis at P . The little
vector ΔP at P can be written conveniently in this basis:

(3) ΔP =

(
h1, h2,

1

2
h2

1, h1h2,
1

2
h2

2

)

P

+ O
(‖h‖3

)
.

Next, we look at the image F (P ) = π(f(p)) in essentially the same way. The Taylor expansion
of F (P + ΔP ) = F (π(p + h)) = π(f(p + h)) is given by

F (P + ΔP ) = F (P ) + h1(πf)x(p) + h2(πf)y(p) +
1

2
h2

1(πf)xx(p)

+ h1h2(πf)xy(p) +
1

2
h2

2(πf)yy(p) + O
(‖h‖3

)
(4)

for small h. At this point, we can define the Eckmann–Ruelle linearization. In their papers
[1, 2], the Eckmann and Ruelle group discussed the best local linearization of the reconstructed
dynamics. We formally define the “Eckmann–Ruelle linearization” to be the unique linear map
with certain properties. In Theorem 2.2, we show that our definition provides the best local
linearization in the case when two-dimensional dynamics is reconstructed in five-dimensional
space. The work in [5] shows how to generate the Eckmann–Ruelle linearization in certain
other cases.

Definition 2.1. Assuming (A1)–(A3), we define the Eckmann–Ruelle linearization at P =
π(p) to be the unique linear map M = M(P ) on R

5 satisfying

Mπx(p) = (πf)x(p),

Mπy(p) = (πf)y(p),

Mπxx(p) = (πf)xx(p),

Mπxy(p) = (πf)xy(p),

Mπyy(p) = (πf)yy(p).

(5)
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M is well defined and unique because the vectors on the left-hand side of (5) form a basis
for R

5, by assumption (A3). While it may be convenient to think of M as a matrix, no
coordinate system has yet been specified. The example below will represent M with respect
to one particular coordinate system (the natural one for numerical computations), but in
section 3 we will make use of a different matrix representation for M . Our proof of the local
linearization theorem below does not require any matrix representation at all; it needs only
the equations in (5).

For an example of an Eckmann–Ruelle linearization, we shall compute M explicitly with
respect to standard coordinates in R

5. Let the underlying dynamical system be the Hénon map
f(x, y) = (1.4 − x2 + 0.3y, x). The simplest measurement function that satisfies hypotheses
(A1)–(A3) is π(x, y) = (x, y, x2, y2, xy). For this measurement function, we have

πx(x, y) = (1, 0, 2x, 0, y),

πy(x, y) = (0, 1, 0, 2y, x),

πxx(x, y) = (0, 0, 2, 0, 0),(6)

πyy(x, y) = (0, 0, 0, 2, 0),

πxy(x, y) = (0, 0, 0, 0, 1),

and with

(πf)(x, y) = (1.4 − x2 + 0.3y, x, (1.4 − x2 + 0.3y)2, x2, 1.4x− x3 + 0.3xy)

we have

(πf)x(x, y) = (−2x, 1, 4x3 − 5.6x− 1.2xy, 2x, 1.4 − 3x2 + 0.3y),

(πf)y(x, y) = (0.3, 0, 0.84 − 0.6x2 + 0.18y, 0, 0.3x),

(πf)xx(x, y) = (−2, 0, 12x2 − 5.6 − 1.2y, 2,−6x),(7)

(πf)yy(x, y) = (0, 0, 0.18, 0, 0),

(πf)xy(x, y) = (0, 0,−1.2x, 0, 0.3).

M is the unique linear map that maps the vectors in (6) to corresponding vectors in (7). To
find the matrix representation of M at π(x, y) with respect to the standard basis in R

5, we
need to see where the standard unit vectors map. From the equations above, note that

(1, 0, 0, 0, 0) = πx(x, y) − xπxx(x, y) − yπxy(x, y),

and thus

M(1, 0, 0, 0, 0) = Mπx(x, y) − xMπxx(x, y) − yMπxy(x, y)

= (πf)x(x, y) − x(πf)xx(x, y) − y(πf)xy(x, y)

= (0, 1, 1.2xy − 8x3, 0, 1.4 + 3x2).
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Similarly, we obtain mappings for the other standard basis vectors. Putting all of this together,
we obtain the matrix representation for M at P = π(x, y):

M(P ) =

⎛

⎜
⎜
⎜
⎜
⎝

0 0.3 −1 0 0
1 0 0 0 0

1.2xy − 8x3 0.84 + 0.6x2 −2.8 + 6x2 − 0.6y .09 −1.2x
0 0 1 0 0

1.4 + 3x2 0 −3x 0 0.3

⎞

⎟
⎟
⎟
⎟
⎠

.

Next, we prove that the Eckmann–Ruelle linearization does a very good job of linearizing
the observed dynamics.

Theorem 2.2 (local linearizations for R
2 → R

5). Assume (A1) and (A2). Let P = π(p) be a
point of π(Sqr) for which (A3) holds. The Eckmann–Ruelle linearization M = M(P ) defined
by (5) is the unique linear map such that

F (P + ΔP ) − F (P ) −MΔP = O
(
‖ΔP‖3

)
(8)

as ‖ΔP‖ → 0, where P + ΔP ∈ π(Sqr).

Proof. For small ΔP with P + ΔP ∈ π(Sqr), we can write P + ΔP = π(p + h), where
h = (h1, h2). Note that F (P ) = π(f(p)) and F (P + ΔP ) = π(f(p + h)), and by (2), we have
O(‖h‖3) = O(‖ΔP‖3).

Let M be any linear map. We expand F (P + ΔP )−F (P )−MΔP in terms of its Taylor
series using (3) and (4):

F (P + ΔP ) − F (P ) −MΔP = h1 ((πf)x(p) −Mπx(p))

+ h2 ((πf)y(p) −Mπy(p))

+
1

2
h2

1 ((πf)xx(p) −Mπxx(p))

+ h1h2 ((πf)xy(p) −Mπxy(p))

+
1

2
h2

2 ((πf)yy(p) −Mπyy(p))

+ O
(‖h‖3

)
.

Since πx(p), πy(p), πxx(p), πxy(p), πyy(p) form a basis by (A3), there is only one linear map,
namely, the Eckmann–Ruelle linearization, that can eliminate all five of the first- and second-
order terms in this representation. All other linear maps must be either O(‖h‖) or O(‖h‖2).
Thus, it is clear that M satisfies (8) if and only if M is the Eckmann–Ruelle linearization
defined by (5).

Note that the error term in (8) of Theorem 2.2 is smaller than that for the usual Jacobian
matrix, which would be O(‖ΔP‖2) if it existed.

3. Lyapunov exponent formulas. Once the local linearization matrices have been com-
puted at each point of the reconstructed trajectory, we must extract Lyapunov exponents
from them. Mimicking the standard definition of Lyapunov exponents (see, for example,
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[19, p. 31]), we define the Eckmann–Ruelle–Lyapunov (ERL) exponents of the reconstructed
trajectory P0, P1, . . . in R

m to be the values obtained by the limit

(9) hER(P0, v) := lim
n→∞

1

n
ln ‖Mn−1Mn−2 · · ·M1M0v‖

for unit vectors v ∈ R
m, where Mi = M(Pi) is the best local linearization (i.e., Eckmann–

Ruelle linearization) at the point Pi = π(pi) in the trajectory. This is exactly the same
definition as for Lyapunov exponents, except that we use the Mi instead of Jacobian derivatives
(which need not exist along the trajectory). In this section, we show that the matrix product
in (9) can be written as an upper-triangular matrix. A straightforward calculation will then
produce a formula for the limiting values of (9).

In practice, the limit in (9) can be computed using the treppen-iteration algorithm de-
scribed in [1, 2] and elsewhere. This method uses QR matrix decomposition to convert the
matrix product Mn−1 · · ·M0 into a product of upper-triangular matrices Rn−1 · · ·R0. The
diagonal elements of the latter upper-triangular matrix are the products of the corresponding
diagonal elements of the Ri. Then, we can read the ERL exponents right from the diagonal
entries (Ri)jj of the intermediate matrices Ri:

λj = lim
n→∞

1

n

n−1∑

i=0

ln
∣∣∣(Ri)jj

∣∣∣ .

Theorem 3.2 will justify the ability to read the exponents directly from the diagonal in this
way. A proof of the theorem is given in [5].

Definition 3.1. A sequence of real numbers {rn} has (geometric) growth rate γ, provided

lim
n→∞

ln |rn|
n

= γ.

Theorem 3.2. For k = 1, 2, . . . , let Ak be m × m upper-triangular matrices, and define
Sn = An · · ·A1. Assume that the magnitudes of the entries of Ak are bounded independent of
k, and that the diagonal entries of Sn have growth rates γ1, . . . , γm as n → ∞. Then there
exist vectors v1, . . . , vm ∈ R

m such that for each i = 1, . . . ,m, ‖Snvi‖ has growth rate γi.
The next theorem is the main result of this paper, giving the formula for the exponents.

Most of its hypotheses are used to guarantee that the Eckmann–Ruelle linearization exists
at each point of the trajectory. Naturally, we must also assume the existence of Lyapunov
exponents for the underlying trajectory. Theorems such as Oseledec’s multiplicative ergodic
theorem [1] guarantee the existence of Lyapunov exponents in appropriate circumstances.
Since we will assume that Lyapunov exponents exist for the underlying trajectory, we shall
not at this time add extra hypotheses to guarantee said existence. Specifically, given Lyapunov
exponents λ ≥ μ, we assume the standard property that there is a unit tangent vector in R

2

with growth rate μ and that almost every other tangent vector in R
2 has growth rate λ.

Theorem 3.3 (Lyapunov exponent formula for R
2 → R

5). Assume (A1), (A2), and that the
trajectory of f in Sqr, p0, p1, . . . ∈ R

2, has Lyapunov exponents λ and μ. Assume each point
of the reconstructed trajectory, Pi = π(pi) in R

5, satisfies (A3). Then, the reconstructed
trajectory has ERL exponents λ, μ, 2λ, λ + μ, and 2μ.
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Proof. Recall that the canonical embedding basis given in assumption (A3) from section 2
consists of the first- and second-order partial derivative vectors of π, namely, πx(p), πy(p),
πxx(p), πxy(p), and πyy(p). In fact, the construction of the Eckmann–Ruelle linearization
from the Taylor series of π and πf can be carried out with respect to any orthonormal set
of coordinates. The uniqueness part of the local linearization Theorem 2.2 ensures that the
resulting linear map will be the same. Thus, we may introduce convenient local coordinate
systems at each point pi ∈ R

2 in the trajectory of p0.
Without loss of generality, assume λ ≥ μ. At the initial point p0 ∈ R

2 of the underlying
trajectory, choose a unit Lyapunov vector v0 ∈ R

2 corresponding to the exponent μ:

lim
n→∞

1

n
ln

∥
∥Dfpn−1Dfpn−2 · · ·Dfp1Dfp0v0

∥
∥ = μ.

By hypothesis, almost every other vector in R
2 has growth rate λ. Choose a unit vector

w0 perpendicular to v0. This gives us an orthonormal basis {v0, w0} for R
2 based at p0.

Now, given a basis {vn, wn} at pn ∈ R
2, we construct a basis at pn+1 by setting vn+1 :=

Dfpnvn/‖Dfpnvn‖ and choosing wn+1 to be the unit vector perpendicular to vn+1 that satisfies
〈wn+1, Dfpnwn〉 > 0. By induction, we have an orthonormal basis {vn, wn} for R

2 at each
point pn.

For each n, we write points p′ ∈ R
2 near pn as p′ = (x, y), provided p′ = pn + xvn + ywn.

We can describe the underlying dynamics f near pn in terms of these bases at pn and pn+1

by f(x, y) = (g(x, y), h(x, y)). Though we will not explicitly show it, this representation for
f depends on the base point pn, and the reader should keep in mind that the component
functions g and h may look very different as we vary pn. Note that for each n, hx(pn) = 0
because Dfpnvn = ‖Dfpnvn‖vn+1 has no y-component at pn+1. Thus, we can write the
Jacobian derivative of f at pn as

Dfpn =

(
gx(pn) gy(pn)

0 hy(pn)

)
.

A straightforward calculation using the chain rule produces the next set of equations,
where the partial derivatives of g and h are evaluated at pn:

(πf)x(pn) = gxπx(pn+1),

(πf)y(pn) = gyπx(pn+1) + hyπy(pn+1),

(πf)xx(pn) = gxxπx(pn+1) + hxxπy(pn+1) + g2
xπxx(pn+1),

(πf)xy(pn) = gxyπx(pn+1) + hxyπy(pn+1) + gxgyπxx(pn+1)

+ gxhyπxy(pn+1),

(πf)yy(pn) = gyyπx(pn+1) + hyyπy(pn+1) + g2
yπxx(pn+1)

+ 2gyhyπxy(pn+1) + h2
yπyy(pn+1).

For each n, let βn denote the canonical embedding basis for R
5 at Pn = π(pn). With respect

to the canonical embedding basis at pn+1, namely,

βn+1 = {πx(pn+1), πy(pn+1), πxx(pn+1), πxy(pn+1), πyy(pn+1)},
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the above equations become

(πf)x(pn) = (gx, 0, 0, 0, 0)βn+1 ,

(πf)y(pn) = (gy, hy, 0, 0, 0)βn+1 ,

(πf)xx(pn) = (gxx, hxx, g
2
x, 0, 0)βn+1 ,

(πf)xy(pn) = (gxy, hxy, gxgy, gxhy, 0)βn+1 ,

(πf)yy(pn) = (gyy, hyy, g
2
y , 2gyhy, h

2
y)βn+1 .

Moreover, the equations (5) that define the Eckmann–Ruelle linearization have a particularly
nice representation using these bases. For example, the equation

Mπx(pn) = (πf)x(pn) = gxπx(pn+1)

becomes

M(1, 0, 0, 0, 0)βn = (gx, 0, 0, 0, 0)βn+1 .

Continuing in this way, we obtain this matrix representation for the Eckmann–Ruelle lin-
earization Mn = M(Pn) with respect to βn and βn+1:

[Mn]
βn+1

βn
=

⎛

⎜⎜⎜⎜
⎝

gx gy gxx gxy gyy
0 hy hxx hxy hyy
0 0 g2

x gxgy g2
y

0 0 0 gxhy 2gyhy
0 0 0 0 h2

y

⎞

⎟⎟⎟⎟
⎠

.

All of the terms above the diagonal come from combinations of first and second derivatives of
f , and, because f is C3 by hypothesis, they will be bounded independent of pn. Note that the
upper left 2 × 2 block is the Jacobian Dfpn of the underlying dynamics, and the lower right
3 × 3 block contains only combinations of terms from Dfpn .

It follows that the product [Mn−1 · · ·M0]
βn

β0
is upper-triangular when written with respect

to the canonical embedding bases. Specifically, if we write

Gn =

n−1∏

i=0

gx(pi), Hn =

n−1∏

i=0

hy(pi),

then we have

[Mn−1 · · ·M0]
βn

β0
=

⎛

⎜⎜⎜⎜
⎝

Gn b12 b13 b14 b15
0 Hn b23 b24 b25
0 0 G2

n b34 b35
0 0 0 GnHn b45
0 0 0 0 H2

n

⎞

⎟⎟⎟⎟
⎠

,

where the bij are numbers which depend solely on the underlying dynamical system f and the
first n points of the trajectory of p0 in Sqr.
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Now we need to compute the growth rates of the diagonal terms. To do this, we compute
the Lyapunov exponents λ and μ of the underlying dynamical system in terms of the compo-
nents of the Jacobian matrices. Since Dfpnvn = ‖Dfpnvn‖vn+1, we have gx(pn) = ‖Dfpnvn‖.
It follows that

lim
n→∞

1

n
ln |Gn| = lim

n→∞
1

n
ln

(
n−1∏

i=0

‖Dfpivi‖
)

= lim
n→∞

1

n
ln ‖Dfpn1 · · ·Dfp0v0‖

= μ,

(10)

because v0 was chosen to be a Lyapunov vector for μ. Recall from [1, p. 632] that the growth
rate of areas is given by the sum of the Lyapunov exponents. Thus,

μ + λ = lim
n→∞

1

n
ln |det (Dfn

p0)|

= lim
n→∞

1

n
ln

(
n−1∏

i=0

|det (Dfpi)|
)

= lim
n→∞

1

n
ln |GnHn|

= μ + lim
n→∞

1

n
ln |Hn| ,

and it follows that

(11) λ = lim
n→∞

1

n
ln |Hn| .

Finally, we see that the diagonal terms of [Mn−1 · · ·M0]
βn

β0
have growth rates of λ, μ, 2λ,

λ+μ, and 2μ. It follows from Theorem 3.2 that the reconstructed trajectory P0, P1, . . . in R
5

has these ERL exponents, completing the proof of Theorem 3.3.

4. Numerical computations. We have determined theoretically the computed Lyapunov
exponents in our main case. However, we are aware that other numerical results have appeared
in the literature that do not agree with our theorems, notably in [4]. Thus, we provide examples
to demonstrate that numerical experiments can agree with our theorems. The reader may
wish to contrast our results with those in [4].

Recall that the Eckmann–Ruelle procedure has three basic steps. In the first step, one
reconstructs the attractor with a measurement function. In the second step, one determines
a local linearization matrix at each point of the reconstructed trajectory. In the final step,
one extracts the Lyapunov exponents from the linearization matrices obtained in the previous
step.

For our numerical experiments, we assume that we are given the underlying dynamical
system f : R

2 → R
2 and a measurement function π : R

2 → R
5 for reconstructing the attractor.

We iterate the function f a number of times to remove transients. Then, continuing to
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iterate f , we produce a trajectory {pi} ∈ R
2. Instead of storing the points pi, we apply the

measurement function to each pi and store the vectors Pi = π(pi) ∈ R
5.

The procedure for computing the local linearization matrix at a base point P in R
5 is

straightforward and based on least-squares methods. The goal is to determine the 5 × 5
matrix M which best satisfies M(Pi − P ) ≈ Pi+1 − F (P ) for all Pi close to P . Given a
neighborhood radius ε, we search our data list for those Pi which are ε-close to P in R

5.
To avoid the false-near-neighbor problem, for each such Pi we also construct the vectors
Pi+j − F j(P ), j = 1, . . . , 4, and check their lengths. If all of these vectors have length at
most ε, then we shall accept Pi for the calculation. Since the linearization we seek satisfies
M(Pi − P ) ≈ Pi+1 − F (P ), we build matrices A and B for which the kth column of A is a
vector Pi − P and the kth column of B is the corresponding vector Pi+1 − F (P ). Then, our
local linearization matrix M will be the 5 × 5 solution of the matrix equation MA = B. We
solve this equation using a singular value decomposition routine taken from [20]. We restrict
the matrices A,B to have a minimum of 15 and maximum of 150 columns.

Once the local linearization matrices have been computed, we must compute the expo-
nents. Recall from section 3 that the ERL exponents of the reconstructed trajectory P0, P1, . . .
in R

5 are the values obtained by the limit

hER(P0, ν) := lim
n→∞

1

n
ln ‖Mn−1Mn−2 · · ·M1M0ν‖

for unit vectors ν ∈ R
5, where Mi = M(Pi) is the 5 × 5 Eckmann–Ruelle linearization

at the point Pi in the trajectory. To evaluate this limit, we employ the treppen-iteration
algorithm suggested in [1, 2]. Given our sequence Mi of linearization matrices, we use the QR
matrix decomposition to find orthogonal matrices Qi and upper-triangular matrices Ri (with
nonnegative diagonal elements) such that

MiQi−1 = QiRi for i = 0, 1, 2, . . . ,

where we take Q−1 to be the m×m identity matrix. Then, we can write

Mn−1Mn−2 · · ·M1M0 = Qn−1Rn−1Rn−2 · · ·R0.

The orthogonal matrix Qn−1 will not affect the matrix norm. Thus,

hER(P0, ν) = lim
n→∞

1

n
ln ‖Rn−1Rn−2 · · ·R1R0ν‖ .

The product Rn−1 · · ·R0 is upper-triangular, and its diagonal elements are the eigenvalues
of the matrix, which we expect will grow like the Lyapunov exponents. As mentioned in
section 3, Theorem 3.2 justifies reading the exponents directly from the diagonal:

λk = lim
n→∞

1

n

n−1∑

i=0

ln ((Ri)kk) for k = 1, . . . ,m.

Thus, we are able to compute the ERL exponents from our linearizations by using the diagonal
elements from the QR decomposition.
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We conducted numerical experiments on the example described in section 2.4, using
the Hénon map f(x, y) = (1.4 − x2 + 0.3y, x) and the measurement function π(x, y) =
(x, y, x2, y2, xy). In that section, we computed the Eckmann–Ruelle linearization M explicitly
with respect to standard coordinates in R

5:

M(π(x, y)) =

⎛

⎜
⎜
⎜
⎜
⎝

0 0.3 −1 0 0
1 0 0 0 0

1.2xy − 8x3 0.84 + 0.6x2 −2.8 + 6x2 − 0.6y .09 −1.2x
0 0 1 0 0

1.4 + 3x2 0 −3x 0 0.3

⎞

⎟
⎟
⎟
⎟
⎠

.

Experiments with trajectories of 300,000 data points in R
5 indicate that the linearization

matrices computed by our algorithm match this formula. For example, at the point
π(1.555478, 0.398567) ∈ R

5 on the reconstructed Hénon attractor, the linearization matrix
for a neighborhood of radius ε = 0.01 was computed to be

⎛

⎜⎜⎜⎜
⎝

0.000000 0.300000 −1.000000 0.000000 0.000000
1.000000 0.000000 0.000000 0.000000 0.000000

−29.365725 2.290703 11.478416 0.090305 −1.866085
0.000000 0.000000 1.000000 0.000000 0.000000
8.657187 −0.001385 −4.666094 0.000326 0.300723

⎞

⎟⎟⎟⎟
⎠

.

This computed matrix differs from the matrix predicted by the previous formula by less than
0.0018 in each component, while the matrix norm of the difference is 0.0030. At another point,
π(−1.741541, 1.753985), on the reconstructed Hénon attractor in R

5, the local linearization
for ε = 0.01 is computed to be

⎛

⎜⎜⎜⎜
⎝

0.000000 0.300000 −1.000000 0.000000 0.000000
1.000000 0.000000 0.000000 0.000000 0.000000
38.590278 2.658478 14.345224 0.090317 2.089740
0.000000 0.000000 1.000000 0.000000 0.000000
10.498785 −0.000234 5.224592 0.000067 0.300000

⎞

⎟⎟⎟⎟
⎠

.

This computed matrix differs from the predicted matrix by less than 0.0014 in each component,
while the matrix norm of the difference is 0.0015. We can also graph the convergence (in
matrix norm) of the computed local linearizations to the Eckmann–Ruelle linearization as the
neighborhood radius shrinks to zero. See Figure 2.

Using 300,000 data points, we computed the Lyapunov exponents for this example. Re-
call that the true Lyapunov exponents of the Hénon map are approximately λ = 0.42 and
μ = −1.62. We computed ERL exponents of 0.886200 ≈ 2λ, 0.422459 ≈ λ, −1.195450 ≈ λ+μ,
−1.636780 ≈ μ, and −3.183227 ≈ 2μ. These values are consistent with the Lyapunov expo-
nent formula given in Theorem 3.3. Since the Lyapunov exponent formula holds for any
generic map (specifically, for one-to-one maps with linearly independent derivative vectors)
and is independent of the measurement function π used, we expect to compute these same ex-
ponents when different measurement functions are used. Changing the measurement function
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Figure 2. Graph of the difference (in matrix norm) between the computed linearization and the Eckmann–
Ruelle linearization at the point (−1.741541, 1.753985) for the Hénon map reconstructed in R

5. The calculation
used one million data points.

may alter the speed of convergence somewhat, but we still expect the results to be close.
We also computed the Lyapunov exponents from time-delay reconstructions of the Hénon

system. First, we generated a time series by recording the x-coordinate of each point in a
trajectory of the Hénon map. We collected 1.5 million data points in this way, and we then
reconstructed the attractor in R

5 using the standard time-delay method. Applying our com-
puter program to this data set, we computed these exponents: 0.846902 ≈ 2λ, 0.417802 ≈ λ,
−1.173343 ≈ λ+ μ, −1.623393 ≈ μ, and −2.848050 ≈ 2μ. Notice that the correct exponents,
λ and μ, are determined accurately, and there are small errors in the computed values for
λ + μ and 2μ.

A similar time-delay reconstruction was performed using a different data set. We obtained
1.5 million data points by recording y − xy for each point (x, y) in a trajectory of the Hénon
map. (We used the same trajectory as in the previous time-delay reconstruction.) For this data
set, we computed exponents 0.834372 ≈ 2λ, 0.418864 ≈ λ, −1.202808 ≈ λ+μ, −1.623246 ≈ μ,
and −2.886969 ≈ 2μ. Again, the correct exponents appear. In addition, the λ+μ term appears
to be exactly correct, while there has been a small improvement in the 2μ term.

The most likely explanation for the observed deviation of the 2μ term from its predicted
value is that the neighborhood radii used in the computer program were too large to accurately
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determine the 2μ term. (We allowed variable radii from ε = 0.0025 to ε = 0.1.) With more
data and smaller neighborhood radii in the computations, that last exponent will converge to
its proper value. Note that the true Lyapunov exponents appear in each of these examples,
suggesting that they converge to their correct values rather quickly. This is not surprising if one
looks back at the proofs of Theorem 2.2 in section 2 and Theorem 3.3 in section 3. Any matrix
that does not map the first-order terms of the Taylor series correctly will have O(‖ΔP‖) error,
instead of the O(‖ΔP‖3) error of the Eckmann–Ruelle linearization. Fortunately, algorithms
to compute local linearizations will instead find matrices with error O(‖ΔP‖2) or better, and
these matrices will map the first-order Taylor terms correctly. This ensures that the true
Lyapunov exponents will be among the first of the computed exponents to converge.

5. Conclusions. In this paper, we investigated the expected output of the Eckmann–
Ruelle procedure for computing Lyapunov exponents of reconstructed dynamics. We assumed
ideal circumstances in order to determine what the algorithm should ideally produce. In par-
ticular, we assumed that we knew the dimension of the underlying dynamics, and we embedded
in a carefully chosen reconstruction dimension. We assumed that the underlying Lyapunov
exponents exist, that we had infinitely long data trajectories without noise, and that numeri-
cal methods converge to the proper objects. Therefore, since the Eckmann–Ruelle procedure
attempts to find the best local linearization matrix at each point on the trajectory, we could
use the unique Eckmann–Ruelle linearization for our Lyapunov exponent calculations. With
these linearizations, we computed the Lyapunov exponents of the reconstructed dynamics.
We showed that a two-dimensional system with Lyapunov exponents λ and μ, when recon-
structed in a five-dimensional reconstruction space via a generic measurement function, will
have exponents λ, μ, 2λ, λ + μ, and 2μ, independent of the measurement function.

This result is important because it shows that, even under ideal conditions, if the underly-
ing dynamics has a positive Lyapunov exponent, then the largest Lyapunov exponent for the
reconstructed dynamics will always be spurious, independent of the measurement function.
Thus, in practice, one should not use size criteria to distinguish which exponents are true and
which are spurious. In the presence of noise and other practical and numerical considerations,
the same conclusion should hold.

We recognize that there are still important questions to be answered, notably how to
determine the dimension of the underlying dynamics. Our main point is that one should be
careful when trying to tease out the true exponents from the spurious, even in situations where
the underlying dimension is known.

Given the difficulties that many authors have found with separating the true and spurious
exponents, and given observations such as those in the present paper or those in [4], which
show that a spurious exponent can actually achieve arbitrary magnitude, perhaps the best
method would be one that removes spurious exponents from the process altogether. As noted
in the introduction, a number of authors have suggested projecting the reconstructed dynamics
to the attractor’s tangent space. However, there is no reason to expect the attractor to have
a tangent space. Ott and Yorke [17] describe a generalized tangent space of an attractor such
that the dimension of the tangent space can unavoidably change from point to point on the
attractor. We intend to explore these directions in future work.

Acknowledgments. The authors wish to thank the referees for their insight and comments.
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Abstract. This paper characterizes the stability crossing curves of a class of linear systems with gamma-
distributed delay with a gap. First, we describe the crossing set, i.e., the set of frequencies where
the characteristic roots may cross the imaginary axis as the parameters change. Then, we describe
the corresponding stability crossing curves, i.e., the set of parameters such that there is at least
one pair of characteristic roots on the imaginary axis. Such stability crossing curves divide the
parameter space R

2
+ defined by the mean delay and the gap into different regions. Within each such

region, the number of characteristic roots on the right half complex plane is fixed. This naturally
describes the regions of parameters where the system is stable. The classification of the stability
crossing curves is also discussed. Some illustrative examples (Cushing equation in biology, traffic
flow models in transportation systems, and control over networks of a simplified helicopter model)
are also presented.
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1. Introduction. The stability of dynamical systems in the presence of time delay is a
problem of recurring interest (see, for instance, [11, 16, 8, 14] and the references therein).
The presence of a time delay may induce instabilities and complex behaviors. Systems with
distributed delays are present in many scientific disciplines such as physiology, population
dynamics, and engineering.

One of the first studies devoted to population dynamics using a model with gamma-
distributed delay is due to Cushing [5]. The linearization of this model is

(1.1) ẋ(t) = −αx(t) + β

∫ t

−∞
g(t− θ)x(θ)dθ,

where α is a constant defining the death rate per unit time, and β is a constant corresponding
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to the maternity function. The integration kernel of the distributed delay is the gamma-
distribution [15, 4]

(1.2) g(ξ) =
an+1

n!
ξne−aξ.

Applying a Laplace transform of (1.1) with g(ξ) as expressed in (1.2) yields a parameter-
dependent polynomial characteristic equation of the form

(1.3) D(s; τ̄ , n) := (s + α)

(
1 + s

τ̄

n + 1

)n+1

− β = 0,

where s is the Laplace transform variable and τ̄ = (n + 1)/a is the mean delay.
Cooke and Grossman [4] discussed the change of stability of (1.3) when one of the param-

eters, the mean delay value τ̄ or the exponent n, varies while the other is fixed.
Nisbet and Gurney [17] modified the gamma-distribution g(ξ) expressed in (1.2) to the

gamma-distribution with a gap

(1.4) ĝ(ξ) =

{
0, ξ < τ,

an+1

n! (ξ − τ)ne−a(ξ−τ), ξ ≥ τ,

to more accurately reflect the reality (see, for instance, [1, 15] for additional discussions). In
this case, a simple computation shows that the mean delay is τ̂ = τ + n+1

a . The characteristic
equation becomes a parameter-dependent quasipolynomial equation [1, 2] of the form

(1.5) D̂(s; τ̄ , τ, n) := (s + α)

(
1 + s

τ̄

n + 1

)n+1

− βe−sτ = 0.

We note that [2] pointed out some inaccuracies of the earlier results presented in [4] and [1]. It
is also interesting to mention that Farkas, Farkas, and Szabó [7] studied the bifurcation prob-
lem of the predator-prey model also in the case of a gamma-distributed delay. More general
bifurcation study of systems with distributed delay can be found in a book by Farkas [6].

More recently, and in a quite different field (engineering), it was pointed out that such
gamma-distributed delays with a gap can also be encountered in the problem of controlling
objects over communication networks [19]. More specifically, the overall communication delay
in the network is modeled by a gamma-distributed delay with a gap, where the gap value
corresponds to the minimal propagation delay in the network, which is always strictly positive.
The stability problem of the closed-loop system in [19] reduces to a parameter-dependent
characteristic quasipolynomial equation of the form

(1.6) D(s; τ̄ , τ, n) := P (s)

(
1 + s

τ̄

n + 1

)n+1

+ Q(s)e−sτ = 0,

where P (s) and Q(s) are polynomials. Obviously, (1.5) is a special case of (1.6).
Another research area where a distributed delay appears naturally is the traffic flow dy-

namics. A simplified car-following model, where multiple vehicles in a ring have drivers with
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identical behavior, and under the influence of a single constant time delay [3, 12], can be
written as

(1.7) ẋi(t) = αi(xi−1(t− τ) − xi(t− τ)), i = 1, . . . , p,

where p is the number of vehicles considered and x0 = xp. The left-hand side represents the
acceleration of the ith vehicle, and the right-hand side expresses the velocity difference of
consecutive vehicles.

When the delays are not assumed to be identical, several models in the literature are
used to describe the dynamics of the model (see, for instance, [21] for some classifications
and a large list of references). As suggested in [22], we can extend the previous models by
incorporating a more general memory effect. Consider the system

(1.8) ẋi(t) = αi

∫ t

−∞
g(t− θ)(xi−1(θ) − xi(θ))dθ,

where g is the delay distribution, which can represent both dead time and past memory. The
corresponding characteristic equation of (1.8) is given by

(1.9) det[sI − (A1 + A2)G(s)] = 0,

where G denotes the Laplace transform of g. When g represents the gamma-distribution with
a gap, we get

G(s) = e−sτ

(
1 + s

τ̄

n + 1

)−(n+1)

.

In the simplest case of two vehicles in a ring (p = 2, i = 1, 2, and x0 = x2), the matrices A1

and A2 are given by

(1.10) A1 =

( −α1 0
0 −α2

)
, A2 =

(
0 α1

α2 0

)
,

and the characteristic equation becomes

(1.11) s

(
1 + s

τ̄

n + 1

)n+1

+ (α1 + α2)e
−sτ = 0,

which is again a special case of (1.6).
Finally, another interesting engineering example involving gamma-distributed delay is the

machine tool vibration problem. The readers are referred to the nice paper by Stépán [24]
for details. It is also interesting to mention that Insperger and Stépán [13] also used gamma-
distributed delay in their numerical study of time delay systems.

In this paper, we will study the stability of systems with the characteristic equation (1.6)
as the parameters τ̄ and τ vary. Specifically, we will describe the stability crossing curves,
i.e., the set of parameters such that there exist at least one pair of characteristic roots on the
imaginary axis. Such stability crossing curves divide the parameter space R

2
+ into different

regions. Within each such region, the number of characteristic roots on the right half complex
plane is fixed. This naturally describes the regions of parameters where the system is stable.
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It should be noted that there have been numerous works in the literature to describe the
stability regions of parameter space, known as stability charts [23, 24]. These descriptions
are typically valid for one specific system except that the parameters are allowed to vary. In
a recent paper, Gu, Niculescu, and Chen [9] gave a characterization of the stability crossing
curves for systems with two discrete delays as the parameters. One significant difference of [9]
as compared to the stability charts is the fact that such characterization applies to any system
within the class, i.e., any system with two delays. We note also the paper [20], where we can
find some interesting characterizations that can be used for a large class of time delay systems
(including distributed delay systems). However, the approach proposed in [20] requires rather
heavy computation when dealing with quasipolynomials of a high degree.

The current paper follows the reasoning of [9], and our conclusion is valid for any system
of the form (1.6).

The rest of this paper is organized as follows. Section 2 contains the problem statement
and assumptions. Section 3 first discusses geometric characterization of the crossing curves.
Next, the stability crossing curves together with their classifications are described. Several
simple examples are described to illustrate the types of curves in our classification. Finally,
tangent and smoothness properties and crossing direction are described. Section 4 includes
four illustrative examples in some detail: a linearized first-order Cushing equation, a second-
order system depicting some particular behavior, a simplified traffic flow model, and a control
over networks of a simplified helicopter model. Some concluding remarks end the paper.

Throughout the paper, the following standard notation is used: C (C+, C
−) is the set of

complex numbers (with strictly positive and strictly negative real parts), and j =
√−1. For

z ∈ C, ∠(z), Re(z), and Im(z) define the argument, the real part, and the imaginary part
of z. R (R+, R

−) denotes the set of real numbers (greater than or equal to zero, less than
or equal to zero). Next, N is the set of natural numbers, including zero, and Z is the set of
integers. Finally, RHP denotes the right half plane of C.

2. Problem formulation. Consider a system with the characteristic equation

(2.1) D(s; T, τ) := P (s)(1 + sT )n + Q(s)e−sτ = 0,

where the two parameters T and τ are nonnegative. We will describe the stability crossing
curves T , which is the set of (T, τ) such that (2.1) has imaginary solutions.

As the parameters (T, τ) cross the stability crossing curves, some characteristic roots
cross the imaginary axis. Therefore, the number of roots on the right half complex plane are
different on the two sides of the curves, from which we may describe the parameter regions of
(T, τ) in R

2
+ for the system to be stable.

Another related useful concept is the crossing set Ω, which is defined as the collection of
all ω > 0 such that there exists a parameter pair (T, τ) such that D(jω; T, τ) = 0. In other
words, as the parameters T and τ vary, the characteristic roots may cross the imaginary axis
at jω if and only if ω ∈ Ω.

We will restrict our discussions to the systems that satisfy the following assumptions:
Assumption I. deg(Q) < deg(P ).
Assumption II. P (0) + Q(0) �= 0.
Assumption III. P (s) and Q(s) do not have common zeros.
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Assumption IV. If P (s) = p, Q(s) = q, where p and q are constant real, then |p| �= |q|.
Assumption V. P (0) �= 0, |P (0)| �= |Q(0)|.
Assumption VI. P ′(jω) �= 0 whenever P (jω) = 0.

Assumption I means that the time delay system represented by (2.1) is of retarded type.
While not discussed here, it is possible to extend the analysis to systems of neutral type by
relaxing this assumption to also allow deg(Q) = deg(P ), as long as lims→∞Q(s)/P (s) < 1
is satisfied. Assumption II is made to exclude some trivial cases. If it is not satisfied, then
s = 0 is a solution of (2.1) for arbitrary (T, τ), and therefore, the system can never be stable.
Regarding Assumption III, if it is violated, we may find a common factor of the highest order
c(s) �= constant of P (s) and Q(s). This would indicate that D(s; T, τ) = c(s)D̂(s; T, τ),
where D̂(s; T, τ) satisfies Assumption III, and our analysis can still proceed on D̂(s; T, τ).
Finally, Assumptions IV–VI are made to exclude some rare singular cases in order to simplify
presentation.

Notice that we have restricted any element ω of the crossing set Ω to satisfy ω > 0. Indeed,
the discussion of ω < 0 is redundant in view of the fact that D(−jω; T, τ) is the complex
conjugate of D(jω; T, τ). Also, ω = 0 is never an element of Ω in view of Assumption II.

3. Main results.

3.1. Crossing set and stability crossing curves. Consider a fixed ω > 0. We first ob-
serve that as T and τ each vary within [0,∞), i.e., (T, τ) vary in R

2
+, |1 + jωT |n ∈ [1,∞),

|ejωτ | = 1, and ∠ejωτ may assume any nonnegative value by choosing appropriate τ . From
this observation, it is not difficult to conclude the following proposition.

Proposition 3.1. Given any ω > 0, ω ∈ Ω if and only if it satisfies

(3.1) 0 < |P (jω)| ≤ |Q(jω)|,

and all the corresponding T, τ can be calculated by

T =
1

ω

(∣∣∣∣
Q(jω)

P (jω)

∣∣∣∣

2/n

− 1

)1/2

,(3.2)

τ = τm =
1

ω
(∠Q(jω) − ∠P (jω) − n arctan(ωT ) + π + m2π),(3.3)

m = 0,±1,±2, . . . .

Proof. For necessity of (3.1), let ω ∈ Ω, and apply modulus to (2.1). We obtain

(3.4) |(1 + jωT )n| |P (jω)| = |Q(jω)| .

This implies |P (jω)| ≤ |Q(jω)|, because |(1 + jωT )n| ≥ 1. In addition, |P (jω)| > 0 is also
necessary. Otherwise, P (jω) = 0, which implies Q(jω) = 0 in view of (3.4). But this violates
Assumption III.

For sufficiency of (3.1), we need only to recognize that T and τ given by (3.2) and (3.3)
make s = jω a solution of (2.1). It is also easy to see by direct solution that T and τ given
by (3.2) and (3.3) are all the solutions.
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Remark 1. If for all ω ∈ R+, |P (jω)| > |Q(jω)|, then there does not exist any crossing
root with respect to the imaginary axis, and the system (2.1) is hyperbolic, as suggested by
Hale, Infante, and Tsen [10].

There are only a finite number of solutions to each of the two equations

(3.5) P (jω) = 0

and

(3.6) |P (jω)| = |Q(jω)|,

because P and Q are both polynomials satisfying Assumptions I–IV. Therefore, Ω, which
is the collection of ω satisfying (3.1), consists of a finite number of intervals. Denote these
intervals as Ω1,Ω2, . . . ,ΩN . Then

Ω =

N⋃

k=1

Ωk.

Without loss of generality, we may order these intervals from left to right; i.e., for any ω1 ∈ Ωk1 ,
ω2 ∈ Ωk2 , k1 < k2, we have ω1 < ω2.

In order to give a geometric interpretation that allows for deriving the crossing set Ω, for
s = jω, we rewrite (2.1) as

(3.7)

(
−Q(jω)

P (jω)

)1/n

e−jωτ/n = 1 + jωT.

The equation (3.7) can be interpreted as the intersection between a circle with radius

|Q(jω)/P (jω)|1/n and a vertical line passing through the point (1, 0) in the complex plane.
Therefore, the characterization of Ω can be easily derived from Figure 1. We will not restrict
∠Q(jω) and ∠P (jω) to a 2π range. Rather, we allow them to vary continuously within each
interval Ωk. Thus, for each fixed m, (3.2) and (3.3) represent a continuous curve. We denote
such a curve as T m

k . Therefore, corresponding to a given interval Ωk, we have an infinite
number of continuous stability crossing curves T m

k , m = 0,±1,±2, . . . . It should be noted
that, for some m, part of the curve or the entire curve may be outside of the range R

2
+ and

therefore may not be physically meaningful.
The collection of all the points in T corresponding to Ωk may be expressed as

Tk =

+∞⋃

m=−∞

(
T m
k

⋂
R

2
+

)
.

Obviously, T =
⋃N

k=1 Tk.
3.2. Classification of stability crossing curves. Let the left and right end points of inter-

val Ωk be denoted as ω�
k and ωr

k, respectively. Due to Assumptions IV and V, it is not difficult
to see that each end point ω�

k or ωr
k must belong to one, and only one, of the following three

types:
Type 1. It satisfies (3.6).



STABILITY CROSSING CURVES 481

1 + jωT

Re

Im

Figure 1. The intersection is possible only if the radius |Q(jω)/P (jω)| is larger than 1. The extreme cases
for intersection are given by |Q(jω)/P (jω)| = 1 or |Q(jω)/P (jω)| → ∞ ⇔ P (jω) → 0.

Type 2. It satisfies (3.5).
Type 3. It equals 0.

Denote an end point as ω0, which may be either a left end or a right end of an interval
Ωk. Then the corresponding points in T m

k may be described as follows.

If ω0 is of type 1, then T = 0. In other words, T m
k intersects the τ -axis at ω = ω0.

If ω0 is of type 2, then as ω → ω0, T → ∞ and

(3.8) τ → 1

ω0

(
∠Q(jω0) − lim

ω→ω0

∠P (jω) − nπ

2
+ π + m2π

)
.

Obviously,

(3.9) lim
ω→ω0

∠P (jω) = ∠
[
d

dω
P (jω)

]

ω→ω0

if ω0 is the left end point ω�
k of Ωk, and

(3.10) lim
ω→ω0

∠P (jω) = ∠
[
d

dω
P (jω)

]

ω→ω0

+ π

if ω0 is the right end point ωr
k of Ωk. In other words, T m

k approaches a horizontal line.

Obviously, only ω�
1 may be of type 3. Due to nonsingularity assumptions, if ω�

1 = 0, we
must have 0 < |P (0)| < |Q(0)|. In this case, as ω → 0, both T and τ approach ∞. In fact,
(T, τ) approaches a straight line with slope

(3.11) τ/T → (∠Q(0) − ∠P (0) − n arctanα + π + m2π)

α
,
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where

α =

(∣
∣
∣
∣
Q(0)

P (0)

∣
∣
∣
∣

2/n

− 1

)1/2

.

We say an interval Ωk is of type 	r if its left end is of type 	 and its right end is of type r. We
may accordingly divide these intervals into the following six types.

Type 11. In this case, T m
k starts at a point on the τ -axis and ends at another point on the

τ -axis.
Type 12. In this case, T m

k starts at a point on the τ -axis, and the other end approaches ∞
along a horizontal line.

Type 21. This is the reverse of type 12. T m
k starts at ∞ along a horizontal line and ends

at the τ -axis.
Type 22. In this case, both ends of T m

k approach horizontal lines.
Type 31. In this case, T m

k begins at ∞ with an asymptote of slope expressed in (3.11).
The other end is at the τ -axis.

Type 32. In this case, T m
k again begins at ∞ with an asymptote of slope expressed in

(3.11). The other end approaches ∞ along a horizontal line.

In what follows, we present two academic examples to illustrate some cases discussed
above.

Example 3.1 (type 11). Let n = 1, P (s) = s2 + 3s + 2, and Q(s) =
√

10s. Figure 2 (left)
plots |P (jω)|/|Q(jω)| against ω. From the plot, it can be seen that the crossing set Ω contains
only one interval Ω = Ω1 = [1, 2] of type 11. Correspondingly, the stability crossing curves
T are shown in Figure 2 (right), which consists of a series of curves with both ends on the
τ -axis.
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m=0

m=1

m=2

T

τ

Figure 2. Example 3.1. Left: |P (jω)|/|Q(jω)| against ω. Right: T m
1 for m = 0, 1, 2 (type 11).

Example 3.2 (types 22 and 32). Figure 3 (left) plots |P (jω)|/|Q(jω)| against ω with n = 1:

(3.12) P (s) = s4 + 3s2 + 2 and Q(s) = s + 4.

In this case Ω contains three intervals: Ω1 = (0, 1) (type 32), Ω2 = (1,
√

2) (type 22), and
Ω3 = (

√
2, 1.91] (type 21).
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Figure 3. Example 3.2. Left: |P (jω)|/|Q(jω)| against ω. Right: T m
2 , m = 1, 2, 3 (type 22).
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Figure 4. Example 3.2. T m
2 , m = 0, 1, 2 (type 32).

The stability crossing curves consist of three series of curves. Since type 21 has already
been shown in Example 3.1 above, here we will show only the two series corresponding to Ω2

and Ω1. The series corresponding to Ω2 of type 22 is shown in Figure 3 (right). We can see
that both ends approach infinity along the horizontal direction. The series corresponding to
Ω1 of type 32 is shown in Figure 4. The curves start from infinity in directions that can be
calculated by (3.11) and end at infinity along the horizontal direction.

Remark 2. Starting from practical models encountered in the literature, we will illustrate
other types in section 4. More precisely, the crossing sets of the examples we consider include
intervals of the type 31 (linearized Cushing equation, simplified helicopter model), type 12,
or type 21 (second-order example, simplified traffic flow model).

3.3. Tangents and smoothness. For a given k we will discuss the smoothness of the
curves in T m

k and thus of

T =
N⋃

k=1

Tk =

N⋃

k=1

+∞⋃

m=−∞

(
T m
k

⋂
R

2
+

)
.
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In this part we use an approach based on the implicit function theorem.
For this purpose, we consider T and τ as implicit functions of s = jω defined by (2.1). For

given m and k, as s = jω moves along the imaginary axis with ω ∈ Ωk, (T, τ) = (T (ω), τ(ω))
moves along T m

k . For a given ω ∈ Ωk, let

R0 = Re

(
j

s

∂D(s, T, τ)

∂s

)

s=jω

=
1

ω
Re

{[
nTP (jω) + (1 + jωT )P ′(jω)

]

· (1 + jωT )n−1 + (Q′(jω) − τQ(jω))e−jωτ
}
,

I0 = Im

(
j

s

∂D(s, T, τ)

∂s

)

s=jω

=
1

ω
Im

{[
nTP (jω) + (1 + jωT )P ′(jω)

]

· (1 + jωT )n−1 + (Q′(jω) − τQ(jω))e−jωτ
}
,

R1 = Re

(
1

s

∂D(s, T, τ)

∂T

)

s=jω

= Re
(
n(1 + jωT )n−1P (jω)

)
,

I1 = Im

(
1

s

∂D(s, T, τ)

∂T

)

s=jω

= Im
(
n(1 + jωT )n−1P (jω)

)
,

R2 = Re

(
1

s

∂D(s, T, τ)

∂τ

)

s=jω

= −Re
(
Q(jω)e−jωτ

)
,

I2 = Im

(
1

s

∂D(s, T, τ)

∂τ

)

s=jω

= − Im
(
Q(jω)e−jωτ

)
.

Then, since D(s; T, τ) is an analytic function of s, T , and τ , the implicit function theorem
indicates that the tangent of T m

k can be expressed as
(

dT
dω
dτ
dω

)

=

(
R1 R2

I1 I2

)−1 (
R0

I0

)

=
1

R1I2 −R2I1

(
R0I2 − I0R2

I0R1 −R0I1

)
,(3.13)

provided that

(3.14) R1I2 −R2I1 �= 0,

and dT/dω and dτ/dω do not vanish simultaneously.
It follows that Tk is smooth everywhere except possibly at the points where either

(3.15) R1I2 −R2I1 = 0

or

(3.16)
dT

dω
=

dτ

dω
= 0.
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From the above discussions, we can conclude the following proposition.
Proposition 3.2. The curve T m

k is smooth everywhere except possibly at the points corre-
sponding to s = jω in either of the following two cases:

(1) s = jω is a multiple solution of (2.1);
(2) ω is a type 1 end point of Ωk.
Proof. From the above discussion, we need only to show that (3.15) or (3.16) can be

satisfied only in the above two cases.
If (3.16) is satisfied, then, in view of (3.13), R0 = I0 = 0, which implies

∂D

∂s
= 0.

This, together with D = 0, means that s = jω is a multiple solution of (2.1) in case (1) above.
If condition (3.15) is satisfied, then

I1
R1

=
I2
R2

or
∠
(
n(1 + jωT )n−1P (jω)

)
= ∠

(−Q(jω)e−jωτ
)
.

But (2.1) implies
∠ ((1 + jωT )nP (jω)) = ∠

(−Q(jω)e−jωτ
)
.

Therefore, ∠(1+jωT ) = 0, which in turn means T = 0. From this, we can conclude |P (jω)| =
|Q(jω)|, and ω is a type 1 end point of Ωk.

3.4. Direction of crossing. Next we will discuss the direction in which the solutions of
(2.1) cross the imaginary axis as (T, τ) deviates from the curve T m

k . We will call the direction
of the curve that corresponds to increasing ω the positive direction. We will also call the region
on the left-hand side as we head in the positive direction of the curve the region on the left.

To establish the direction of crossing we need to consider T and τ as functions of s = σ+jω,
i.e., functions of two real variables σ and ω, and partial derivative notation needs to be adopted.
Since the tangent of T m

k along the positive direction is
(
∂T
∂ω ,

∂τ
∂ω

)
, the normal to T m

k pointing to

the left-hand side of the positive direction is
(− ∂τ

∂ω ,
∂T
∂ω

)
. Corresponding to a pair of complex

conjugate solutions of (2.1) crossing the imaginary axis along the horizontal direction, (T, τ)
moves along the direction

(
∂T
∂σ ,

∂τ
∂σ

)
. So, as (T, τ) crosses the stability crossing curves from the

right-hand side to the left-hand side, a pair of complex conjugate solutions of (2.1) cross the
imaginary axis to the right half plane if

(3.17)

(
∂T

∂ω

∂τ

∂σ
− ∂τ

∂ω

∂T

∂σ

)

s=jω

> 0,

i.e., the region on the left of T m
k gains two solutions on the right half plane. If the inequality

(3.17) is reversed then the region on the left of T m
k loses two right half plane solutions. Similar

to (3.13), we can express

(3.18)

(
∂T
∂σ
∂τ
∂σ

)

s=jω

=
1

R1I2 −R2I1

(
R0R2 + I0I2
−R0R1 − I0I1

)
.
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Using this we arrive at the following proposition.
Proposition 3.3. Let ω ∈ (ω�

k, ω
r
k) and (T, τ) ∈ Tk such that jω is a simple solution of the

characteristic equation
D(s; T, τ) = 0,

given by (2.1) and
D(jω′; T, τ) �= 0 ∀ω′ > 0, ω′ �= ω

(i.e., (T, τ) is not an intersection point of two curves or different sections of a single curve
of T ).

Then, as (T, τ) crosses the stability crossing curves from the right-hand side to the left-
hand side at this point, a pair of solutions of (2.1) cross the imaginary axis to the right,
through s = ±jω if R2I1 −R1I2 > 0. The crossing is to the left if the inequality is reversed.

Proof. Direct computation shows that
(
∂T

∂ω

∂τ

∂σ
− ∂τ

∂ω

∂T

∂σ

)

s=jω

=
(R2

0 + I2
0 )(R2I1 −R1I2)

(R1I2 −R2I1)2
.

Therefore (3.17) can be written as R2I1 −R1I2 > 0.

4. Illustrative examples. In order to illustrate the cases presented in the previous sec-
tions, we shall consider four examples: the linearized Cushing equation with a gap (first-order
system), a simplified helicopter model (second-order system), a second-order system encoun-
tered in control engineering, and finally a simplified traffic flow model.

Example 4.1 (linearized Cushing equation with a gap). Cushing has formulated and ana-
lyzed some general population growth models [5], and some of them have been largely treated
in the literature (see, for instance, [1, 2, 4, 15] and the references therein). One of these models
leads to the characteristic equation (s + α)(1 + sT )n + βe−sτ = 0, where α is the death rate
per unit time, and β is a constant corresponding to the maternity function. Based on the
particular form of the characteristic equation, it is easy to see that the only interesting case
is |α| < |β|. Otherwise, the crossing set Ω is empty.

If |α| < |β|, then Ω = Ω1 = (0,
√

β2 − α2], which is of type 31. The corresponding pairs
(T, τ) are given by

T =
1

ω

[(
β2

ω2 + α2

)1/n

− 1

]1/2

,

τm =
1

ω

[
∠
( −β

(α + jω)(1 + jωT )n

)
+ 2mπ

]
.

According to Proposition 3.2, we get

lim
ω→

√
β2−α2

T = 0, lim
ω→0

T = ∞, lim
ω→0

τm = ∞,

and

lim
ω→

√
β2−α2

τm =
1

√
β2 − α2

(

2mπ + ∠
(−β

α

)
− arctan

√
β2 − α2

α

)

.
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Figure 5. Linearized Cushing equation example. Left: |P (jω)|/|Q(jω)| against ω. Right: τm, m ∈
{0, 1, 2, 3, 4}, versus T when n = 1.
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Figure 6. Linearized Cushing equation example. τm, m ∈ {0, 1, 2, 3, 4}, versus T when n = 4.

Also the slopes of the corresponding asymptotes are given by

lim
ω→0

τ

T
=

−n arctan

[(
β2

α2

)1/n

− 1

]1/2

+ ∠
(−β

α

)
+ 2mπ

[(
β2

α2

)1/n

− 1

]1/2
.

Figures 5 (right) and 6 plot τm, m ∈ {0, 1, 2, 3, 4}, against T in the cases n = 1 and n = 4
for α = 3 and β = 5, respectively. The crossing set Ω = (0, 4] is shown in Figure 5 (left).
We observe that τm+1(ω) > τm(ω) ∀m ≥ 0 and ω ∈ Ω. Furthermore, it is easy to see that at
ω = 2 ∈ Ω, for any m,

R2I1 −R1I2 = −13n

(
25

13

)n−1
n

[(
25

13

)1/n

− 1

]1/2

< 0.

Therefore, we can conclude that as τ increases from zero, every time it crosses the stability
crossing curve in Figure 5 (right) or Figure 6, (2.1) gains two additional right half plane
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solutions. In addition, we can easily see that the system is stable when T = 0, τ = 0.
Therefore, the linearized Cushing equation is stable only in the region below the curve labeled
“m = 0” and above the T -axis.

Example 4.2 (simplified helicopter model). Consider a helicopter model [18, 19] consisting
of a fixed base and a rotary arm mounted on the base. The arm carries the helicopter body
on one end and a counterweight on the other. The arm can make an elevation motion around
an angle x. The corresponding nonlinear mathematical model is

(4.1) J · ẍ = −g · y · (M + m) · sinx + 2 · kt · r · v(t),
where kt and g represent the motor and the gravity constants, y is the distance between the
rotation point and the rotary arm, r is the distance from the helicopter body to the fixed base,
and m and M denote the mass of the helicopter blades (including the motors and the fixing
devices) and the counterweight, respectively. J is the moment of inertia around the rotating
point, and v(t) is the corresponding voltage. We note that all of these values can be explicitly
measured. Linearizing around the quiescent point, one gets

(4.2) J · ẍ = −g · y · (M + m) · x + 2 · kt · r · v,
and finally, after the damping factor identification, we obtain the helicopter transfer function

(4.3) G(s) =
0.2607

s2 + 0.07441s + 2.904
.

Considering a simple proportional-derivative (PD) controller (for improving the system re-
sponse of the above helicopter laboratory experiment) Gc(s) = (16.5s+ 19.5) with a gamma-
distribution with a gap e−sτ/(1+sT )n modeling the overall communication delay, one obtains
the closed-loop characteristic equation given by

(4.4) (s2 + 0.07441s + 2.904)(1 + sT )n + (4.3015s + 5.0836)e−sτ = 0.

The crossing set Ω consists of one interval (0, 5.0002] of type 31 (Figure 7 (left)).
Some stability crossing curves are plotted in Figure 7 (right).
Example 4.3 (controlling second-order systems). Consider (2.1) when Q(s) = k1s + k2 and

P (s) = s2 + 2. It is easy to see that if k1 = 0 and T = 0, the characteristic equation
corresponds to the closed-loop system of a simple oscillator 1/(s2 +2) controlled by a delayed
output feedback of the form k2e

−sτ , that is,

ÿ(t) + 2y(t) = u(t),

with
u(t) = −k2y(t− τ).

It is important to point out that for very small delay values τ and very small gains k2, the
closed-loop system is asymptotically stable, but it is not asymptotically stable if the delay τ
is equal to 0, that is, for the control law u(t) = −k2y(t). We have the so-called stabilizing
effect of the delay (see, for instance, [16] and the references therein on stabilizing oscillations
by using delayed feedback laws).
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Figure 7. Simplified helicopter model: T m
1 , m = 0, 1, 2, 3, for (4.4).

The more general system with the characteristic equation

(4.5) (s2 + 2)(1 + sT )n + (k1s + k2)e
−sτ = 0

can be analyzed as follows.

Case 1: If |k2| < 2 then the crossing set Ω = [ω+, ω−] \ {√2}, where

ω± =

√
k2

1 + 4 ±
√

(k2
1 + 4)2 − 4(4 − k2

2)

2
.

We note that

ω− ≤
√

k2
1 + 4 ±

√
(k2

1 + 4)2 − 16

2
≤

√
2 < ω+.

Therefore, Ω consists of two intervals of types 12 and 21, respectively. More details
can be found below, where we will discuss the cases k2 = 0 and k1 = 1.

Case 2: If |k2| ≥ 2 then the crossing set Ω = (0, ω+] \ {√2}, where ω+ >
√

2 is defined above.
So, the crossing set Ω consists of two intervals of types 32 and 21, respectively.

Next we consider the following special case: k1 = 1 and k2 = 0. Using (3.5) and (3.6), we
compute the crossing set Ω = Ω1 ∪ Ω2, where Ω1 = [1,

√
2) is of type 12 and Ω2 = (

√
2, 2] is

of type 21 (see also Figure 8 (left)). Simple computation shows that

T =
1

ω

√(
ω2

(2 − ω2)2

)1/n

− 1

and

τm =
1

ω

(
∠ jω

(2 − ω2)(1 + jωT )n
+ 2mπ

)
.

According to the result of Proposition 3.2 we have limω→1 T = 0, limω→2 T = 0, limω→√
2 T =
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∞, limω→1 τm = −π
2 + 2mπ, limω→2 τm = π

4 + mπ, and

lim
ω→√

2−0
τm =

[2m− (n− 1)/2]π√
2

,

lim
ω→√

2+0
τm =

[2m− (n + 1)/2]π√
2

.

We will now calculate the direction of crossing. A direction calculation yields

R2I1 −R1I2 = n(1 + ω2T 2)n−1(2 − ω2)2 Im(1 − jωT )

= −nωT (1 + ω2T 2)n−1(2 − ω2)2 < 0.

Therefore, using Proposition 3.3, we can conclude that as we cross the stability crossing curve
from its right-hand side to its left-hand side, a pair of complex conjugate solutions of D = 0
cross the imaginary axis from the right half complex plane to the left half plane.

The computations above show us that the following inequalities hold:

τm(
√

2 + 0) < τm(
√

2 − 0) < τm+1(
√

2 + 0) ∀m ∈ Z.

This simply states that for large values of T the crossing toward stability and the crossing
toward instability interlace. Considering the additional fact that the system is obviously stable
for τ = 0 and T = 0, and the fact that the stability crossing curve approaches horizontal, we
can conclude that the system has an infinite number of stable regions. Figure 8 shows the
case when n = 1.

Example 4.4 (traffic flow model). Finally we consider a time delay microscopic system in-
cluding delayed reactions of the driver, and, as explained in the introduction, we will use a
distributed delay with a gap for modeling human driver reactions with respect to the traffic be-
havior. Specifically, considering the traffic flow dynamics described by (1.8) with α1 = α2 = 2,
the stability analysis leads to the conclusion that the system has only one stability region (see
Figure 9).
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Figure 9. Traffic flow model with two vehicles: τm, m ∈ {0, 1, 2}, versus T when n = 2.
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Figure 10. Traffic flow model: τ1 versus T when n ∈ {1, 2, 3}.

More exactly, the crossing set Ω consists of one interval (0, 4], and the crossing curves are
described by the following equations:

T =
1

ω

√(
16

ω2

)1/n

− 1,(4.6)

τ =
1

ω

(π
2
− n arctan(ωT ) + 2mπ

)
, m = 0, 1, 2, . . . .(4.7)

We note that Assumption V is not satisfied in this case, and the shape of the crossing curves
do not perfectly match the classification proposed in section 3. However, the ideas of our
approach still apply.

It is also important to point out that the matrix A1 + A2 that defines the characteristic
equation (1.9) always has an eigenvalue at the origin. This corresponds to the situation in



492 C.-I. MORĂRESCU, S.-I. NICULESCU, AND K. GU

which the relative movement of one vehicle to the others is zero (the vehicles are either staying
or moving with the same velocity).

On the other hand, varying n over positive integers, we can see that the stability region
becomes smaller as the integer n increases (Figure 10).

5. Concluding remarks. This paper addressed the stability problem of shifted gamma-
distributed delay systems. More specifically, we have characterized the geometry of the sta-
bility crossing curves in the parameter space defined by the gap and the corresponding mean
delay. Several illustrative examples complete the presentation.
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Period-Doubling of Spiral Waves and Defects∗
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Abstract. Motivated by experimental observations in the light-sensitive Belousov–Zhabotinsky reaction and
subsequent numerical works, we discuss period-doubling bifurcations of spiral waves and other co-
herent structures. We report on explanations of the observed phenomena which involve a detailed
analysis of spectra, and of the associated eigenfunctions, of defects on bounded and unbounded
domains.
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1. Introduction. Spiral waves arise in many biological, chemical, and physical systems.
They rotate rigidly as functions of time, and a typical spatial profile of a planar spiral wave
is shown in Figure 1(i). The importance of spiral waves is partly due to the fact that exper-
imentally observed patterns are often organized by interacting spirals. Upon varying system
parameters, spiral waves may destabilize, and the resulting instabilities lead often to more
complex coherent patterns or to spatio-temporally disorganized dynamics. Examples of ex-
perimentally observed instabilities are meander instabilities [17, 20, 24], core [49] and far-field
breakup [26], and period-doubling instabilities [27, 28, 47].

From a classical dynamical-systems viewpoint, we expect that the transition to compli-
cated dynamics is initiated by a sequence of generic local or global bifurcations—saddle-node
and Hopf bifurcations in the case of equilibria, and saddle-node, Hopf, and period-doubling
bifurcations in the case of periodic orbits. Indeed, chemical reactions can be modeled by
reaction-diffusion systems in bounded domains for which bifurcations can be reduced to
finite-dimensional center manifolds, and where instabilities are therefore expected to be of
the aforementioned type.

In a first attempt to understand spiral-wave instabilities, we can view spirals as time-
periodic solutions while disregarding their spatial structure: note that spirals rotate rigidly
as functions of time and that their wave pattern repeats itself after one period of rotation;
see Figure 1(i). Thus, from this viewpoint, we expect to see Hopf and period-doubling bi-
furcations as typical precursors on the route to complicated spatio-temporal dynamics. Hopf
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(i) (ii)

Figure 1. Snapshots of the w-component of two-dimensional ( 2D) spiral waves in the Rössler equation
(1.3) are shown for two different parameter values: (i) shows a rigidly-rotating spiral wave for C = 2.95 in
the accompanying animation (66815 01.mpg [542KB]), while (ii) shows the spiral wave for C = 3.4 after a
period-doubling bifurcation in the accompanying animation (66815 02.mpg [653KB]). The period-doubled spiral
exhibits a line defect, which emanates from the core and ends at the bottom of the boundary, in order to
accommodate the phase-shifted wave trains to either side.

bifurcations have indeed been observed and give rise to meander instabilities [2]. What ap-
pears to be chaotic hypermeander of spiral tips has also been observed for parameter values
far beyond the meandering transition, but, to our knowledge, the question of whether com-
plicated hypermeander is actually caused by subsequent secondary bifurcations has not yet
been settled.

More recently, a different type of instability has been observed both in experiments [27,
28, 47] and in numerical simulations [14]. The primary spiral destabilizes as illustrated in
Figure 1(ii) and gives rise to a new spiral wave that emits wave trains with doubled wavelength
and temporal period. An additional feature of this transition is the occurrence of a line defect
that emerges from the spiral core and which accommodates the necessary mismatch of the
phases of the oscillations that are emitted by the spiral core. The pattern still repeats itself
but only after two rotations of the spiral core. Thus, the spiral wave, regarded as a time-
periodic solution, has undergone a period-doubling bifurcation, and, in accordance with the
literature, we will refer to this instability as period-doubling of spiral waves.

This apparently straightforward explanation is, however, too simple. Consider, for ex-
ample, the spiral wave as a solution in a circular domain. We may then pass to a rigidly
corotating coordinate frame in which the spiral wave becomes an equilibrium. In particular,
we can obtain the Floquet multipliers of the spiral wave in the original laboratory frame sim-
ply by exponentiating the eigenvalues of the spiral wave in the corotating frame where the
spiral is an equilibrium. An application of the spectral mapping theorem then shows that a
simple eigenvalue ρ = −1 cannot occur for the exponential of the real linearization in the coro-
tating frame. In other words, in rotationally symmetric domains, spiral waves are equilibria
when considered in a corotating frame, which generically undergo only saddle-node or Hopf
bifurcations. From this perspective, period-doubling ceases to be meaningful as an instability
mechanism.

Thus, the only conceivable explanation left is that the instability is a Hopf bifurcation.
Since the temporal period of the bifurcating patterns observed in experiments and numerical

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66815_01.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/66815_02.mpg


496 BJÖRN SANDSTEDE AND ARND SCHEEL

simulations is approximately twice the period of the primary spiral, the Hopf frequency ωH

needs to be in a 2:1 resonance with the rotation frequency ω∗ of the spiral wave so that

ωH =
ω∗
2
.

From a genericity viewpoint, it is therefore important to understand which mechanism enforces
this 2:1 resonance of the Hopf frequency of eigenvalues and the rotation frequency of the spiral
wave. This natural question is indeed the central point of this paper.

The seemingly artificial choice of the corotating frame can be put in a slightly more
systematic context once the symmetries of the problem are taken into account. Posing the
underlying reaction-diffusion system on a circular domain, rotations in SO(2) of the domain
act on patterns and map solutions of the system to solutions. Spiral waves are relative
equilibria with respect to this group action; that is, their time evolution is equivalent to the
action of the group: spirals are rigidly rotating. The isotropy of the spiral waves that we
consider is trivial: only a full rotation by 2π maps the spiral profile onto itself. Consequently,
center manifolds near spiral waves are principal fiber bundles, given as a direct product of the
underlying symmetry group SO(2) and a complement of the tangent space of the group orbit
in the center eigenspace [43]. In particular, the center manifold is a globally trivial bundle,
which provides yet another reason for why the case of a simple negative Floquet multiplier −1
is precluded for period-doubling bifurcations of spiral waves as this scenario requires the center
manifold to be nonorientable. The structure of the principal fiber bundle can be understood
by first constructing a center manifold in a Poincaré section, which is also a section to the
group orbit, and then transporting the center manifold along the periodic orbit using the
group action.

Symmetry is also the key to understanding the meandering patterns that arise at Hopf
bifurcations. As first pointed out by Barkley [2], the meandering motion of spiral waves
can be understood if we consider the spiral wave on the entire plane where, in addition to
rotations, spatial translation of patterns maps solutions to solutions. The full symmetry
group is therefore the special Euclidean group SE(2) of translations and rotations in the
plane. Center manifolds near relative equilibria can still be described as principal fiber bundles
SE(2)×V , where V corresponds to the Hopf eigenmodes. The dynamics on the center manifold
is of skew-product form: After an appropriate reparametrization of time, the dynamics near
onset is governed [7, 12, 43] by the ordinary differential equations (ODEs)

ȧ = eiϕ[v + O(|v|2)],
ϕ̇ = ω∗,

v̇ = [μ + iωH]v − (1 − iα)|v|2v,
where ϕ denotes the phase of the spiral, that is, its angle of rotation relative to a fixed
reference frame, a = x + iy is its position, and v ∈ C parametrizes a neighborhood of the
origin in the Hopf eigenspace. Substituting the periodic orbit v∗(t) with frequency ωH + μα
of the v-equation and the solution ϕ∗(t) = ω∗t of the ϕ-equation into the equation for a, and
expanding the resulting equation in Fourier modes, we find that the solution a∗(t) is given by

(1.1) a∗(t) =

∞∑

k=−∞
ak

ei[ω∗−k(ωH+μα)]t − 1

ω∗ − k(ωH + μα)
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so that the spiral tip stays bounded unless ω∗ and ωH are resonant. When

(1.2) ω∗ = �ωH for some � ∈ Z,

then the tip position a∗(t) = a�t + · · · is unbounded near μ = 0, and the spiral wave drifts
with velocity a�. The resonance � = 1 has been observed frequently in experiments [2, 46].

Returning to the period-doubling instability of spiral waves, we have already inferred
that period-doubling ought to be a resonant Hopf bifurcation with � = 2 in (1.2). The drift
predicted by (1.1) had not been observed originally in the experiments [47] or the numerical
simulations [14]. Based on the theoretical predictions outlined above, we observed drift in the
Rössler system

ut = 0.4 Δu− v − w,

vt = 0.4 Δv + u + 0.2 v,(1.3)

wt = 0.4 Δw + uw − Cw + 0.2,

upon varying C (and we report on these results in section 6 below). Independently, drift was
also observed in [4] for the system (1.3).

In summary, the supposition of an exact 2:1 resonance of the Hopf frequency of eigenvalues
and the rotation frequency of the spiral wave leads to the prediction that period-doubled spirals
should drift, which was, in turn, verified in numerical simulations. Thus, the remaining key
question is what enforces this resonance which seems to be nongeneric and should not occur
in one-parameter systems such as (1.3).

At this point, it is time to emphasize that the reduction results for planar patterns in
the presence of the noncompact Euclidean group hold only for localized rotating waves. For
Archimedean spirals, the presence of essential spectrum on the imaginary axis prevents a re-
duction to a finite-dimensional system. While this issue may appear to be of a purely technical
nature for meandering instabilities where theoretical predictions are in excellent agreement
with experimental and numerical results, the situation is different for period-doubling instabil-
ities. We shall argue that period-doubling of spirals is not caused by isolated point spectrum
but instead by the essential spectrum of the asymptotic wave trains.

Specifically, we shall show that ordinary period-doubling bifurcations of wave trains in the
traveling-wave equation create 2:1 resonances of the essential spectra of planar spiral waves
that are spatially asymptotic to these wave trains in their far field. More precisely, period-
doubling instabilities of wave trains manifest themselves for planar spiral waves in the form
of curves of essential spectrum that cross the imaginary axis first at exactly Λ = ±iω∗/2.
In particular, robust 2:1 resonances can occur in an open set of one-parameter families of
reaction-diffusion systems. When posed on physically relevant bounded domains such as
disks of radius R, we had shown previously in [35, 41, 42] that spiral spectra accumulate in
the limit R → ∞ onto the so-called absolute spectrum. We show here that absolute spectra of
wave trains near period-doubling bifurcations are symmetric with respect to reflections across
Im Λ = iω∗/2: One generic possibility is therefore that the absolute spectrum lies entirely on
the line Im Λ = iω∗/2, leading again to a 2:1 resonance. The latter case occurs, in fact, for
wave trains with small wave numbers near spatially homogeneous oscillations. Last, we shall
also investigate the nature of the line defect apparent in Figure 1(ii).
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Plan of the paper.
Section 2: Contains the analysis of spatio-temporal period-doubling of one-dimensional (1D)

wave trains on which the remainder of this paper relies.
Section 3: Spatio-temporal period-doubling for 1D sources (can be skipped at first reading).
Section 4: Extends the spectral results in section 2 from wave trains to planar Archimedean

spiral waves and explains the 2:1 resonance of Hopf eigenvalues.
Section 5: Spatial dynamics is used to analyze line defects and boundary layers in period-

doubling bifurcations near spatially homogeneous oscillations.
Section 6: Applies our results to the Rössler system (1.3) in which period-doubling had been

observed previously.
Section 7: Discussion of results and their limitations.

2. Spatio-temporal period-doubling of wave trains. Our interest in this section is to
study period-doubling bifurcations of wave trains and how these manifest themselves on the
spectral level in different coordinate frames. The results obtained here are crucial for our
analysis of period-doubling of spiral waves which we will undertake in section 4.

We consider reaction-diffusion systems

(2.1) ut = Duxx + f(u;μ), x ∈ R,

for u ∈ R
n and μ ∈ R, where D is a positive diagonal matrix and the nonlinearity f : R

n×R →
R

n is smooth. We assume that (2.1) with μ = 0 has a wave-train solution uwt(kx − ωt) for
an appropriate wave number k and temporal frequency ω, where we assume that uwt is 2π-
periodic in its argument so that uwt(ξ) = uwt(ξ + 2π) for all ξ.

2.1. Spatial and temporal period-doubling. If the wave number k vanishes, then u(x, t) =
uwt(−ωt) is a spatially homogeneous oscillation which satisfies the ODE

(2.2) ut = f(u;μ).

Period-doubling of uwt(−ωt) occurs when ρ = −1 is a temporal Floquet multiplier of the
linearization of the period map associated with (2.2) about uwt. The multiplier ρ = −1
is generically simple, and the resulting purely temporal period-doubling leads to a spatially
homogeneous oscillation with frequency close to ω/2.

Next, assume that k �= 0. In this case, we can pass from the laboratory frame x to the
comoving frame ξ = kx− ωt in which (2.1) becomes

(2.3) ut = k2Duξξ + ωuξ + f(u;μ).

Note that uwt(ξ) is an equilibrium solution of (2.3) with spatial period 2π, and we focus here
on steady-state bifurcations of (2.3) which are captured by the traveling-wave ODE

(2.4) k2Duξξ + ωuξ + f(u;μ) = 0.

Spatial period-doubling of the 2π-periodic orbit uwt(ξ) of (2.4) occurs when

(2.5) k2Dvξξ + ωvξ + fu(uwt(ξ);μ)v = 0
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has a nonzero solution vpd(ξ) with vpd(ξ + 2π) = −vpd(ξ) for all ξ, corresponding to a simple
spatial Floquet multiplier at −1. This bifurcation corresponds to a generic pitchfork bifurca-
tion of (2.3) when we pose it on the spatial interval (0, 4π) with periodic boundary conditions.
The Z2-symmetry that turns the steady-state bifurcation into a pitchfork is generated by the
shift ξ �→ ξ + 2π which also generates the isotropy group of the equilibrium uwt of spatial
period 2π when considered on the interval (0, 4π). Lyapunov–Schmidt reduction for the non-
linear problem (2.4) on an appropriate function space of 4π-periodic function leads to a family
of spatially period-doubled equilibria that bifurcate from uwt. Center-manifold reduction, or
Lyapunov–Schmidt reduction [19], shows that the principle of exchange of stability holds for
the temporal dynamics of (2.3) on the space of 4π-periodic functions provided the cubic co-
efficient of the reduced equation is nonzero. In other words, the bifurcating pattern is stable
as a solution to (2.3) if it exists for parameter values for which the primary pattern uwt is
unstable. We refer the reader to [8] for a discussion of the multiplicity of period-doubling
eigenvalues using Evans functions.

Last, we interpret these results in the laboratory frame. Assuming that k �= 0 and ω �= 0,
we consider (2.1) on the interval (0, 4π/k) with periodic boundary conditions. Equation (2.1)
generates a compact semiflow Φt on H2

per(0,
4π
k ), and the wave train uwt corresponds to a

time-periodic solution with period T = 2π/ω. We refer to eigenvalues ρ of the linearized
period map Φ′

T (uwt) as Floquet multipliers, which turn out to be conveniently related to the
spectrum of the linearization

(2.6) λv = Dk2vξξ + ωvξ + fu(uwt(ξ); 0)v

of (2.3) with 4π-periodic boundary conditions about the equilibrium uwt(ξ). Indeed, any
nontrivial solution v(ξ) to the eigenvalue problem (2.6) gives a solution w(x, ·) of the eigenvalue
problem for the period map of (2.1) in the laboratory frame via

w(x, t) = eλtv(kx− ωt), w(x, T ) = eλT v(kx− 2π)

and vice versa. Spatial period-doubling of (2.6) corresponds to λ = 0 and v(ξ) with v(ξ+2π) =
−v(ξ) for all ξ. The resulting solution w(x, t) satisfies w(x, T ) = −w(x, 0) and therefore gives
a simple Floquet multiplier ρ = −1. We refer to the occurrence of a simple Floquet multiplier
ρ = −1 of Φ′

T (uwt) as spatio-temporal period-doubling.

2.2. Essential spectra of wave trains. More generally, we can consider the linearization
on the real line x ∈ R. First, consider the linearization

(2.7) vt = Dk2vξξ + ωvξ + fu(uwt(ξ); 0)v, ξ ∈ R,

in the comoving frame together with the associated eigenvalue problem

(2.8) λv = Dk2vξξ + ωvξ + fu(uwt(ξ); 0)v, ξ ∈ R.

We write this equation as the first-order system

(2.9) vx =

(
0 1

k−2D−1[λ− fu(uwt(ξ); 0)] ωk−2D−1

)
v
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and denote the associated 2π-period map by Ψ2π(λ). Spatial Floquet exponents ν/k of (2.8)
or (2.9) are determined as roots of the Wronskian

d(λ, ν) := det
[
e2πν/k − Ψ2π(λ)

]
.

The Wronskian d(λ, ν) satisfies

(2.10)
d(λ, ν) = d(λ̄, ν̄) (complex conjugation),
d(λ, ν) = d(λ, ν + ik�) (artificial Floquet conjugation)

for all integers �. Spatial Floquet exponents can also be found by seeking nontrivial solutions
to (2.8) of the form

(2.11) v(ξ) = eνξ/kv0(ξ), v0(ξ + 2π) = v0(ξ) ∀ξ,

where v0 is a 2π-periodic solution of

(2.12) λv = D(k∂ξ + ν)2v +
ω

k
(k∂ξ + ν)v + fu(uwt(ξ); 0)v.

Purely imaginary spatial Floquet exponents ν ∈ iR give eigenvalues λ of (2.8), and each
eigenfunction (2.11) leads to a solution

v(ξ, t) = eλteνξ/kv0(ξ)

of (2.7). We record that spatial period-doubling as discussed in section 2.1 is equivalent to
having a nontrivial solution v of (2.12) for λ = 0 and ν = ik/2.

In the laboratory frame, the relevant linearization is

(2.13) ut = Duxx + fu(uwt(kx− ωt); 0)u, x ∈ R.

Temporal Floquet multipliers ρ and the associated Floquet exponents Λ in the laboratory
frame are determined by bounded nontrivial solutions u(x, t) of (2.13) with

u(x, T ) = ρu(x, 0) = eΛTu(x, 0),

where T = 2π/ω. It turns out that Λ is a temporal Floquet exponent if and only if there is a
nontrivial solution of (2.13) of the form

u(x, t) = eΛteνxu0(kx− ωt)

with ν ∈ iR, where u0 is 2π-periodic in its argument. Solutions of this form for arbitrary
ν ∈ C are in one-to-one correspondence with the solutions (2.11) of (2.8) via

u(x, t) = eλteνξ/kv0(ξ) = e[λ−νω/k]teνxv0(kx− ωt) = eΛteνxv0(kx− ωt)

with

(2.14) Λ = λ− ων

k
= λ− cpν,
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where cp = ω/k is the phase speed of the wave train uwt. Thus, the temporal Floquet
exponents Λ in the laboratory frame are roots of

D(Λ, ν) := d(Λ + cpν, ν).

Using (2.10), we see that D satisfies

(2.15)
D(Λ, ν) = D(Λ̄, ν̄) (complex conjugation),
D(Λ, ν) = D(Λ − iω�, ν + ik�) (Floquet conjugation)

for all integers �. Typically, solutions of d(λ, ν) = 0 come in curves λ = λ∗(ν), yielding also
Λ = Λ∗(ν). For ν ∈ iR, we refer to these curves as dispersion curves in the comoving and the
laboratory frames, respectively. We say that a dispersion curve Λ∗(ν) is simple if

∂ΛD(Λ, ν) = ∂λd(λ, ν) �= 0

at Λ = Λ∗(ν) or λ = λ∗(ν). The derivative

cg := −d Im Λ

d Im ν

is commonly referred to as the group velocity in the laboratory frame. The relation (2.14) can
therefore be viewed as transforming the group velocity from the laboratory to the comoving
frame by subtracting the speed of the frame.

Equation (2.14) implies that spatial period-doubling with λ = 0 and ν = ik/2 in the
comoving frame becomes spatio-temporal period-doubling with Λ = −iω/2 and ν = ik/2 in
the laboratory frame. The observation that the composition of the two symmetries in (2.15)
fixes Im Λ = −iω/2 leads us to the following lemma on robustness of period-doubling.

Lemma 2.1 (robustness of spatio-temporal period-doubling). Assume that there is a simple
dispersion curve Λ(ν) with

(2.16) Im Λ(ik/2) = − iω

2
;

then the dispersion curve is reflection symmetric about the line Im Λ = −iω/2 for ν close to
ik/2. Moreover, (2.16) is robust under sufficiently small perturbations of the parameter value
μ and the coefficients uwt(ξ) in (2.6).

Proof. From (2.15), we conclude that D(Λ, ν) = 0 if and only if D(Λ̄ − iω, ν̄ + ik) = 0.
Upon substituting Λ = −iω/2 + l and ν = ik/2 + iγ with γ ∈ R into these identities, we see
that D(−iω/2 + l, ik/2 + iγ) = 0 if and only if D(−iω/2 + l̄, ik/2 − iγ) = 0. Applying the
implicit function theorem to both equations, and using uniqueness of solutions, we conclude
that l(−γ) = l̄(γ) for all γ close to zero, which implies the asserted symmetry of the dispersion
curve about the line Im Λ = −iω/2. Robustness with respect to parameter variations is again
a consequence of the implicit function theorem.

In preparation for the analysis in the following two sections, we examine the linearization
in exponentially weighted spaces

(2.17) L2
η := {u ∈ L2

loc; |u|L2
η
< ∞}, |u|2L2

η
:=

∫

R

|u(x)|2e−2ηx dx.
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The spectra in L2
η can be computed in the same way as for η = 0 by solving (2.12) with

ν ∈ η + iR, which yields an η-dependent family of dispersion curves Λ(ν) with Re ν = η. The
real part of these curves depends on η according to

d Re Λ

dη
=

d Re Λ

d Re ν
=

d Im Λ

d Im ν
= −cg,

where we used the Cauchy–Riemann equations for the complex analytic function Λ(ν) in the
second equality. In particular, if the group velocity cg is positive, then positive weight rates
η > 0, which predominantly measure mass accumulating at x → −∞, push dispersion curves
Λ(ν) toward the stable direction since d Re Λ

dη < 0. This can in fact be viewed as a justification
of the terminology for cg in the sense that the group velocity measures transport from negative
to positive x.

From now on, we shall always denote the temporal Floquet exponents of wave trains in
the comoving frame by λ and in the laboratory frame by Λ.

2.3. Absolute spectra of wave trains. When we pass to large bounded domains with sep-
arated boundary conditions, exponential weights generate equivalent topologies for each finite
domain size L. In [34], we showed that the spectrum of the linearized period map, considered
on large but finite domains with typical separated boundary conditions, converges in the limit
of infinite domain size. We proved that this limit is given generically by the absolute spectrum
which can be computed using only the Wronskian D(Λ, ν) and which typically consists of a
locally finite collection of semialgebraic curves.

Since the absolute spectrum is related to separated boundary conditions, it depends cru-
cially on the frame in which the boundary conditions are imposed. As we are primarily
interested in 1D sources and two-dimensional (2D) spiral waves for which only the laboratory
frame is relevant, we shall compute the absolute spectrum of wave trains in this frame. To
define absolute spectra in the laboratory frame, we fix a point Λ ∈ C and collect all roots ν
of the Wronskian D(Λ, ν) subject to 0 ≤ Im ν < k. As shown in [38, section 3.4], these roots
form a countable set {νj}j∈Z which depends on the choice of Λ ∈ C. Taking the restriction on
the imaginary part of the νj into account, we conclude from [23] that there are only finitely
many roots νj , counted with multiplicity as solutions to an analytic equation, in any bounded
region of the complex plane. Furthermore, [38, section 3.4] implies that there are infinitely
many roots with negative real parts and infinitely many roots with positive real parts. We
may therefore order the roots νj , repeated with multiplicity, according to their real part
(2.18)

· · · ≤ Re ν−k ≤ Re ν−k+1 ≤ · · · ≤ Re ν−1 ≤ Re ν0 ≤ Re ν1 ≤ · · · ≤ Re νk ≤ Re νk+1 ≤ · · · ,

which gives a well-defined labeling up to shifts in the indices and up to the ambiguity of
labeling roots with equal real parts. For Re Λ 	 1, each νj has nonzero real part since the
essential spectrum would otherwise extend arbitrarily far to the right in the complex plane.
We may therefore choose the labeling in (2.18) so that Re ν0 < 0 < Re ν1 for Re Λ 	 1. We
then define the absolute spectrum in the laboratory frame as the set

(2.19) Σabs = {Λ ∈ C; Re ν0 = Re ν1}.
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We say that the absolute spectrum is simple if Re ν−1 < Re ν0,1 < Re ν2 and call points where
ν0 = ν1 edges of the absolute spectrum. Edges in simple absolute spectrum are called simple
edges, and it is straightforward to see that a unique curve of absolute spectrum emerges from
each simple edge. More generally, the absolute spectrum comes in curves, being defined by a
single real condition for the complex parameter Λ, and we may naturally parametrize these
curves using the parameter

s = (Im ν1 − Im ν0)
2

so that edges correspond to s = 0.
Inspecting (2.19) shows that the absolute spectrum also respects the symmetries (2.15)

of the essential spectrum, namely, complex conjugation and the artificial Floquet covering
symmetry Λ �→ Λ + iω. In particular, we have the following analogue of Lemma 2.1.

Lemma 2.2 (robustness of absolute spatio-temporal period-doubling). Suppose that a simple
edge of the absolute spectrum Λ(0) is located at Im Λ(0) = −ω/2 for Im ν0 = k/2; then the
unique dispersion curve emanating from Λ(0) is horizontal; that is, Im Λ(s) = −ω/2 for s ≈ 0.
Moreover, the same conclusion holds for sufficiently small perturbations of the parameter value
μ and the coefficients uwt(ξ) in (2.6). In particular, the absolute spectrum crosses at the sharp
resonance −iω/2 for an open subset of one-parameter families of reaction-diffusion systems.

Proof. The proof is similar to the proof of Lemma 2.1 and will be omitted.
We emphasize that the crossing of the essential spectrum at ±iω/2 does not necessarily

enforce the absolute spectrum to cross at resonance. The other generic possibility is that the
absolute spectrum consists locally of two curves which are symmetric about Im Λ = ±ω/2 but
do not contain any points with Im Λ = ±ω/2.

2.4. Spatially homogeneous oscillations. We show here that the hypotheses stated in
Lemmas 2.1 and 2.2 are met for wave trains with small wave numbers that accompany spa-
tially homogeneous oscillations. Indeed, assume that (2.2) admits a solution uwt(−ωt) which
undergoes a generic temporal period-doubling bifurcation at μ = 0. Moreover, assume that
the Floquet spectrum of the linearized period map Φ′

T (uwt) of (2.1) is contained in the open
left half-plane except for simple edges at Λ = 0, Λ = ±iω/2, and their Floquet conjugates
(note that the absolute and essential spectra of homogeneous oscillations coincide since these
waves are invariant under the spatial reflections x �→ −x).

Lemma 2.3. Under the assumptions stated above, there exists a family of wave trains,
parametrized by their wave number k with k ≈ 0, each of which undergoes a spatio-temporal
period-doubling which satisfies the hypotheses of Lemmas 2.1 and 2.2.

We remark that the statement of the preceding lemma will be further extended in section 5.
Proof. The existence problem and the eigenvalue problem of wave trains with wave number

k = ε ≈ 0 yield the singularly perturbed boundary-value problems

ε2D∂2
ξu + ω∂ξu + f(u) = 0, D(ε∂ξ + ν)2v + ω(∂ξ + ν/ε)v + f ′(u)v = λv,

respectively, with 2π-periodic boundary conditions in ξ = εx. The eigenvalue problem can be
rewritten in the form

D(ε∂ξ + ν)2v + ω∂ξv + f ′(u)v = Λv,

using the definition (2.14) of Λ. Writing these second-order equations as first-order equations
and reducing the dynamics to a slow manifold using geometric singular perturbation theory
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Figure 2. From left to right: Plotted are space-time plots (time upward, space horizontal) of 1D spirals and
1D targets of the Brusselator with parameters as in [38, Appendix B], and 1D spirals and moving period-doubled
sources of the Rössler system (6.1) with C = 3.0 and C = 4.2, respectively.

as in [38, section 3.3] shows that bounded solutions lie on the slow manifold and that the
evolution on the slow manifold is obtained to leading order by formally setting ε = 0 in the
system above. The reduced system therefore consists of a regular perturbation of a generic
period-doubling bifurcation with a simple Floquet multiplier, which proves the claim about
existence. The spectral problem with simple edges at Λ = 0 and Λ = −iω/2 for ν = 0 and
ν = ik/2, respectively, is robust as well and yields the same spectral picture for ε ≈ 0 with a
possible offset in the real part of the period-doubling eigenvalue.

3. Period-doubling of sources in one space dimension. 2D spirals are defects in the
sense that, far away from the location of the spiral tip, the medium resembles locally the
essentially 1D planar wave trains that we encountered in the previous section. An additional
property of 2D spirals is the active emission of wave trains in the sense that the group velocity
of the planar wave trains that are observed in the far field points in the radial direction away
from the center of the spiral.

Sources are 1D analogues of spiral waves, and we discuss in this section the 1D analogue
(see Figure 2) of the period-doubling instability of 2D spiral waves. We are interested in
seeing whether Floquet multipliers cross exactly at ρ = −1 or only nearby, and whether the
bifurcating period-doubled sources will drift or not.

3.1. Sources. Recall the reaction-diffusion system

(3.1) ut = Duxx + f(u;μ), x ∈ R.

Standing sources u∗(x, t) are time-periodic solutions of (3.1) which converge to wave trains
u±wt in the far field as x → ±∞ whose group velocities c±g , computed in the laboratory frame,
point away from the interface so that c−g < 0 and c+g > 0. More precisely, we have

(3.2) u∗(x, t) = u∗(x, t + T ), |u∗(x, t) − u±wt(k±x− ω±t− θ±; k±)| → 0 as x → ±∞,

where uwt(ξ; k) denotes a family of wave trains which are 2π-periodic in the argument ξ
with temporal frequencies ω±, spatial wave numbers k±, and phase corrections θ± at ±∞,
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respectively. Characteristic for sources is the requirement that the group velocities, computed
in the laboratory frame, are directed away from the defect so that c−g < 0 and c+g > 0. As
before, we let ω = 2π/T denote the temporal frequency of the source. We showed in [38]
that sources occur for open, nonempty classes of reaction-diffusion systems and generically for
discrete sets of asymptotic wave numbers k±.

We focus here exclusively on 1D targets and 1D spirals which are standing sources that
are reflectionally symmetric so that
(3.3)

u∗(x, t) = u∗(−x, t) (1D target) or u∗(x, t) = u∗(−x, t + T/2) (1D spiral)

for all (x, t). Thus, 1D target patterns are even in x for each t, while 1D spirals are invariant
when simultaneously reflecting the pattern and shifting in time by half the temporal period;
see Figure 2. Reflectional symmetry implies in both cases that k+ = −k− �= 0.

3.2. Spectra of sources on R. Dynamic properties such as robustness, stability, and
interaction with other defects are largely determined by spectral properties of the linearization
Φ′

T of the time-T map of (3.1) about the defect. Throughout this section, we will switch back
and forth between Floquet exponents Λ and Floquet multipliers ρ = eΛT in the spectrum of
Φ′

T . We distinguish between the point spectrum, which consists of all ρ ∈ C for which Φ′
T − ρ

is not invertible but still Fredholm of index zero, and the essential spectrum, which is the
complement of the point spectrum in the spectrum. We showed in [38] that the Fredholm index
of Φ′

T jumps precisely at the dispersion curves of the asymptotic 1D wave trains, computed in
the frame of the defect. In particular, the essential spectrum of sources inherits the symmetry
properties of the essential spectrum of the 1D wave trains.

Corollary 3.1 (robust period-doubling of sources). There exists an open class of one-param-
eter families of reaction-diffusion systems where the spectrum of the linearization crosses the
imaginary axis first at Λ = ±iω/2.

The multiplicity of the essential spectrum depends on whether the underlying source is re-
versible in the sense of (3.3) or not: Since the asymptotic wave trains at x = ±∞ of 1D targets
and 1D spirals are related by reflection symmetry, the essential spectra of both wave trains
cross the imaginary axis simultaneously. Thus, the essential spectrum of reversible sources has
geometric multiplicity two, which has implications for the actual bifurcation scenario which
we will discuss in section 3.4.

We now discuss the point spectrum. There are no structural reasons that prevent 1D
targets from having a simple point Floquet multiplier at ρ = −1 that crosses the imaginary
axis, thus leading to a generic period-doubling bifurcation of time-periodic solutions of (3.1).
Since 1D targets are symmetric under the spatial reflections defined by

(Ru)(x) := u(−x),

the linearized period map leaves the spaces Fix(R) and Fix(−R) of even and odd functions
invariant [13]. The eigenfunction belonging to a simple multiplier ρ = −1 is therefore either
even or odd: the bifurcating sources are 1D targets in the first case and 1D spirals in the
second case, and they have approximately twice the temporal period in both cases.

Floquet multipliers of 1D spirals at ρ = −1 must, however, have geometric multiplicity
two since the linearized period-T map Φ′

T (u∗) can be written as a square: Indeed, Φt(u) is
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equivariant with respect to the spatial reflection R so that Φt(Ru) = RΦt(u) and therefore
Φ′

T/2(Ru) = RΦ′
T/2(u)R. Using that ΦT/2(u∗) = Ru∗ for the 1D spiral u∗, we obtain

Φ′
T (u∗) = Φ′

T/2(ΦT/2(u∗))Φ′
T/2(u∗) = RΦ′

T/2(u∗)RΦ′
T/2(u∗) = [RΦ′

T/2(u∗)]
2.

We first focus on the center subspace associated with critical point spectrum of RΦ′
T/2(u∗).

Clearly this subspace is invariant under Φ′
T (u∗). An eigenvalue −1 of Φ′

T (u∗) can be generated
only by eigenvalues ±i of RΦ′

T/2(u∗), which come necessarily in complex conjugated pairs so

that the eigenvalue −1 cannot be simple. If the essential spectrum of RΦ′
T/2(u∗) is bounded

away from ±i, then the essential spectrum of Φ′
T (u∗) is bounded away from −1 by Fredholm

algebra properties, and the spectral projection P belonging to eigenvalues near −1 can be
obtained by factoring

Φ′
T (u∗) − ρ = [RΦ′

T/2(u∗) −
√
ρ] [RΦ′

T/2(u∗) +
√
ρ]

for ρ on a small circle Γ around −1, and computing

P =

∫

Γ
[ρ− Φ′

T (u∗)]−1 dρ

=

∫

Γ
[RΦ′

T/2(u∗) −
√
ρ]−1[RΦ′

T/2(u∗) +
√
ρ]−1 dρ

=

∫

√
Γ

(
[RΦ′

T/2(u∗) −
√
ρ]−1 − [RΦ′

T/2(u∗) +
√
ρ]−1
)

d
√
ρ.

In particular, the spectral projection of ΦT (u∗) associated with ρ = −1 is given by the sums
of the spectral projections of RΦ′

T/2 associated with ρ = ±i. This shows that classical period-
doubling in the form of a simple Floquet multiplier at −1 in the point spectrum cannot occur
for 1D spirals.

Remark 3.2. The preceding analysis also shows that the double Floquet multiplier at ρ = −1
for 1D spirals will generically split into two nonreal, complex conjugate multipliers since there
is no structural reason which prevents the eigenvalues ±i of RΦ′

T/2(u∗) from moving off the

imaginary axis, thus moving the multipliers of the square Φ′
T (u∗) off the negative real axis.

In preparation for the discussion in section 3.3, we collect some properties of the spectra
of symmetric sources in the exponentially weighted spaces

L̂2
η := {u ∈ L2

loc; |u|L̂2
η
< ∞}, |u|2

L̂2
η

:=

∫

R

|u(x)|2e−2η|x| dx.

The essential spectrum of the linearized period-T map of a symmetric source (3.3) on the
space L̂2

η is determined by the dispersion curves of the asymptotic wave trains in the spaces

L2
η from (2.17). Exploiting that the wave trains u±wt(x; k±) are related by symmetry,

u+
wt(x; k+) = u−wt(−x; k−), k+ = −k−,

it follows that the spatial Floquet exponents ν±j (Λ) that appear in the definition (2.19) of the
absolute spectra of wave trains are related via

ν+
j (Λ) = −ν−1−j(Λ) ∀j.
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In particular, we have ν+
0 (Λ) = −ν−1 (Λ) and ν+

1 (Λ) = −ν−0 (Λ) so that the absolute spectra of
the asymptotic wave trains coincide and so that, for each Λ /∈ Σabs, we can find a weight η
with ν+

0 < η < ν+
1 such that the linearized period map Φ′

T (u∗) − eΛT is Fredholm with index

zero in L̂2
η. Note also that we can choose the weight η to be constant locally in Λ. We define

the extended point spectrum to be the set of Λ /∈ Σabs such that the linearized period map
is not invertible in the space L̂2

η with η chosen as described above. We can then also define
geometric and algebraic multiplicities for elements of the extended point spectrum.

3.3. Spectra of sources on finite intervals. The resonant crossing of essential spectra
of sources provides some evidence for why period-doubling can occur in a robust fashion.
Experiments and numerical simulations are, however, posed on large but finite domains, typ-
ically with separated boundary conditions. The linearized period map on bounded domains
is a compact operator, and the essential Floquet spectrum is therefore empty: Instead, the
absolute spectra of the asymptotic wave trains become relevant. For simplicity, we restrict
ourselves to Neumann boundary conditions, thus considering

ut = Duxx + f(u;μ), x ∈ (−L,L),(3.4)

0 = ux(±L, t),

which are realistic for the experimental setup and which are also a standard choice for numer-
ical simulations.

We shall focus exclusively on 1D targets and 1D spirals. We assume that there exists a
symmetric source uso such that Λ = 0 belongs to the extended point spectrum with algebraic
and geometric multiplicity two. We showed in [38] that this assumption is satisfied for an open
and nonempty set of reaction-diffusion systems and called this type of source elementary. To
describe the influence of the boundary, we need an assumption on the boundary layer between
wave trains and the boundary. We assume that (3.1) admits a symmetric sink usi, that is, a
solution of the form (3.2) which is even in x, with asymptotic wave numbers k±si := k∓so. In
particular, the group velocities of the sink point toward the center of the sink. We assume
that Λ = 0 does not belong to either the absolute or the extended point spectrum of the
linearization Φ′

T (usi) of the period map. Again, this assumption is robust [38]. Since the sink
is even, it gives solutions u±si of the system

ut = Duxx + f(u;μ), x ∈ R
±,(3.5)

0 = ux(0, t)

on the half-spaces R
+ and R

− which satisfy Neumann boundary conditions at x = 0, and we
refer to these two solutions on R

+ and R
− as boundary sinks [38]. In this setup, we proved

the following result on the existence and spectral properties of solutions on large bounded
intervals.

Theorem 1 (see [38, section 6.8]). Under the above assumptions, the reaction-diffusion sys-
tem (3.4) has, for each L 	 1, a unique time-periodic solution u∗(x, t;L) which is close to
the symmetric source uso on (−L/2, L/2) and to the appropriately translated boundary sinks
u+

si and u−si on (−L,−L/2) and (L/2, L), respectively.
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The assumption on the existence of a symmetric sink can be verified in the special case
of nearly homogeneous oscillations (see also section 5.4). Recall that a homogeneous oscil-
lation with a simple Floquet exponent Λ = 0 is accompanied by a family of wave trains
uwt(kx− ω(k)t) for small wave numbers k ≈ 0.

Theorem 2 (see [6]). Assume that there is a spatially homogeneous oscillation uwt(−ω(0)t)
such that the Floquet multiplier Λ = 0 is a simple edge. For each k ≈ 0, there exists a unique
symmetric sink which is spatially asymptotic to the wave trains uwt(±kx−ω(±k)t) at x = ±∞.

Next, we investigate the spectrum of the linearized period map near the truncated sources
that we described in Theorem 1. An outline of the proof of the following theorem will be
given in Appendix A.

Theorem 3. Assume that the extended point spectrum of the sources uso on R is discrete;
then the spectrum of the period map of the truncated sources described in Theorem 1 converges
locally uniformly in the symmetric Hausdorff distance to the disjoint union of the absolute
spectrum Σabs of the wave trains uwt, computed in the laboratory frame, and a discrete set of
isolated points.

The convergence toward the absolute spectrum is algebraic of order O(1/L), and the num-
ber of eigenvalues in any small neighborhood of any element of the absolute spectrum converges
to infinity as L → ∞. The discrete part of the limiting spectrum is the union of the extended
point spectrum of the source uso on R and the extended point spectra of the two symmetric
boundary sinks u±si on R

± with Neumann boundary conditions. The convergence toward the
discrete part is exponential in L, and the multiplicity of eigenvalues in any small neighborhood
of the discrete part is finite and stabilizes as L → ∞.

We remark that the absolute spectrum is close to the essential spectrum if the wave number
of the asymptotic wave trains is sufficiently close to zero; see Lemma 2.3 and also section 5
below. We now discuss the implications of Theorem 3 for period-doubling of symmetric sources
of (3.4).

We begin with 1D targets. Floquet exponents ρ = −1 in the Floquet point spectrum of
a 1D target uso on R will generically have multiplicity one and therefore persist as a simple
multiplier ρ ∈ R

− near −1 for (3.4), with the eigenfunction lying again in the space of even
or odd functions. Next, assume that the boundary sink u+

si on R
− with Neumann conditions

has a simple Floquet multiplier ρ = −1 in its point spectrum. Since the sinks u+
si and u−si

are related by reflection x �→ −x, the reflected sink u−si also has a simple Floquet multiplier
ρ = −1, and Theorem 3 shows that the truncated source u∗ has two Floquet multipliers near
ρ = −1. Since 1D targets are symmetric under spatial reflections, the linearized period map
leaves the spaces of even and odd functions invariant. The Floquet eigenfunctions of the
boundary sinks on R

± yield one even and one odd eigenfunction of the truncated 1D target of
(3.4), which can be seen via transversality arguments in a spatial-dynamics formulation of the
eigenvalue problem. In particular, the two Floquet multipliers of the persisting source on the
bounded interval are both real and close to −1 but may split on the negative real line. Thus,
two period-doubling bifurcations will take place, both with multipliers at ρ = −1, one with
an even and the other one with an odd eigenfunction. In summary, period-doubling of 1D
targets for (3.1) via point eigenvalues persists with a sharp resonance at ρ = −1 for (3.4), and
the resulting bifurcation leads to 1D targets and/or 1D spirals depending on the symmetries
of the associated eigenfunctions.
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Next, we consider 1D spirals. Symmetry enforces that Floquet multipliers ρ ∈ R
− of 1D

spirals on R are double. This symmetry is also present for (3.4), and Remark 3.2 shows that
a Floquet multiplier ρ = −1 therefore either persists as a double multiplier ρ ∈ R

− near −1
or will split into two complex conjugate multipliers. The same conclusion is true for the two
multipliers near ρ = −1 that arise when the two boundary sinks undergo period-doubling with
simple multipliers at ρ = −1. We expect that the two multipliers near −1 will generically
split, so that there is no sharp resonance at ρ = −1 for the truncated 1D spiral of (3.4).

Last, we consider the absolute spectrum. The following corollary is a straightforward
consequence of Theorem 3.

Corollary 3.3 (generic absolute period-doubling). Resonant crossing of eigenvalues near the
absolute spectrum at Λ = ±iω/2 + O(1/L) occurs in an open subset of one-parameter families
of reaction-diffusion systems.

For 1D spirals, we expect that, generically, the eigenvalues near the absolute spectrum
will indeed move off the lines Im Λ = ±ω/2. For 1D targets, we can, however, apply the same
symmetry-based arguments as above which yield that the absolute eigenmodes decompose
again into odd and even functions: This precludes movement of the associated Floquet mul-
tipliers off the lines Im Λ = ±ω/2, and we therefore obtain a sharp resonance with multipliers
on these lines.

3.4. Nonlinear bifurcations of 1D sources, and the role of group velocity. We now
analyze the period-doubling instability of 1D targets and 1D spirals on the unbounded real
line x ∈ R that arises when essential spectrum crosses the imaginary axis. We are interested in
constructing coherent structures which are periodic in time and spatially asymptotic to period-
doubled wave trains in the far field as shown in Figure 2. Our goal is to derive bifurcation and
bifurcation failure results which are valid uniformly in the size of the domain. Our approach
will also allow us to gain insight into the role of transport as represented by the group velocity
of the linear period-doubling modes.

Throughout this section, we assume the existence of a family of wave trains with nonzero
group velocity cg which undergo a period-doubling instability with dispersion curve Λpd(ν)
which satisfies

Λpd(ik∗/2) = −iω∗/2, cpd
g = −Λ′

pd(ik∗/2) �= 0, Re Λpd(ν) < 0 ∀ν �= ik∗/2.

Furthermore, we assume that the period-doubling bifurcation is supercritical (more precisely,
that the period-doubling bifurcation in the space of spatially periodic functions is a supercrit-
ical pitchfork bifurcation). We will now state three theorems on period-doubling bifurcations
from defects on R which we shall prove later in this section.

Theorem 4 (bifurcation from 1D targets on R). Assume that there exists a 1D target with
Σext ∩ iR = {0}, where Λ = 0 has multiplicity two, whose asymptotic wave trains undergo

period-doubling at μ = 0. If cpd
g < 0, then there exists a unique branch of bifurcating 1D

target patterns and a unique branch of 1D spirals which are asymptotic to the period-doubled
wave trains. If cpd

g > 0, then 1D target patterns and 1D spirals that are asymptotic to the
period-doubled wave trains do not exist near onset.

Theorem 5 (bifurcation from 1D spirals on R). Assume that there exists a 1D spiral with
temporal frequency ω∗ and with Σext ∩ iR = {0}, where Λ = 0 has multiplicity two, whose
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asymptotic wave trains undergo period-doubling at μ = 0. If cpd
g < 0, then there exists a

unique branch, up to spatial reflection, of bifurcating solutions which are asymptotic to the
period-doubled wave trains. The wave speed c∗ of the bifurcating solutions is close to zero
with |c∗| ≤ K|μ| for some constant K, and their temporal frequency is close to ω∗/2 in the

comoving frame ξ = x − c∗t. If cpd
g > 0, then standing or moving 1D target patterns or 1D

spirals that are asymptotic to the period-doubled wave trains do not exist near onset.

We have observed the bifurcation from 1D spirals to moving period-doubled sources de-
scribed in Theorem 5 in numerical simulations of the Rössler system; see the two rightmost
plots in Figure 2.

While bifurcations from sources to period-doubled sources occur on R if and only if the
group velocity of the period doubling modes is directed toward the center of the defect, the
following result shows that bifurcations from boundary sinks to period-doubled boundary sinks
take place if and only if the group velocity is directed toward the boundary.

Theorem 6 (bifurcation of boundary layers on R
−). Assume that there exists a 1D boundary

sink of (3.5) on R
− such that Σext ∩ iR = ∅. If cpd

g > 0, then there exists a unique branch of

bifurcating boundary sinks which are asymptotic to the period-doubled wave trains. If cpd
g < 0,

then boundary sinks that are asymptotic to the bifurcating period-doubled wave trains do not
exist near onset.

Combining the statements on the bifurcation of coherent structures and boundary sinks,
we see that we cannot expect the simultaneous bifurcation to both coherent structures on R

and boundary layers on R
− near the onset of an essential instability. In particular, if period-

doubled sources bifurcate on R, then period-doubled boundary sinks will not be present,
and consequently the period-doubled sources will not persist on large bounded domains with
Neumann boundary conditions. We refer the reader to section 5.4 for the analysis of a scenario
where sources on R persist on bounded domains due to instabilities of boundary sinks caused
by the point spectrum.

The results stated above reflect an intuitive heuristic picture of transport. The linear
group velocity of eigenmodes encodes the direction toward which a localized perturbation
constructed from the eigenmode will propagate. Thus, if we begin with a source on R, then
the group velocities cpd

g of the period-doubling modes at x = ±∞ determine whether period-

doubling modes can propagate toward the core of the source or not: If the group velocity cpd
g

at x = ∞ is positive, then the period-doubling modes cannot propagate toward the core, and a
nonlinear bifurcation to a period-doubled pattern is not possible. The same arguments apply
to boundary sinks provided we interpret the boundary as the core of the coherent structure.
Since transport occurs either away from the boundary toward the core, or else away from
the core toward the boundary, we cannot expect the simultaneous bifurcation of sources and
boundary sinks.

In the remainder of this section, we sketch the proofs of Theorems 4–6. The arguments are
similar to those given in [36], and we will therefore refer the reader to [36] for the more technical
aspects of the proofs. Since we are interested only in time-periodic solutions, we rewrite the



PERIOD-DOUBLING OF SPIRAL WAVES AND DEFECTS 511

reaction-diffusion equation as a first-order evolution equation in the spatial variable x,

ux = v,(3.6)

vx = D−1[ωuτ − cv − f(u;μ)],

where (u, v)(·) ∈ H1(S1,Rn)×H1/2(S1,Rn) are 2π-periodic in τ for each fixed x. We showed
in [30, 36, 37] that coherent structures can be found as intersections of stable and unstable
manifolds of the periodic orbits (in the evolution variable x) that correspond to the asymptotic
wave trains. Essential instabilities of the wave trains correspond to pitchfork bifurcations of
the corresponding periodic orbits. Although (3.6) is ill-posed, the aforementioned stable and
unstable manifolds exist, and the standard arguments for bifurcations in dynamical systems
can be made rigorous [36, 37, 38, 39]. Equation (3.6) is invariant under the action of the
symmetry group SO(2) via the time shift action Sθ : (u, v)(τ) �→ (u, v)(τ + θ) for each fixed
θ ∈ SO(2) ∼= R/2πZ. In particular, the subspace of solutions which are invariant under the
shift Sπ : τ �→ τ + π by half the period is invariant under the x-evolution. If we choose
ω ≈ ω∗/2, where ω∗ is the temporal frequency of the primary source, then the primary wave
trains and coherent structures lie in this fixed-point space, and we expect the period-doubled
structures to bifurcate out of this subspace.

For the sake of clarity, we shall pretend in the rest of this section that the dynamics of
(3.6) can be reduced to an appropriate six-dimensional invariant subspace, for instance, by
using a suitable combination of Fourier modes in the periodic variable τ . We assume that this
subspace intersects the fixed-point subspace of the shift by half a period in a four-dimensional
subspace. Since all solutions truly depend on τ , we may furthermore factor out the free action
of SO(2)/Z2. We will now describe the dynamics of the reduced spatial dynamical system

(3.7) Ux = F (U ;μ), U ∈ R
3 × R

2,

in the reduced phase space which we assume is given by R
3 × R

2. As mentioned above, the
technical tools necessary to extend the analysis of this “toy problem” to the full system (3.6)
have been described in [36, 37, 38, 39] to which we refer the reader for details.

The primary wave trains uwt(kx − τ) correspond to relative periodic orbits of (3.6) with
respect to the shift symmetry Sθ and therefore, upon factoring out the shift, to equilibria of
the reduced spatial system (3.7) in R

3 × {0}. Any neutral Floquet exponent Λ ∈ iωZ of the
dispersion curve Λ∗(iγ) of the linearization of the reaction-diffusion system (2.1) about the
asymptotic wave train uwt gives a neutral Floquet exponent ν = iγ ∈ iR of the corresponding
relative periodic orbit of (3.6). By assumption, there are precisely two such neutral eigenvalues,
namely, the phase eigenvalue Λ = 0 at ν = 0 and the period-doubling mode Λ = −iω∗/2 at
ν = ik∗/2. Upon factoring out the shift symmetry SO(2)/Z2, we see that the eigenvalue
Λ = 0, which corresponds to shifts, is removed, while the period-doubling eigenvalue gives
a Floquet exponent at ν = 0 with eigenvector contained in {0} × R

2. Inside the invariant
subspace R

3 × {0}, the equilibrium is hyperbolic with one unstable eigenvalue if cg < 0 and
two unstable eigenvalues if cg > 0; see [38]. Similarly, besides the neutral eigenvalue ν = 0,

the equilibrium has one unstable eigenvalue on {0} × R
2 if cpd

g > 0 and one stable eigenvalue

if cpd
g < 0.
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The reversers R0 : (u, v) �→ (u,−v) and Rπ := R0Sπ each fix a three-dimensional subspace
in R

6 which is invariant under the action of SO(2), thus yielding a two-dimensional subspace
in R

5 whose intersection with the isotropy subspace FixSπ is one-dimensional. Similarly, the
space {(u, v); v = 0} of functions that satisfy Neumann boundary conditions corresponds to
a two-dimensional subspace in R

5 which intersects FixSπ in a line.
We now prove Theorem 4 for target patterns on R. Before bifurcation for μ < 0, 1D

targets are found as intersections in R
5 of the two-dimensional space FixR0 with the two-

dimensional stable manifold of the equilibrium corresponding to the wave train with positive
group velocity cg > 0. The assumption that the extended point spectrum in the origin has
multiplicity two means that the intersection of the tangent spaces of the stable manifold and
FixR0 is trivial and is broken with nonvanishing speed when we vary ω near ω∗/2 [38].

First, assume cpd
g > 0. From the preceding discussion of the dispersion relation, we see

that the wave train is stable inside the one-dimensional center manifold for μ < 0 before the
onset of period-doubling. The stable manifold of the asymptotic wave train can therefore be
continued smoothly through the bifurcation as a center-stable manifold. The assumption of
minimal extended point spectrum implies that the intersection between FixR0 and the center-
stable manifold of the equilibrium is transverse in the parameter ω at μ = 0, and we conclude
that the unique intersection persists through the bifurcation. Since this unique intersection is
given by the primary 1D target pattern and therefore located inside FixSπ, we conclude that
period-doubled target patterns cannot bifurcate.

Next, assume that cpd
g < 0. The wave train is then unstable inside the center manifold

for μ < 0 before bifurcation, which means that the stable manifold continues continuously
through the bifurcation as the strong stable fiber. At μ = 0, the strong stable fiber of the
primary wave train crosses FixR0 transversely upon varying ω, and we conclude that the
primary 1D target persists. On the other hand, the strong stable fiber of the bifurcating
period-doubled wave trains is

√
μ-close to the strong stable fiber of the primary wave train,

and it therefore also crosses FixR0 transversely for ω̃ = ω + O(
√
μ).

The same arguments apply when we replace FixR0 by FixRπ, which completes the proof
of Theorem 4.

The case of 1D spirals is similar. The primary 1D spirals are transverse intersection of
the stable manifold of the wave train and the fixed-point space of the operator R0Sπ/2, which
acts as a reverser in FixSπ but not in the entire phase space: Indeed, the flip symmetry of
the shift Sπ/2 by half a period has order four after doubling the period and therefore cannot
act as an involution when composed with the reverser R0 : (u, v) �→ (u,−v). We therefore
cannot expect to obtain period-doubled patterns as intersections with reversibility fixed-point
spaces; instead the bifurcating patterns should drift. Thus, we transform into a comoving
frame, include the wave speed c ≈ 0 as an additional parameter, and seek intersections of
the unstable manifold of the primary wave train with negative group velocity at x = −∞
with the stable manifold of the primary wave train with positive group velocity at x = ∞.
Since the intersection now occurs along flow lines of the differential equation, we lose one
dimension for transversality, which is however compensated for by the additional parameter
c. The existence and nonexistence proofs for period-doubled sources proceed now as before,
and [33, Lemma 3.9] shows that the speed c of the bifurcating sources will be of the order
O(μ). We omit the straightforward adaptation of the arguments.
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It remains to discuss boundary sinks on R−, which we seek as transverse intersections of
the unstable manifold of the wave trains at x = −∞ with positive group velocity and the
boundary subspace. Since cg > 0 at x = −∞, we have transversality of the intersection for
fixed ω, and we consequently find a family of boundary sinks, parametrized by their temporal
frequency ω. For cpd

g > 0, we find a family of period-doubled boundary sinks by continuing
the strong unstable manifold of the wave trains continuously through the bifurcation as the
strong unstable manifold of the period-doubled wave trains after bifurcation. For cpd

g < 0,
period-doubled boundary sinks can bifurcate only near certain discrete values of ω where
the transversality conditions are violated, and an additional extended point spectrum occurs
in the origin: An example where this can occur is near k = 0, and we refer the reader to
section 5.4 for an analysis of the resulting scenario.

3.5. Nonlinear bifurcations of 1D sources on finite intervals. We now describe bifurca-
tions on large bounded domains induced by the crossing of the absolute spectrum. Theorem 3
shows that there will be a large number of eigenvalues near each point of the absolute spec-
trum. Thus, for large domain diameters L 	 1, we expect a sequence of bifurcations with
a delayed onset μ∗(L) = μ∞∗ + O(1/L2) of the instability compared with the crossing of the
absolute spectrum at μ = μ∞∗ . The small-amplitude regime of this bifurcation sequence can be
analyzed using the methods described in [40] for the analogous case of a pitchfork bifurcation
(matching with the reversibility lines here is equivalent to matching with the boundary con-
ditions described there). As in [40], we expect that the amplitude of the bifurcating pattern
in the far field scales with

√
μ− μ∗(L)L3/2. Instead of carrying out the analysis of the entire

bifurcation sequence, we focus here on the first bifurcation.
We start with the case of a 1D target pattern. If the absolute spectrum crosses the

axis at ρ = −1, then section 3.3 shows that clusters of Floquet multipliers pass through
ρ = −1 on the real axis. From the expansion at the edge of the absolute spectrum [34,
section 5.4], we conclude that the first instability induced by the absolute spectrum occurs
on a two-dimensional center-eigenspace, with multipliers passing through −1 within O(1/L)
of each other as functions of the bifurcation parameter μ, where the reflection symmetry
acts trivially in one direction and nontrivially in the other direction. In physical space, this
can be interpreted as synchronizing the instability in the far field without a phase shift or
with a phase shift of π. The resulting bifurcation can be analyzed using Lyapunov–Schmidt
reduction (for finite, large L) and exploiting the symmetry. We find again that 1D target
patterns bifurcate in the space of symmetric functions, while 1D spirals, which are invariant
under the flip symmetry (x, t) �→ (−x, t+T ), bifurcate in the space on which the symmetry acts
nontrivially. We remark that the actual bifurcation is guaranteed on both spaces by degree
arguments and the fact that the leading multipliers actually cross the imaginary axis. The
absolute period-doubling of a 1D target pattern already shows “nongenericity” in the sense
that we would typically expect the leading multipliers to be simple at resonance ρ = −1. The
bifurcation analysis as described above remains valid only in a very small range of parameter
values since the spectral gap to the next multiplier is only of order 1/L2.

Next, we consider 1D spirals. For 1D spirals, we cannot eliminate the translation symmetry
by restricting to an appropriate fixed-point space since the isotropy of a 1D spiral is trivial for
each fixed time t, and instead we need to consider the entire center manifold at once. Near
a period-doubling bifurcation induced by the absolute spectrum, the linearization Φ′

T (u∗) has



514 BJÖRN SANDSTEDE AND ARND SCHEEL

four Floquet multipliers in an O(1/L2)-neighborhood of the unit circle given by ρ = 1 from
temporal translation, ρ = O(e−δL) for the translation eigenvalue, and ρ = −1−μ+O(1/L) for
the period-doubling multiplier, which has geometric multiplicity two as shown in section 3.3.
The associated generalized eigenspace is therefore four-dimensional and can be parametrized
by ∂tu∗, ∂xu∗, and the two period-doubling eigenfunctions vpd and v̄pd. If we denote the
associated coordinates by (τ, ξ, v) ∈ S1×R×C for the temporal phase τ , the spatial translation
ξ, and the complex Hopf amplitude v, then we see upon using [44, Theorem 2.9] that the vector
field on the center manifold for L 	 1 is given by

τ̇ = ωL(τ, ξ, v, μ),

ξ̇ = gL(τ, ξ, v, μ),(3.8)

v̇ = hL(τ, ξ, v, μ),

where

ωL(τ, ξ, 0, 0) = ω∗ + O(e−δL), gL(τ, ξ, 0, 0) = O(e−δL), g(τ + 2π, ξ, v, μ) = gL(τ, ξ, v, μ),

hL(τ, ξ, v, μ) = [iω∗/2 + O(μ + e−δL)]v + γL(τ, μ)|v|2v + O(|v|5).

We do not know whether the center manifold exists in a uniform neighborhood of the source
or whether the Taylor expansion on the center manifold converges as L → ∞. If we assume
that the temporal average of γL(τ, 0) is strictly negative uniformly in L 	 1, then we obtain
ξ̇ ≈ αLμ for a constant αL due to resonant terms of the form g1e

iτ v̄2 in gL(τ, ξ, v, μ) as in the
analysis in the introduction or in [44, section 7]. If αL is not zero, the bifurcating 1D spirals
should therefore drift on (−L,L) and eventually leave the local center manifold. We believe
that this drift can be followed on a global group-invariant center manifold until the effects of
the boundary become of the order of the drift speed μ.

4. Period-doubling of spiral waves. The spectral analysis of planar spiral waves is in
many respects analogous to that of 1D spirals. We consider the reaction-diffusion equation
(2.1)

(4.1) ut = DΔu + f(u;μ), (x, y) ∈ R
2,

first on the plane, and subsequently on large disks BR(0) of radius R 	 1 together with
appropriate boundary conditions. An Archimedean spiral wave is a rigidly rotating solution
of the form

u(x, y, t) = u∗(r, ϕ− ωt), (x, y) = (r cosϕ, r sinϕ),

which converges to 1D wave trains uwt,

|u∗(r, · − ω∗t) − uwt(k∗r + θ(r) + · − ω∗t)|C1(S1) → 0 as r → ∞,

where k∗ �= 0 denotes the asymptotic wave number of the wave trains, and θ(r) is a smooth
phase correction with θ′(r) → 0 as r → ∞. We shall assume that the essential spectrum of
the asymptotic 1D wave train is simple at Λ = 0 and that the group velocity cg of the wave
train uwt, computed in the laboratory frame, is positive.
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Spiral waves are equilibria in the corotating frame ψ = ϕ − ω∗t, where they satisfy the
elliptic system

(4.2) D

[
urr +

1

r
ur +

1

r2
uψψ

]
+ ω∗uψ + f(u(r, ψ);μ) = 0

with

(4.3) |u∗(r, ·) − uwt(k∗r + θ(r) + ·)|C1(S1) → 0 as r → ∞.

The convergence assumed in (4.3) implies that the asymptotic shape of the spiral u∗ is indeed
given by the 1D wave-train solution uwt, while the asymptotic wave number k∗ and the
temporal frequency ω∗ are related via ω∗ = ωnl(k∗).

Next, we linearize (4.1) about the spiral wave in the corotating frame, which is equivalent
to linearizing (4.2) about u∗(r, ψ). The resulting operator L∗ is given by

L∗u = D

[
urr +

1

r
ur +

1

r2
uψψ

]
+ ω∗uψ + fu(u∗(r, ψ);μ)u,

which is a closed operator on L2(R2,Rn). If we take the formal limit r → ∞ in the eigenvalue
equation

(4.4) D

[
urr +

1

r
ur +

1

r2
uψψ

]
+ ω∗uψ + fu(u∗(r, ψ);μ)u = Λu,

we obtain the limiting equation

(4.5) Durr + ω∗uψ + fu(uwt(k∗r + ψ);μ)u = Λu

with 2π-periodic boundary conditions in ψ. If we set ψ �→ −ω∗t, we recover the Floquet
eigenvalue problem (2.13) of the 1D wave trains which we discussed in section 2.2. The
Floquet symmetry of the Floquet eigenvalue problem (2.13) is reflected in the invariance of
the asymptotic spiral eigenvalue problem (4.5) under the substitution

(4.6) u(r, ψ) �−→ u(r, ψ)ei�ψ, Λ �−→ Λ + iω∗�

for each � ∈ Z. We emphasize that the transformation (4.6) for the essential spectrum will
generate new curves of spectrum for (4.4). The new eigenvalues are generated by the asymp-
totic SO(2)-symmetry of (4.4) and not by an artificial Floquet symmetry as for the wave
trains. Indeed, the spiral wave is an equilibrium, and each Λ obtained from (4.6) belongs to
a different eigenfunction.

We proved in [42] that these formal considerations can be made precise in the following
sense. The operator L∗ − Λ is Fredholm if and only if Λ does not belong to the Floquet
spectrum of the linearized period map of the asymptotic wave trains in the laboratory frame,
that is, if e2πΛ/ω∗ is not in the spectrum of the period map of

ut = Duxx + fu(uwt(k∗x− ω∗t);μ)u.
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In particular, the essential spectrum is vertically periodic in the complex plane with period
iω∗. Moreover, for spirals emitting wave trains, which by definition have cg > 0 at ν = 0,
the essential spectrum of the spiral wave in a neighborhood of the origin, and consequently
all its vertical translates, moves into the left half-plane when L∗ is posed on the spaces with
exponentially weighted norms

|u|2L2
η

=

∫

R2

∣
∣
∣u(x, y)e−η

√
x2+y2

∣
∣
∣
2
dxdy

for sufficiently small positive rates η > 0. We may therefore define the geometric and algebraic
multiplicities of Λ = 0 and Λ = ±iω∗ as eigenvalues of L∗ posed on L2

η for small η > 0. On
this space, ∂ψu∗ provides an eigenfunction of L∗ with Λ = 0, while ∂xu∗ and ∂yu∗ generate
eigenfunctions belonging to Λ = ±iω∗. We proved in [42] that spiral waves are robust provided
these eigenvalues are algebraically simple as eigenvalues in L2

η.
The preceding characterization of the essential spectrum of spiral waves by the spectrum

of the asymptotic wave trains shows that essential spatio-temporal period-doubling of spiral
waves is a robust phenomenon.

Corollary 4.1 (robust period-doubling of planar spirals). There exists an open class of one-
parameter families of reaction-diffusion systems such that the essential spectrum of L∗ crosses
the imaginary axis first at Λ = ±iω∗/2 + iω∗� for each � ∈ Z.

In preparation for a discussion of the spectra of spirals under truncation to large bounded
disks, we record that the absolute spectrum of (4.4) coincides with the absolute spectrum
of the asymptotic wave trains, computed in the laboratory frame, which is again vertically
periodic in the complex plane with period iω∗. In [42], we showed that for each Λ /∈ Σabs there
exists an exponential weight η such that L∗ −Λ is Fredholm with index zero on the space L2

η.
We define the extended point spectrum as the set of Λ /∈ Σabs for which the kernel of L∗ − Λ
is nontrivial on L2

η, with η chosen as above. It is not difficult to see that the kernel does not
depend on the choice of the weight [42].

The persistence of period-doubling on large bounded disks of radius R 	 1 with Neumann
boundary conditions is now very similar in spirit to the situation in one space dimension.
First, we address the persistence of the spiral wave on disks BR(0) for R 	 1. Similarly to
Theorem 1, we assume the existence of a 1D boundary sink that connects the asymptotic wave
trains at x = −∞ with Neumann conditions at x = 0 such that Λ = 0 does not belong to its
extended point spectrum. Moreover, we assume robustness of the spiral on the plane; that is,
we require that Λ = 0 is algebraically simple in L2

η for η > 0 small. Under these conditions,
the spiral wave persists as a rigidly rotating solution of the reaction-diffusion system for all
sufficiently large R [42].

Next, we consider the spectrum of the linearization (4.4) about the truncated spiral wave
on BR(0) with Neumann conditions at r = R, for which a result completely analogous to
Theorem 3 holds.

Theorem 7 (see [42]). Assume that the extended point spectrum of the spiral wave is dis-
crete; then the spectrum of the truncated 2D spiral converges locally uniformly in the symmet-
ric Hausdorff distance to the disjoint union of the absolute spectrum Σabs of the asymptotic
wave trains, computed in the laboratory frame, and a discrete set of isolated eigenvalues with
finite multiplicity. Convergence to the absolute spectrum is algebraic of order O(1/R), and
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the number of eigenvalues inside any small disk that contains a point in the absolute spectrum
converges to infinity as R → ∞. The discrete part of the limiting spectrum is the union of the
extended point spectrum of the spiral and the extended point spectrum of the boundary sink on
R
−. Convergence toward elements of the discrete part of the limiting spectrum is exponential

in R, and the multiplicity of eigenvalues in a sufficiently small disk about an element of the
extended point spectra converges to the sum of the multiplicities in the extended point spectra
of planar spiral and boundary sink.

Remark 4.2. We remark that it has recently been shown numerically [45] and analyti-
cally [41] that infinitely many discrete eigenvalues in the extended point spectrum of spiral
waves can accumulate at edges of the absolute spectrum.

Corollary 4.3 (absolute period-doubling on bounded domains). Resonant crossing of eigen-
values at Λ = ±iω∗/2 + iω∗� + O(1/R) with � ∈ Z of spiral waves on disks of radius R 	 1
occurs in an open subset of one-parameter families of reaction-diffusion systems.

An interesting feature of period-doubling of spiral waves is the shape of its period-doubling
eigenfunctions. We first describe the shape of eigenfunctions for the essential spectrum (al-
though this is somewhat irrelevant to bifurcations taking place on large disks). Consider the
eigenvalue problem (2.8) of the wave train uwt in the 1D comoving frame and assume that it
has period-doubling eigenvalues given by

λ(ν) = −(cpd
g − cp)(ν − ik∗/2) + d(ν − ik∗/2)2 + O(|ν − ik∗/2|3), cp =

ω∗
k∗

,

for ν ≈ ik∗/2 with associated eigenfunctions given by

v(y) = eνyupd(k∗y; ν), upd(k∗y; ν) = upd(k∗y + 2π; ν) ∀y
when written in the variable y = ξ/k∗. In the laboratory frame x = y + cpt, we obtain the
critical dispersion curve

(4.7) Λ(ν) = − iω∗
2

− cpd
g (ν − ik∗/2) + d(ν − ik∗/2)2 + O(|ν − ik∗/2|3)

with eigenfunctions
v(x, t) = eΛ(ν)teνxupd(k∗(x− cpt); ν).

The eigenfunction for the spiral is now obtained as in [35] by substituting t = −ψ/ω∗ and
x = r, which gives

u(r, ψ) = e−Λ(ν)ψ/ω∗eνrupd(k∗r + ψ; ν)

for the solution of (4.4). We evaluate this expression at the critical wave number ν = ik∗/2
to get

u0(r, ψ) = ei(k∗r−ψ)/2upd(k∗r + ψ) = e−iψ/2vpd(k∗r + ψ),

where we substituted the real-valued function

vpd(ξ) := eiξ/2upd(ξ)

with vpd(ξ + 2π) = −vpd(ξ) for all ξ, which corresponds to the period-doubling solution of
(2.5). Exploiting the Floquet symmetry (4.6), we find the additional eigenfunctions

(4.8) u�(r, ψ) = eiψ(�−1/2)vpd(k∗r + ψ)
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belonging to Λ = −iω∗/2 + iω∗� for � ∈ Z, and in particular the complex conjugate

u1(r, ψ) = eiψ/2vpd(k∗r + ψ)

of u0(r, ψ). To get real-valued solutions, we add up u0 and u1 and solve the time-dependent
linearized problem with initial data u0 + u1 to get

u(r, ψ, t) = e−iω∗t/2e−iψ/2vpd(k∗r+ψ)+eiω∗t/2eiψ/2vpd(k∗r+ψ) = cos

(
ψ + ω∗t

2

)
vpd(k∗r+ψ).

In the laboratory frame ϕ = ψ + ω∗t, we finally obtain the real perturbation

(4.9) u(r, ϕ, t) = cos
(ϕ

2

)
vpd(k∗r + ϕ− ω∗t).

If we formally add the solution (4.9) multiplied by a small amplitude
√
ε to the original spiral

wave, we obtain

(4.10) u∗(r, ϕ− ω∗t) +
√
ε cos

(ϕ
2

)
vpd(k∗r + ϕ− ω∗t)

in the spiral far field. In particular, the amplitude of the period-doubling mode vanishes
along the stationary line ϕ = π, while the spiral is rotating. The temporal frequency of the
perturbation is ω∗/2 since vpd has period 4π. The pattern described by (4.10) looks exactly
like those observed experimentally in [28, 29, 47], numerically in [14], and here in Figure 1(ii).

Although this computation is formal, the shape of eigenfunctions resulting from the abso-
lute spectrum on large bounded domains can be computed similarly. Assume therefore that
|cpd

g | � 1, as is the case, for instance, near spatially homogeneous oscillations. In this case, the
absolute spectrum has a branch point Λbp close to the tip of the period-doubling instability
at Λ = iω∗/2 + μ. This branch point corresponds to a root of the equation dΛ/dν = 0, with
Λ(ν) as in (4.7), and is therefore given by

Λbp =
iω∗
2

− [cpd
g ]2

4
+ μ with νbp =

cpd
g

2d
.

Following the above computation gives

cos(ϕ/2)eνbprvpd(k∗r + ϕ− ω∗t)

for the perturbation of the primary spiral-wave profile. In particular, we observe the stationary
line of vanishing amplitude for the period-doubling mode, and in addition an exponential decay
or growth of the eigenfunction depending on whether the group velocity of the period-doubling
mode is negative or positive, respectively.

At the onset of the absolute instability on large disks, there are five eigenvalues in the
vicinity of the imaginary axis, namely, Λ = 0 induced by rotation, Λ = ±iω∗ + O(e−δR)
induced by translation, and Λpd = ±iω∗/2 + O(1/R2) near the branch point of the absolute
spectrum that induces the period-doubling of the wave trains. In [43], we showed that resonant
Hopf bifurcations of this type will typically lead to a slow drift of the spiral wave with drift
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speed O(μ) (see also the discussion in section 1). Based on this prediction, we verified that
drift indeed occurs in the Rössler system and report on these computations in section 6.
Independently, drift was also observed numerically in [4].

We remark that the region of validity of our drift analysis is very small in parameter space
since the eigenvalue at the edge of the absolute spectrum is O(1/R2)-close to other eigenvalues
that subsequently cross the imaginary axis.

Last, we comment on the role played by the other eigenfunctions u�(r, ψ) given in (4.8).
Proceeding as above, we see that the sum of the eigenfunctions u�+1 and u−� for positive
integers � generates patterns of the form

(4.11) u∗(r, ϕ− ω∗t) +
√
ε cos

(
(2� + 1)ϕ

2

)
vpd(k∗r + ϕ− ω∗t),

which exhibit 2�+1 stationary line defects at ϕ = 2n+1
2�+1 π for n = 0, . . . , 2�. Interestingly, none

of the associated eigenvalues at Λ = iω∗(� + 1/2) affects the expected drift in any way as the
resulting Hopf frequencies ωH := (� + 1/2)ω∗ cannot satisfy the required resonance condition
(1.2), except when � = 0, which is therefore solely responsible for the occurrence of drift.

5. Defects near period-doubling of homogeneous oscillations. In this section, we study
patterns that are created near the onset of period-doubling of a family of wave trains. We
restrict ourselves to the onset of period-doubling at homogeneous oscillations where k ≈ 0 and
therefore cg = cpd

g = 0.

5.1. Derivation of amplitude equations. We shall assume that u0(τ) has minimal pe-
riod 2π and satisfies

(5.1) ω0uτ = f(u;μ)

for μ = 0 and some ω0 �= 0. Furthermore, we assume that ρ = 1 and ρ = −1 are geometrically
and algebraically simple Floquet multipliers of the linearization

ω0uτ = fu(u0(τ); 0)u

of (5.1) about u0(τ); the associated nontrivial solutions of the linearization are given by u′0(τ)
and upd(τ), respectively. The associated solutions to the adjoint equation

ω0wτ = −fu(u0(τ); 0)∗w

will be denoted by ψ0(τ) and ψpd(τ), respectively.
Simplicity of ρ = 1 implies that the periodic orbit u0(τ) persists for all μ close to zero

with temporal frequency ω = ω0(μ), and we assume that the unique Floquet multiplier ρpd(μ)
near ρ = −1 of the persisting wave train satisfies ρ′pd(0) < 0. The simplicity of ρ = 1 also
implies that the partial differential equation (PDE)

(5.2) ut = Duxx + f(u;μ)

with μ = 0 has a one-parameter family of traveling waves u(x, t) = u0(ωt − kx; k), defined
for |k| � 1, near u0, where ω = ωnl(k) with ωnl(0) = ω0 is a smooth, even function of k [38,
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section 3.3]. We assume that the nonlinear dispersion relation ωnl(k) is nondegenerate so that
ω′′

nl(0) �= 0. Last, the linearization

ut = Duxx + fu(u0(ω0t); 0)u

of (5.2) about u0(ω0t) can be reduced, via spatial Fourier transform, to the ODE

(5.3) ut = [Dν2 + fu(u0(ω0t); 0)]u.

The simplicity of the multipliers ρ = ±1 implies that (5.3) has unique Floquet exponents,
given by λ0 = d0ν

2 +O(ν4) and λpd = πi+d1ν
2 +O(ν4) for appropriate constants d0, d1 ∈ R,

for |ν| � 1, which correspond to ρ = ±1. We assume that d0, d1 > 0.

We are interested in coherent structures near the homogeneous oscillations. Thus, for ω
close to ω0, we introduce the new time variable τ = ωt and seek solutions u(x, τ) of the PDE

(5.4) ωuτ = Duxx + f(u;μ)

that are 4π-periodic in τ .

Theorem 8. Under the above hypotheses, the following is true for all μ sufficiently close
to zero and ω close to ω0: Solutions u(x, τ) of (5.4) with period 4π in τ whose time slices
u(x, ·) are, for each x ∈ R, close to an appropriate τ -translate of u0(·) are in one-to-one
correspondence with small bounded solutions of the ODE

φx = κ,

κx =
1

d0

[
−ω̄ +

1

2
ω′′

nl(0)κ2 + b0A
2

]
+ O(|A|3 + |κ|3 + B2 + ω̄2),(5.5)

Ax = B,

Bx =
1

d1

[
(−ρ′pd(0)μ + b1ω̄ + b2κ

2 + b3A
2)A + b4κB

]

+ O(|A|(A4 + A2|κ| + μ2 + ω̄2) + |B|κ2 + B2(|κ| + |A|)),

where ω = ω0(μ) + ω̄. The right-hand side of (5.5) does not depend on φ and is equivariant
under the reflection (φ, κ,A,B) �→ (φ, κ,−A,−B), which corresponds to the time shift by 2π,
and reversible under x �→ −x with reverser (φ, κ,A,B) �→ (φ,−κ,A,−B). The solution of
(5.4) associated with a solution (φ, κ,A,B) of (5.5) has temporal period 2π if and only if
(A,B) = 0.

Equation (5.5) is the steady-state equation associated with the formal amplitude equation1

φt = d0φxx − 1

2
ω′′

nl(0)φ2
x − b0A

2,(5.6)

At = d1Axx +
[
ρ′pd(0)μ− b̂1φxx − b̂2φ

2
x − b̂3A

2)
]
A− b4φxAx

1The coefficients b̂j can be obtained from the bj ’s upon solving the equation for κ in (5.5) for ω̄ and
substituting into the equation for A.
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for the phase φ and the period-doubling mode A. A similar complex version of (5.6) has been
analyzed in [9, 10, 11], where it was derived from a combustion model using formal multiscale
expansions to describe the interaction of Burgers and Hopf modes. We also refer the reader
to [22] for the derivation of other amplitude equations for systems with conservation laws.

Before embarking on the proof of the preceding theorem, we consider spectral PDE sta-
bility of the bounded solutions u∗(x, τ) of (5.4) described by Theorem 8. A complex number
λ is a Floquet exponent of u∗(x, τ) if and only if there exists a nontrivial 4π-periodic solution
u(x, τ) of

(5.7) λu + ωuτ = Duxx + fu(u∗(x, τ);μ)u.

Floquet exponents of u∗(x, τ) near the origin are captured by the following result.
Theorem 9. Under the hypotheses of Theorem 8, assume that U∗(x) = (κ∗, A∗, B∗)(x) is a

small bounded solution of (5.5) corresponding to a 4π-periodic solution u∗(x, τ) of (5.4). If
we write (5.5) as (

d0φxx

d1Axx

)
= G(φx, A,Ax, μ, ω̄),

then Floquet exponents λ of (5.7) near the origin are in one-to-one correspondence, counting
multiplicity, with solutions λ near the origin of the reduced PDE eigenvalue problem

(
d0φxx

d1Axx

)
= D(κ,A,B)G(κ∗(x), A∗(x), B∗(x), μ, ω̄)

⎛

⎝
φx

A
Ax

⎞

⎠+ λ

(
1 0

b1A∗(x) 1

)(
φ
A

)

(5.8)

+ λ

⎡

⎢⎢
⎣O(|λ| + |μ| + |ω̄|)

⎛

⎜⎜
⎝

φ
φx

A
Ax

⎞

⎟⎟
⎠+ O(‖U∗‖)

⎛

⎝
φx

A
Ax

⎞

⎠+

(
O(‖U∗‖)

O(‖κ∗‖2 + ‖A∗‖2 + ‖B∗‖)
)

Φ

⎤

⎥⎥
⎦ .

Furthermore, u∗(x, τ) does not have any Floquet exponents in the right half-plane other than
those captured by (5.8) (or those obtained from the trivial Floquet symmetry).

Proof of Theorems 8 and 9. We proceed using spatial dynamics as in [6, section 8.1] and
therefore write (5.4) as

ux = v,(5.9)

vx = D−1[ωuτ − f(u;μ)]

on the space X := H1
per(0, 4π)×H

1/2
per (0, 4π). Thus, we regard (5.9) as a dynamical system in

the spatial evolution variable x, acting on 4π-periodic functions u = (u, v) ∈ X of the rescaled
temporal variable τ . Important features of (5.9) are its equivariance under the shifts

Sφ : X −→ X , u(·) �−→ u(· − φ)

for each fixed φ ∈ [0, 4π]/∼ and reversibility in x with reverser R : (u, v) �→ (u,−v).
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Equation (5.9) has, for μ = 0 and ω = ω0, an S1-group orbit of stationary solutions given
by Sφu0, where

u0 :=

(
u0

0

)
.

Each of these solutions has isotropy Z2 generated by S2π. We first concentrate on a neighbor-
hood of u0 and write u = u0 + v so that v ∈ X satisfies

(5.10) vx = B0v + (ω − ω0)N (u0 + v) + G(v;μ)

with

B0 =

(
0 1

D−1[ω0∂τ − fu(u0(·); 0)] 0

)
, N =

(
0 0

D−1∂τ 0

)
,

G(v;μ) =

(
0

−D−1[f(u + u0(·);μ) − f(u0(·); 0) − fu(u0(·); 0)u]

)

for v = (u, v). This is the system considered in [6, section 8.1]. Here, we have the additional
simplification that both the wave number k0 and the group velocity cg vanish. As in [6,
section 8.1], the operator B0 is closed and densely defined on X and has only discrete spectrum.
Exploiting our hypotheses, we see that B0 has, in contrast to [6, section 8.1], two geometrically
simple eigenvalues at ν = 0 with eigenfunctions (u′0, 0) and (upd, 0) (compared with a unique
geometrically simple eigenvalue in [6, section 8.1]). Each of these eigenvalues has algebraic
multiplicity two with generalized eigenfunctions given by (0, u′0) and (0, upd), respectively.
The associated eigenfunctions of the adjoint operator B∗

0 are given by

(5.11) ψ0 =

(
0

−Dψ0

)
, ψ1 =

(−Dψ0

0

)
, ψpd

0 =

(
0

Dψpd

)
, ψpd

1 =

(
Dψpd

0

)
,

where ψ0 and ψpd have been defined at the beginning of section 5.1. The remaining spectrum
of B0 on X is bounded away from the imaginary axis.

Using spatial center-manifold theory as in [6, section 8.1], we conclude that there exists a
four-dimensional center manifold associated with (5.9) which contains all solutions of (5.9) that
stay near the S1-orbit {Sφu0; φ ∈ [0, 4π]/∼} of equilibria for all x. The center manifold can
be constructed so that it is invariant under the shifts Sθ and the reverser R. In particular, the
vector field on the center manifold is reversible and equivariant under shifts. Upon inspecting
the operator B0 and exploiting the invariance under shifts in τ , we find that the center manifold
can be parametrized by the coordinates (φ, κ,A,B) via
(5.12)

u = Sφ

[(
u0(μ)

0

)
−κ

(
0

u′0(μ)

)
+A

(
upd(μ)

0

)
+B

(
0

upd(μ)

)
+ ω̄

(
uω(μ)

0

)
+H0(κ,A,B, μ, ω̄)

]
,

where u0(μ) denotes the μ-dependent spatially homogeneous oscillation, where upd(μ) is the
μ-dependent eigenmode associated with u0(μ) which causes period doubling at μ = 0, and
where we use the parameter ω̄ := ω − ω0(μ). The function uω is the unique 2π-periodic
solution of the system

(5.13) [ω0∂τ − fu(u0(τ ;μ);μ)]uω = −u′0 +
〈ψ0, u

′
0〉L2(0,2π)

〈ψ0, Du′0〉L2(0,2π)
Du′0
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with 〈uω, u
′
0〉L2(0,2π) = 0. The function H0 is smooth and takes values in the generalized

hyperbolic eigenspace Eh of B0, and its derivative with respect to each of its arguments
vanishes at the origin (κ,A,B, μ, ω̄) = 0. Indeed, in these coordinates, the shifts Sθ are
represented by

Sθ : (φ, κ,A,B) �−→ (φ + θ, κ,A,B),

and equivariance implies that the reduced vector field, and the center-manifold parametriza-
tion H0, can therefore not depend on φ, as claimed. The isotropy group generated by S2π and
the reverser R are represented by

S2π : (φ, κ,A,B) �−→ (φ, κ,−A,−B), R : (φ, κ,A,B) �−→ (φ,−κ,A,−B).

In particular, the reduced vector field will be equivariant under S2π and reversible under R.
We shall now argue that the vector field for (φ, κ,A,B) is necessarily of the form

φx = κ + g1(κ,A,B, μ, ω̄),

κx =
1

d0

[
−ω̄ +

1

2
ω′′

nl(0)κ2 + b0A
2

]
+ O(|A|3 + |κ|3 + B2 + ω̄2),(5.14)

Ax = B + g2(κ,A,B, μ, ω̄),

Bx =
1

d1

[
(−ρ′pd(0)μ + b1ω̄ + b2κ

2 + b3A
2)A + b4κB

]

+ O(|A|(A4 + A2|κ| + μ2 + ω̄2) + |B|κ2 + B2(|κ| + |A|))
for appropriate constants bj ∈ R, where the functions g1 and g2 are smooth and respect
the symmetries and the reverser, and their first two derivatives vanish at (κ,A,B, μ, ω̄) = 0.
Indeed, the linear terms in (5.14) can be computed as in [6, section 8.1] by substituting (5.12)
into (5.10) and projecting using the adjoint eigenfunctions (5.11). In particular, the coefficient
b1 is given by

(5.15) b1 =
〈ψpd, ∂τupd − fuu(u0; 0)[uω, upd]〉L2(0,4π)

〈ψpd, upd〉L2(0,4π)
.

The functions g1 and g2 must vanish to second order due to the facts that the diagonal of B0

vanishes and the nonlinearity appears only in the v-component. Checking compatibility of the
monomial terms with the involution S2π and the reverser R, we find that the equations for κ
and B must be of the specified form. The special form of the equation for κ when A = B = 0
is a consequence of [6, section 8.1] and our choice of ω̄ as the offset from the μ-dependent
temporal frequency of spatially homogeneous oscillations. Last, to bring (5.14) into the form
(5.5), we introduce the new coordinates

κ̃ = κ + g1(κ,A,B, μ, ω̄), B̃ = B + g2(κ,A,B, μ, ω̄).

Upon dropping the tildes, we arrive at (5.5) as claimed, which completes the proof of Theo-
rem 8.

To prove Theorem 9, we record that the solutions described by Theorem 8 are uniformly
close to the homogeneous oscillations u0(τ) whose Floquet multipliers are contained strictly
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inside the unit disk with the exception of multipliers close to ρ = ±1. Floquet multipliers near
ρ = ±1 can be captured by a spatial center-manifold reduction for the eigenvalue problem

(5.16) vx = [B0 + ω̄N + DG(u;μ)]v + λ

(
0 0

D−1∂τ 0

)
v,

which is carried out simultaneously with the reduction for the existence problem (5.10). Fol-
lowing the same strategy as above, we find that the center manifold for the eigenvalue prob-
lem (5.16) about a solution u from (5.12) corresponding to a solution (κ∗, A∗, B∗) of (5.5) is
parametrized by

v =

[

−
(
u′0
0

)
− κ∗

(
0

u′′0

)
+ A∗

(
u′pd

0

)
+ B∗

(
0

u′pd

)
+ ∂τH0(κ∗, A∗, B∗, μ, ω̄)

]

Φ(5.17)

− κ

(
0

u′0

)
+ A

(
upd

0

)
+ B

(
0

upd

)
+ D(κ,A,B)H0(κ∗, A∗, B∗, μ, ω̄)

⎛

⎝
κ
A
B

⎞

⎠

+ λ

⎡

⎢⎢
⎣

(
uω(μ)

0

)
Φ + H10

⎛

⎝
κ
A
B

⎞

⎠+ H11(κ∗, A∗, B∗, μ, ω̄, λ)

⎛

⎜⎜
⎝

Φ
κ
A
B

⎞

⎟⎟
⎠

⎤

⎥⎥
⎦ ,

where H10 and H11 map into the hyperbolic eigenspace Eh of B0 and where H11(0) = 0.
In particular, for λ = 0, we obtain precisely the linearization of the reduced vector field
about (κ∗, A∗, B∗), and it remains to calculate the λ-dependent terms. Using that H10 maps
into Eh and that (uω, 0) ∈ Eh by construction (5.13), we obtain the desired expression (5.8)
upon substituting (5.17) into (5.7) and projecting using the adjoint eigenfunctions (5.11).
We emphasize that the coefficient in front of the λA∗Φ term is equal to b1 as computed in
(5.15).

The coefficients appearing in (5.5), and, in particular, the coefficient b1, are in general
nonzero. It will often be more convenient to express the term ω̄A in terms of κxA. Thus, we
write (5.5) as

φx = κ,

κx =
1

d0

[
−ω̄ +

1

2
ω′′

nl(0)κ2 + b0A
2

]
+ O(|A|3 + |κ|3 + B2 + ω̄2),

Ax = B,(5.18)

Bx =

(

−ρ′pd(0)

d1
μ + b̃1κx + b̃2κ

2 + b̃3A
2

)

A + b̃4κB

+ O(|A|(A4 + A2|κ| + μ2 + ω̄2) + |B|κ2 + B2(|κ| + |A|)),
where

b̃1 := −d0b1
d1

, b̃2 :=
b2 + 1

2ω
′′
nl(0)b1

d1
, b̃3 :=

b3 + b0b1
d1

, b̃4 :=
b4
d1

.
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The coefficients appearing in (5.18) have the following interpretation: b0 describes how the
temporal frequency of period-doubled spatially homogeneous oscillations changes with the
amplitude of the period-doubling mode. The coefficient b̃2 encodes the wave number depen-
dence of the onset of period-doubling, and b̃3 reflects whether the period-doubling bifurcation
is subcritical or supercritical. Last, b̃4 gives the dependence of the linear group velocity of
the period-doubling mode on the wave number of the underlying wave train. We shall assume
that the period-doubling bifurcation is supercritical and that the homogeneous oscillations
destabilize before the wave trains with nonzero wave number.

Hypothesis 1. We assume that b̃2 > 0 and b̃3 > 0.
Since we already assumed that ω′′

nl(0) �= 0, we can arrange to have ω′′
nl(0) > 0, possibly

after replacing κ by −κ. Using this normalization together with b̃3 > 0, an appropriate change
of the parameters and the dependent and independent variables transforms (5.18) into

κx = −ω̄ + κ2 + bA2 + O(|A|3 + |κ|3 + B2 + ω̄2),

Ax = B,(5.19)

Bx = [−μ + aκx + dκ2 + A2]A + cκB

+ O(|A|(A4 + A2|κ| + μ2 + ω̄2) + |B|κ2 + B2(|κ| + |A|)),
where we use the same letters for the new transformed variables and omit the equation for φ
as it decouples. Hypothesis 1 translates into d > 0.

The long wavelength scaling

(5.20) (κ,A,B, μ, ω̄, x) −→
(
εκ, εA, ε2B, ε2μ, ε2Ω,

x

ε

)

transforms (5.19) into

κx = −Ω + κ2 + bA2 + O(ε),

Ax = B,(5.21)

Bx = [−μ + aκx + dκ2 + A2]A + cκB + O(ε).

This system is equivariant under the reflection S2π : (κ,A,B) �→ (κ,−A,−B) and reversible
with reverser

R : (κ,A,B) �−→ (−κ,A,−B).

We set ε = 0 in the following and focus on the resulting system

κx = −Ω + κ2 + bA2,

Ax = B,(5.22)

Bx = [−μ + aκx + dκ2 + A2]A + cκB

or, alternatively, upon substituting the equation for κx into the last equation, on

κx = −Ω + κ2 + bA2,

Ax = B,(5.23)

Bx = [−(μ + aΩ) + (a + d)κ2 + (1 + ab)A2]A + cκB.
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The reversibility of the full problem (5.21) will allow us to show persistence of the solutions
of (5.22) that we shall construct below for ε > 0.

Last, we discuss the PDE stability of bounded solutions U∗ = (κ∗, A∗, B∗) to (5.21) as
given by Theorem 9. Using that any such solution U∗ is of order ε as a solution to (5.19) due
to the rescaling (5.20), it is not difficult to see that any eigenvalue λ of the reduced eigenvalue
problem (5.8) which lies near the origin and has Reλ ≥ 0 is necessarily of order O(ε2); see [6,
proof of Lemma 8.2] for a similar argument. Thus, the rescaling (5.20) for U∗ together with
the rescaling

(Φ, κ, A,B, λ, x) −→
(
Φ, εκ, εA, ε2B, ε2Λ,

x

ε

)

for the linearization captures all unstable Floquet exponents near the origin, while transform-
ing (5.8) into

Λ

( 1
d0

0

−aK0A∗ 1
d1

)(
Φ
A

)
(5.24)

=

[(
∂xx − 2κ∗∂x −2bA∗

(−2(a + d)κ∗A∗ − cB∗)∂x ∂xx − cκ∗∂x + (μ + aΩ) − (a + d)κ2
∗ − (1 + ab)A2

∗

)
+ O(ε)

](
φ

A

)

for a certain constant K0 > 0 that arises due to the coordinate transformations leading from
(5.18) to (5.19). Since we will not need the precise value of K0, we will not compute it.

5.2. Wave trains. We first investigate equilibria of (5.22), which correspond to wave
trains of the original reaction-diffusion system (5.4). Equilibria (κ,A,B) have B = 0 and
satisfy

(5.25) Ω = κ2 + bA2, [−μ + dκ2 + A2]A = 0.

Equilibria U0 = (κ, 0, 0) with A = 0 exist for all wave numbers κ with frequency offset given
by Ω = κ2. Thus, their group velocity is given by

c0g =
dΩ

dκ
= 2κ.

The linearization of (5.22) about these solutions is given by

L0 =

⎛

⎝
2κ 0 0
0 0 1
0 −μ + dκ2 cκ

⎞

⎠ ,

from which we see that they are hyperbolic except when κ = 0 or κ =
√
μ/d. The bifurcation

at κ =
√

μ/d is a pitchfork which corresponds to the period-doubling bifurcation which we
analyze next.

The equilibria bifurcating at κ =
√
μ/d can be found by solving (5.25) with A �= 0. We

find equilibria

Upd =
(
κ,±
√

μ− dκ2, 0
)
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Figure 3. The bifurcation diagram of the wave trains (left) and their nonlinear dispersion relation (right)
are shown: The solid dispersion curve is for 1 − bd > 0, while the dashed curve is for 1 − bd < 0.

Figure 4. The spectra of the linearizations L0 and Lpd of (5.22) about the equilibria U0 (left) and Upd

(center and right), respectively, together with the phase eigenvalue at the origin from the trivial equation φx = κ
are plotted for different signs of the parameters. The open and closed circles denote eigenvalues coming from
the period-doubling amplitude A, while crosses denote eigenvalues coming from the phase φ. The closed circles
correspond to the eigenvalue νpd that triggers the period-doubling bifurcation; the arrows denote its movement
upon decreasing κ through

√
μ/d.

defined for κ2 < μ/d, where

Ω = bμ + (1 − bd)κ2;

see Figure 3. The group velocity of the period-doubled wave trains is therefore given by

cpd
g =

dΩ

dκ
= 2(1 − bd)κ.

Near dκ2 = μ, the linearization Lpd of (5.22) about Upd has eigenvalues near 2κ and cκ in
addition to the pitchfork eigenvalue given by

νpd = −cpd
g A2

2cκ2
+ O(A3) = −(1 − bd)A2

cκ
+ O(A3).

The spectrum of Lpd is illustrated in Figure 4. We remark that the spatial eigenvalue structure
reveals in particular that the period-doubled wave trains must be PDE unstable near onset
for c > 0 and 1 − bd < 0.

5.3. Coherent structures. Our goal in this section is to shed some light on the nature of
the line defect that appears in Figure 1(ii). The line defect mediates between a period-doubled
wave train and its 2π-translate. Thus, we shall discuss coherent structures that are spatially
asymptotic as x → ±∞ to the period-two wave train Upd and its 2π-translate −Upd: These
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Figure 5. Figure (i) shows part of the reversible heteroclinic orbit Ud of (5.26) for b = 0 that connects
the equilibria U−

pd and U+
pd. Figures (ii) and (iii) contain the unfolding for b < 0 and b > 0, respectively, upon

setting Ω := bμ: The reversible heteroclinic orbit persists only for b > 0.

structures correspond to heteroclinic orbits between Upd and −Upd of the spatial differential
equation (5.23)

κx = −Ω + κ2 + bA2,

Ax = B,(5.26)

Bx = [−(μ + aΩ) + (a + d)κ2 + (1 + ab)A2]A + cκB.

There are various limiting cases in which a perturbation analysis is possible. We focus on the
perturbation from b = 0 as it is the most illuminating case.

When b = 0, (5.26) admits the semihyperbolic equilibria U±
pd = (0,±√

μ, 0) for Ω = 0
and μ > 0 which correspond to spatially homogeneous period-doubled wave trains of the
reaction-diffusion system (5.2). These equilibria are connected by the heteroclinic orbit

Ud(x) =

(
0,
√
μ tanh

√
μ

2
x,

μ√
2

sech2

√
μ

2
x

)
;

see Figure 5(i). This orbit is reversible under the reverser RS2π : (κ,A,B) �→ (−κ,−A,B).
We discuss now in what sense the reversible connection Ud persists upon varying b near zero,
while fixing all other parameters including μ. We focus on the persistence of reversible orbits
which are obtained as intersections of unstable manifolds with the B-axis. The following
analysis is similar to the one given in [38, section 7].

The first case is 0 < b � 1: We pick Ω = bμ so that (5.26) becomes

κx = κ2 + b(A2 − μ),

Ax = B,(5.27)

Bx = [−μ + (a + d)κ2 + A2 + ab(A2 − μ)]A + cκB.

In particular, the equilibrium U−
pd = (0,−√

μ, 0) persists as a semihyperbolic equilibrium for
all b > 0. We wish to determine how the κ-component of the strong unstable manifold at x = 0
depends on b upon varying b near zero. To this end, we record that the adjoint variational
equation

Wx = −
⎛

⎝
0 0 0
0 0 1

cBd(x) [−μ + 3A2
d(x)]A 0

⎞

⎠

∗

W
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associated with the linearization of (5.27) about Ud at b = 0 has the solution W (x) = (1, 0, 0).
The Melnikov integral associated with the derivative of the right-hand side of (5.27) with
respect to b is therefore given by

(5.28) M :=

∫ 0

−∞

〈

W (x), (A2
d(x) − μ)

⎛

⎝
1
0
a

⎞

⎠
〉

dx =

∫ 0

−∞
[A2

d(x) − μ] dx = −
√

2μ < 0.

Thus, the unfolding of the heteroclinic orbit near b = 0 is as shown in Figure 5, and we conclude
that the reversible heteroclinic orbit between the semihyperbolic equilibria U±

pd persists only
for b > 0, but not for b < 0. The resulting coherent structure of the reaction-diffusion system
is a contact defect in the classification of [38] as it mediates between two wave trains with
zero group velocity.

The remaining case is −1 � b < 0: We set Ω = bμ + (1 − bd)η2 and treat η as an
independent parameter with η ≈ 0 so that (5.26) becomes

κx = −(1 − bd)η2 + κ2 + b(A2 − μ),

Ax = B,(5.29)

Bx = [−μ− a(1 − bd)η2 + (a + d)κ2 + A2 + ab(A2 − μ)]A + cκB.

The parameter η unfolds the saddle-node bifurcation occurring at b = 0, leading therefore to
the equilibria

U±
pd(η) = (η,±

√
μ− dη2, 0)

near U±
pd. On account of the results in section 5.2, we know that the equilibria U±

pd(η) have
positive group velocity for η > 0 and negative group velocity for η < 0. We focus on finding
reversible heteroclinic orbits that connect the hyperbolic equilibrium U−

pd(−η) at x = −∞
to the hyperbolic equilibrium U+

pd(η) at x = ∞ for η > 0. The resulting coherent structure
of the reaction-diffusion system is a source in the classification of [38] as it connects a wave
train with negative group velocity at x = −∞ to a wave train with positive group velocity at
x = ∞. To find sources, we note that the behavior of the κ-component of the strong unstable
manifold under changes of b at x = 0 is, for η = 0, again determined by the Melnikov integral
M < 0 in (5.28). Thus, as far as sources are concerned, the unfolding of the heteroclinic orbit
near b = 0 is as shown in Figure 6. We conclude that, for each b < 0 close to zero, there is a
unique η > 0 with a reversible heteroclinic orbit connecting U−

pd(−η) at x = −∞ to U+
pd(η),

while no such connection exists for b > 0.

Theorem 10. For 0 < b � 1, the amplitude equation (5.26) has contact defects that connect
the period-doubled spatially homogeneous wave train Upd at x = −∞ and its 2π-time translate
at x = ∞. For −1 � b < 0, (5.26) admits sources that connect period-doubled wave trains
Upd(x) with negative group velocity at x = −∞ to the reflected wave trains Upd(−x) with
positive group velocity at x = ∞. For a, b, c, and d sufficiently close to zero, both defects are
spectrally stable.

Proof. The existence part has already been proved, and we therefore focus on spectral
stability.
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Figure 6. Figure (i) shows part of the reversible heteroclinic orbit Ud of (5.26) for b = 0 that connects
the equilibria U−

pd and U+
pd. Figures (ii) and (iii) contain the unfolding for b < 0 and b > 0, respectively, upon

setting Ω = bμ + (1 − bd)η2 with η �= 0: The reversible source persists for b < 0.

We consider sources first and set a = c = d = 0, b = −δ, and Ω = b + η2 = −δ + η2 for
δ > 0 small. We also rescale the A-equation so that μ = 1. Thus, (5.29) becomes

κx = −η2 + κ2 + δ(1 −A2),

Ax = B,

Bx = [A2 − 1]A

so that A∗(x) = tanh(x/
√

2) independently of η and δ. The source Ud = (κ∗, A∗, ∂xA∗) decays
exponentially to zero as x → ±∞ with a rate independent of δ ≥ 0 since it lies by construction
in the strong unstable and stable manifolds of the asymptotic semihyperbolic equilibria. The
reduced PDE eigenvalue problem (5.24) about Ud is given by

(5.30) Λ

(
φ

A

)
=

(
d0[∂xx − 2κ∗∂x] 2δA∗

0 d1[∂xx + 1 −A2∗]

)(
φ

A

)
.

Since the constant functions are admissible eigenfunctions for sources according to the counting
arguments presented in [38], we see that Λ = 0 is an eigenvalue with geometric multiplicity
two. This is in line with [38, Lemma 4.4], which asserts that sources must have two eigenvalues
at the origin. It remains to show that the algebraic multiplicity of Λ = 0 is two and that there
are no other eigenvalues in the closed right half-plane. To prove this claim, we set δ = 0 to
get

(5.31) Λ

(
φ

A

)
=

(
d0∂xx 0

0 d1[∂xx + 1 −A2∗]

)(
φ

A

)
=:

( L0 0
0 L1

)(
φ

A

)
.

Sturm–Liouville theory implies that L1 has a simple eigenvalue Λ = 0 and no other spectrum
in the closed right half-plane. Similarly, L0 has the eigenvalue Λ = 0 with eigenfunction
φ(x) = 1 and no other spectrum in the closed right half-plane. Since the perturbation leading
from (5.31) to (5.30) is small and decays with uniform exponential rate in x, we can apply
standard Evans-function theory [18] to conclude that (5.30) with 0 < δ � 1 has precisely two
eigenvalues near the origin, counting multiplicity, which are therefore given by the eigenvalues
at Λ = 0 mentioned above. The same argument applies when perturbing from (a, c, d) = 0,
which completes the proof for sources.
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It remains to consider the contact defects. We set a = c = d = 0, b = δ, and Ω = b = δ
for δ > 0 small and again rescale the A-equation so that μ = 1. The existence problem (5.29)
becomes

κx = κ2 − δ(1 −A2),

Ax = B,

Bx = [A2 − 1]A

so that A∗(x) = tanh(x/
√

2) independently of δ, and we get

κx = κ2 − δ sech2

(
x√
2

)
.

We record for later use that the reversible contact-defect solution κ∗(x) then satisfies

−
√

2δ ≤ κ∗(x) ≤ 0, x ≥ 0,

with κ∗(0) = 0 and κ∗(x) = K1/x
2 + O(1/x3) as x → ∞ for some K1 ≤ 0. The reduced PDE

eigenvalue problem (5.24) about the contact defect is again given by

(5.32) Λ

(
φ

A

)
=

(
d0[∂xx − 2κ∗∂x] 2δA∗

0 d1[∂xx + 1 −A2∗]

)(
φ

A

)
.

As shown in [39, Theorem 3], contact defects have generically a single simple eigenvalue at
the origin. Furthermore, it is a consequence of the results in [39] that the only admissible
eigenfunctions of (5.32) are those that decay algebraically as x → ±∞. We will therefore
focus on the decoupled eigenvalue problem

(5.33) φxx − 2κ∗(x)φx =
Λφ

d0

for φ and prove that it has no spectrum in the closed right half-plane for δ > 0. Eigenfunctions
belonging to nonzero eigenvalues Λ of (5.33) in the closed right half-plane decay necessarily
exponentially with nonzero rate

√
Λ and, using the algebraic convergence κ∗(x) = K1/x

2 +
O(1/x3) of the contact defect as x → ±∞, we may therefore set

Φ(x) := exp

(∫ x

∞
κ∗(y) dy

)
φ(x),

which transforms the eigenvalue problem for φ into the equivalent eigenvalue problem

Φxx − δ sech2

(
x√
2

)
Φ =

ΛΦ

d0

for Φ. For δ > 0, there are no eigenvalues in the closed right half-plane, with the possible
exception of the origin. We focus therefore on the eigenvalue problem (5.33) with Λ = 0,
which is given by

(5.34) φxx − 2κ∗(x)φx = 0.
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Figure 7. The boundary sink U∗ which accommodates Neumann boundary conditions and the period-one
wave train with nonzero wave number

√
Ω is shown for Ω > 1/d.

For δ > 0, the unique solution which decays algebraically as x → ∞ is given by

φ(x) =

∫ x

∞
exp

(∫ y

∞
2κ∗(z) dz

)
dy.

This solution is an eigenfunction provided it is odd as φ(x) = 1 is the unique even solution of
(5.34). Thus, we need φx(0) = 0 but have

φx(0) = exp

(∫ 0

∞
2κ∗(z) dz

)
�= 0,

which proves that Λ = 0 is not an eigenvalue of (5.33). Last, the perturbation from (a, c, d) = 0
can be dealt with by regular perturbation theory using the Evans-function construction
in [39].

5.4. Boundary sinks. Last, we investigate the existence and stability of boundary sinks
for Neumann boundary conditions. In other words, we seek solutions U(x) of

κx = −Ω + κ2 + bA2,

Ax = B,(5.35)

Bx = [−(μ + aΩ) + (a + d)κ2 + (1 + ab)A2]A + cκB

for x ≤ 0 so that U(0) lies on the A-axis, corresponding to Neumann boundary conditions,
and U(x) converges to an equilibrium U− of (5.35) with positive group velocity as x → −∞.

We focus on the equilibria U0 = (κ,A, b) = (
√

Ω, 0, 0) which correspond to the period-one
wave trains with nonzero wave number

√
Ω and group velocity c0g = 2κ = 2

√
Ω > 0. In this

case, the boundary sink is given explicitly by

U∗(x) = (κ,A,B)(x) =
(
−
√

Ω tanh(
√

Ωx), 0, 0
)
, x ≤ 0;

see Figure 7. The PDE stability of the boundary sink U∗ can be analyzed as follows. Evaluat-
ing (5.24) at ε = 0, we find that the reduced eigenvalue problem associated with the boundary
sink U∗ = (κ∗(x), 0, 0) is given by

φxx − 2κ∗(x)φx =
Λ

d0
φ,

Axx − cκ∗(x)Ax + [μ + aΩ − (a + d)κ2
∗(x)]A =

Λ

d1
A
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on R
− together with Neumann boundary conditions φx(0) = Ax(0) = 0. The equation for φ

decouples and coincides with the eigenvalue problem of Lax shocks of the Burgers equation;
in particular, there are no point eigenvalues in the closed right half-plane, and the essential
spectrum consists of the curve Λ/d0 = −k2−2

√
Ωik for k ∈ R; see, for instance, [6, Lemma 8.2].

It remains to analyze the equation for A given by

Axx + c
√

Ω tanh(
√

Ωx)Ax +
[
μ− dΩ − (a + d)Ω sech2(

√
Ωx)
]
A =

Λ

d1
A, x < 0,(5.36)

Ax(0) = 0.

The essential spectrum of (5.36) is given by

(5.37)
Λess(k)

d1
= μ− Ωd− k2 − c

√
Ωik,

and we denote by
Λbp

d1
= μ− Ω

(
d +

c2

4

)

the branch point of the linear dispersion relation Λess. The point spectrum of (5.36) can also
be calculated explicitly: Using the independent variable z = tanh(

√
Ωx), real-valued solutions

to (5.37) are given in terms of Ferrers functions which are appropriate linear combinations
of the associated Legendre functions [25, section 5]. Using the results in [25, sections 5.12
and 5.15], we find that the point spectrum of (5.36) consists precisely of the points Λn given
by

Λn

d1
= μ− Ωd +

Ω

4

([√
(c− 1)2 + 4(a + d) − 1 − 4n

]2 − c2
)

for those integers n ≥ 0 for which

(5.38)
√

(c− 1)2 + 4(a + d) ≥ 1 + 4n.

In particular, the rightmost point eigenvalue Λ0 is given by

(5.39)
Λ0

d1
= μ− Ωd +

Ω

4

([√
(c− 1)2 + 4(a + d) − 1

]2 − c2
)
,

assuming that the term in the square brackets is positive.

We shall assume from now on that the group velocity c of the period-doubling mode is
negative so that c < 0. The period-one wave train U− undergoes a pitchfork bifurcation at
μ = Ωd which, as outlined in section 5.2, leads to the period-two wave train Upd which has a
nonzero A-component. We discuss now how this bifurcation, which occurs when the essential
spectrum Λess crosses the imaginary axis, interacts with the bifurcation of boundary sinks,
which occurs when the eigenvalue Λ0 destabilizes. There are three relevant cases:

(1) Λ0 does not exist; that is, (5.38) is not met for n = 0.
(2) Λbp < Λ0 < Λess.
(3) Λess < Λ0.
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Figure 8. We illustrate case (2) (c < 0 and Λbp < Λ0 < Λess) for increasing μ under the assumption that
the bifurcation associated with Λ0 is supercritical. The first instability occurs when Λess = 0, leading in (ii)
to a stable period-two wave train Upd which does not persist under Neumann boundary conditions as there is
no boundary sink available. When Λ0 destabilizes, the stable boundary sink U∗∗ bifurcates from U∗, and the
period-two wave train Upd persists now under Neumann boundary conditions due to the presence of U∗∗.

Figure 9. Case (3) (c < 0 and Λess < Λ0) is illustrated for increasing μ: The boundary sink U∗ destabilizes
in (ii) when the eigenvalue Λ0 crosses the imaginary axis. This leads in (iii) to the existence of a stable period-
doubled boundary sink U∗∗. The essential instability which occurs when Λess = 0 leads then in (iv) to a stable
period-two wave train Upd which persists under Neumann boundary conditions due to the presence of U∗∗.

Using c ≤ 0, we see that the last case occurs for a+ d > 0, while the eigenvalue Λ0 disappears
in the branch point Λbp when the term in the square brackets in (5.39) becomes zero. Since
case (1) has already been discussed in section 3.4, and case (2) is similar to (3), we concentrate
in the following on (3) and refer the reader to Figure 9 for an illustration of case (2).

Thus, assume that c < 0 and Λess < Λ0: Upon increasing μ, the boundary sink U∗
destabilizes when Λ0 = 0. In terms of the spatial ODE (5.35), this bifurcation manifests itself
as a tangency of the unstable manifold of the equilibrium U− as indicated in Figure 9(ii).
We show in Lemma 5.1 below that this bifurcation can be supercritical, thus leading to a
stable boundary sink U∗∗ which connects U− to the A-axis as illustrated in Figure 9(iii).
Since the A-component of U∗∗ is not zero, the boundary sink U∗∗ will have period two, even
though the period-two wave train Upd has not yet bifurcated from U−. A further increase
of μ then leads to the period-two wave trains Upd which persist under Neumann conditions
thanks to the boundary sink U∗∗ as indicated in Figure 9(iv). The characteristic feature of
scenario (3) is therefore that the period-doubling sets in first at the boundary, where it is
also most pronounced during the entire bifurcation sequence. It remains to prove that the
pitchfork bifurcation of the boundary sink is supercritical.

Lemma 5.1. Assume that b ≤ 0, c < 0, a + d > 0, and 1 + ab ≥ 0; then the pitchfork
bifurcation of the boundary sink U∗, which occurs when Λ0 = 0, is supercritical.

Proof. We need to prove that the part of the unstable manifold of U− which lies in A > 0
has B ≥ 0. Using the projective coordinate w = B/A, we arrive at the system
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Figure 10. Proof of Lemma 5.1: If the tangent space angle w(x) decreases monotonically, then the unstable
manifold lies above the tangent space for b < 0 and 1 + ab > 0.

ux = −Ω + u2 + bA2,

Ax = Aw,

wx = −(μ + aΩ) + (a + d)u2 + (1 + ab)A2 − cuw − w2.

If the solution that corresponds to the tangent space of the unstable manifold of U− evaluated
along the boundary sink U∗ decreases monotonically for x ∈ R

−, then the bifurcation will
indeed be supercritical for b < 0 and 1 + ab > 0 as outlined in Figure 10 since the nonlinear
terms involving A point in the right direction. The tangent space of the unstable manifold of
U− evaluated along the boundary sink U∗ satisfies the linearized equation

wx = −(μ + aΩ) + (a + d)u2
∗(x) − cu∗(x)w − w2.

We claim that wx < 0 for all x for the solution that converges as x → −∞ to the tangent
space of the unstable manifold of U∗. First, for u near

√
Ω, we write u =

√
Ω − h and

w(x) = w∗ + W (x), where w∗ is the unique positive solution of

(5.40) −(μ + aΩ) + (a + d)Ω − c
√

Ωw∗ − w2
∗ = 0,

which corresponds to the unstable eigenvector of the linearization of (5.35) about U−. The
resulting system for W is

Wx = (c
√

Ω − 2w∗)W − h√
Ω

[2Ω(a + d) + c
√

Ωw∗] + O(h2 + W 2).

Substituting (5.40), we get

Wx = (c
√

Ω − 2w∗)W − h√
Ω

[Ω(a + d) + μ + aΩ + w2
∗] + O(h2 + W 2),

which means that Wx < 0 for h > 0 since the term in the square brackets turns out to be
positive when Λ0 = 0. A similar argument shows that the solution w(x) satisfies wxx(x) < 0,
whenever wx(x) = 0, which completes the proof.
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Figure 11. A contour plot of the w-component of the period-doubled spiral wave is plotted in the left figure
for C = 3.4. To the right, the w-components of the spatially homogeneous oscillations are plotted as functions
of time.

6. Period-doubling of spirals in the Rössler system: A case study. In this section, we
apply our findings to the planar 3-component PDE

ut = 0.4 Δu− v − w,

vt = 0.4 Δv + u + 0.2 v,(6.1)

wt = 0.4 Δw + uw − Cw + 0.2,

written abstractly as

(6.2) Ut = 0.4 ΔU + f(U,C),

on a square (x, y) ∈ (0, L)2 ⊂ R
2 with Neumann boundary conditions. Goryachev, Chaté,

and Kapral [14] observed period-doubled spiral waves for (6.1) when changing the parameter
C in the interval (2.8, 3.4); see Figures 1(ii) and 11.

Spatially homogeneous solutions of (6.1) satisfy the Rössler equation

ut = −v − w,

vt = u + 0.2 v,(6.3)

wt = uw − Cw + 0.2,

which is known to exhibit periodic solutions which undergo a period-doubling sequence begin-
ning at C = 2.83; see Figure 11. The periodic solutions of (6.3) are accompanied by 1D wave
trains U(kx − ωt) of (6.2) with nonzero wave number k which can be found as 2π-periodic
solutions of the traveling-wave ODE

(6.4) 0.4 k2Uxx + ωUx + f(U,C) = 0, x ∈ R.

In the remainder of this section, we report on numerical computations for (6.1) and (6.4).
We used Barkley’s finite-difference code ezspiral [3] for direct numerical simulations of spiral-
wave solutions to (6.1), typically with L = 250, and the boundary-value solver auto97 [5] for
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Figure 12. In the left figure, we plot the nonlinear dispersion relation ωnl(k) of the 1D wave trains of (6.4)
for C = 2.8324, i.e., at the period-doubling bifurcation. To the right, the temporal frequency ω of the period-
doubled spatially homogeneous oscillations is plotted against the parameter C. Since onset occurs at C = 2.834,
the bifurcation is supercritical, whence b̂3 > 0 in (6.5). Since the frequency decreases with the period-doubling
amplitude, we see that the coefficient b0 in (6.5) is negative.

Figure 13. The left plot shows the onset of absolute and essential period-doubling instabilities of 1D wave
trains with temporal frequency ω as a function of C, and it also contains the frequencies selected by the 2D spiral
waves of (6.1). The right figure shows the drift velocity of the spiral tip (right y-axis) and the period-doubling
amplitude A of the spirals (left y-axis) evaluated at different points along a ray from the core to the boundary
as functions of the parameter C (see text for details).

all computations relating to the traveling-wave ODE (6.4). In particular, the absolute and
essential spectra of wave trains are computed with auto97 using the algorithms outlined in
[31, 35].

The nonlinear dispersion relation ω = ωnl(k) of the wave trains of (6.4) is shown in
Figure 12. Note that their phase velocity cp = ω/k and their group velocity cg = dω/dk have
opposite signs: Since the 2D spiral waves select the wave trains with positive group velocity,
the wave trains in the far field of the 2D spirals travel toward the core rather than toward the
boundary.

Next, we plot in Figure 13 the curves where the essential and absolute spectra of the
1D wave trains with frequency ω cross the imaginary axis. These instabilities are caused
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Figure 14. Absolute and essential period-doubling spectra of the spiral waves are shown (left). The right
plot shows the linear period-doubling dispersion relation with Imλpd plotted against the associated wave number
y: The linear group velocity cpd

g is therefore negative.

by period-doubling modes with negative linear group velocity cpd
g < 0; see Figure 14. Direct

numerical simulations of (6.1) allow us to determine the temporal frequencies selected by spiral
waves for different values of C, which are also shown in Figure 13. The associated spatial
wave number of the wave trains in the far field is k ≈ 0.2, which is close to zero in line with
the observation that the period-doubling bifurcations are organized by spatially homogeneous
oscillations.

The closeness to spatially homogeneous oscillations allows us to investigate the nature of
the line defect that is visible in Figure 11 by applying the results of section 5.3 about coherent
structures: Figure 12 shows that the coefficient b arising in (5.26) is negative, and Theorem 10
then implies that the line defect in Figure 11 is a source, rather than a contact defect. The
analysis in section 5.3 predicts a tanh(x) profile of the period-doubling mode across the line
defect which has indeed been measured in [14, equation (2) and Figure 3] based on numerical
simulations of (6.1). We refer the reader to [48] for an analysis of line defects based on
interpreting spirals as a field of coupled oscillators.

To determine when and how the spiral waves destabilize upon increasing C, we fix points
(x0, y0) in the domain and record the time series w∗(x0, y0, t) of the spiral wave. We then
compute the difference between consecutive maxima of the time series which we use as a
measure for the period-doubling amplitude. This computation is done for five points (xj , yj)
which are spaced equidistantly on a ray that connects the spiral core to the boundary and
avoids the line defect. Since our theoretical results predict that period-doubled spirals ought
to drift, we also computed the spiral tip and its drift velocity. The results are shown in
Figure 13. The indications are therefore that period-doubling of spirals sets in at C ≈ 2.96.
The instability appears to be most visible at the boundary, with a square-root type behavior
reminiscent of pitchfork and Hopf bifurcations, and less pronounced toward the core. The
spiral does begin to drift, but the drift velocity is very small, and we could not identify a
clearly defined transition point to drift.

We now discuss the different possible mechanisms outlined in section 4 that may be re-
sponsible for the observed period-doubling in the Rössler system. First, we plot in Figure 14
representative absolute and essential spectra of the asymptotic 1D wave trains. Lemma 2.3
asserts that the absolute spectrum arising due to period-doubling bifurcations of wave trains
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near spatially homogeneous oscillations has to lie on the symmetry line Imλ = ω/2, and this
is indeed what happens here for the spatial wave numbers k ≈ 0.2 selected by the spirals.
Figure 14 also shows that the linear group velocity cpd

g of the period-doubling modes is neg-
ative. However, both absolute and essential spectra are still in the left half-plane when the
period-doubling sets in at C = 2.96. Furthermore, due to cpd

g < 0, the absolute eigenmodes
decay toward the boundary, which appears to contradict Figure 13 which seems to imply that
period-doubling is more pronounced at the boundary. Thus, the bifurcation does not seem to
be caused directly by the absolute spectrum.

The second possibility is that the instability is caused by point eigenvalues that emanate
from the branch point located at the edge of the absolute spectrum due to curvature effects
of the Laplacian; see Remark 4.2. We have evaluated numerically the criterion derived in [41,
section IV] using the algorithm described there and found that, in the notation of [41], Φ = π,
which means that no point eigenvalues arise near the branch point.

This leaves the last option, namely, that period-doubling is caused by point eigenvalues
of the boundary sink. We have discussed this case in section 5.4 for boundary sinks in the
near-spatially homogeneous case and shown that these sinks can indeed possess isolated point
eigenvalues that are in resonance with iω/2. In particular, the scenario described in Figure 9
is consistent with the numerical observations reported in Figure 13 and therefore provides the
likeliest explanation for the occurrence of period-doubling in the Rössler system: As seen from
Figure 9(iii), the period-doubling amplitude is most visible at the boundary, while decreasing
toward the core. Since the adjoint eigenfunction associated with the translational eigenmodes
of the spiral wave decreases exponentially toward the boundary, we expect that the drift
coefficient is exponentially small in the domain diameter which may explain the slow drift
observed in Figure 13.

To further corroborate this conclusion, we exploit that the wave trains selected by the
spiral waves have wave numbers near zero and are therefore close to spatially homogeneous
oscillations. Thus, if we can determine the coefficients appearing in the reduced eigenvalue
problem (5.36) of the boundary sinks, then we can calculate the approximate location of
the rightmost eigenvalue Λ0 given in (5.39) and the expected onset of period-doubling. The
unscaled version (5.5) of the amplitude equations is given by

d0κx = −ω̄ +
1

2
ω′′

nl(0)κ2 + b0A
2,(6.5)

d1Axx = [−μ + b̂1κx + b̂2κ
2 + b̂3A

2]A + b4κAx.

We remark that the coefficients b0 and b̂3 do not enter into the calculations presented in
section 5.4, but Figure 12 indicates that b̂3 is positive as required. The coefficient b0 is
relevant for the line defect of the period-doubled spiral and has already been discussed above.
The parameter μ will be replaced later by an appropriate expression in C.

First, we note that d0 = d1 = 0.4 are equal to the diffusion coefficient in (6.1) since the
diffusion matrix is a multiple of the identity. The fit to the nonlinear dispersion relation
presented in Figure 12 gives 1

2ω
′′
nl(0) = 0.530. The coefficient b̂1 can be computed numerically

by evaluating (5.15): Since the diffusion matrix in (6.1) is a multiple of the identity, it follows
from (5.13) that uω = 0. After calculating the adjoint solution ψpd of the linearization of (6.3)
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Figure 15. In the left figure, we plot the period-doubling Floquet exponent λpd of the spatially homogeneous
wave trains of (6.3) as a function of the parameter C. The right figure shows the period-doubling bifurcation
curve of wave trains to (6.4) with wave number k together with various curve fits.

about the homogeneous oscillation, we obtain b̂1 = 0.925. The coefficient b4 is equal to the
slope of the linear group velocity of the period-doubling mode, considered as a function of the
wave number k of the underlying wave train: our computation of this slope gives b4 = −0.74;
see [31] for the relevant algorithms. Next, we need to express the bifurcation parameter μ in
(6.5) by an appropriate expression in C: To this end, we calculated in Figure 15 the period-
doubling Floquet exponent of the homogeneous oscillations as a function of C. A least-square
fit gives λpd = 0.108(C − 2.834), and therefore μ = 0.108(C − 2.834) since μ in (6.5) and λpd

in the reduced eigenvalue problem appear with the same coefficient. Summarizing the results
obtained so far, we arrive at the equation

0.4κx = −ω̄ + 0.530κ2,(6.6)

0.4Axx = [−0.108(C − 2.834) + 0.925κx + b̂2κ
2]A− 0.74κAx.

It remains to determine the coefficient b̂2, which measures the dependence of the onset of
period-doubling on the wave number k of the underlying wave train of (6.4). This relation,
together with various curve fits, is plotted in Figure 15. We recall that the spirals select wave
numbers of around k = 0.203. In this region, however, there is unfortunately no accurate fit
of the required form C − 0.2834 = b̂2k

2. Thus, we do not seem to be in the region where the
approximation by (6.5) is valid. We therefore proceed as follows: First, we may take b̂2 = 9.06,
which corresponds to a quadratic fit in the interval k ∈ (0.15, 0.25). Alternatively, we replace
the b̂2κ

2 term in (6.6) by 88.8κ4 + 3.91κ2 + 2.83, which is an excellent fit of Figure 15. In the
latter case, our formula (5.39) for the rightmost boundary-sink eigenvalue is no longer valid,
and we determine this eigenvalue numerically using finite differences. Both approximations
result in an eigenvalue Λ0 that destabilizes prior to the essential spectrum. The predicted
parameter values for the onset of the point instability are C = 2.99, when taking b̂2 = 9.06,
and C = 3.06 for the approximation by the quartic polynomial, compared with the value
C = 2.96 indicated by the direct simulations from Figure 13. Thus, while the predicted and
measured values for onset disagree, the amplitude equation does predict that the instability
is caused by a point eigenvalue of the boundary sink rather than by the absolute spectrum.
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Figure 16. Schematic plots of spiral spectra on large disks are shown in the complex plane under the
assumption that the asymptotic wave trains undergo a period-doubling bifurcation: Solid lines represent the part
of the absolute spectrum associated with period-doubling modes, solid bullets mark eigenvalues, and the dotted
lines indicate where Imλ = ω∗/2. Also plotted are the rotation and translation eigenvalues at λ ≈ 0,±iω∗
which persist on large disks. Note that absolute spiral spectra are periodic along the imaginary axis with period
iω∗. The different cases, and their meanings, are discussed further in section 7.

7. Discussion.

Period-doubling of spiral waves. In this paper, we investigated period-doubling bifurca-
tions of 1D sources and 2D spiral waves. We started from the observation that period-doubling
of sources and spirals must actually be a Hopf bifurcation at precisely half the temporal fre-
quency ω∗ of these patterns. This observation led to a prediction and a puzzle: The prediction
is that period-doubled spirals should drift due to the 2:1 resonance of Hopf and rotation fre-
quency, and we indeed found numerical evidence that period-doubled spirals in the Rössler
system drift, albeit slowly.

The puzzle, and indeed the central theme of this paper, is the nature of the mechanism that
causes the imaginary parts of the Hopf eigenvalues to lock to ω∗/2 in a robust fashion. Indeed,
with no extra structure present, temporal Hopf bifurcations at isolated point eigenvalues
λH with ImλH = ω∗/2 have codimension two and not one, as observed experimentally and
numerically. The resolution to this issue, put forward in this paper, is as follows. The spiral
waves emerging at the locked Hopf bifurcation exhibit a period-doubled spatial structure in
the far field. This suggests that the locked Hopf bifurcation is caused by period-doubling of
the asymptotic wave trains in the far field of the spiral wave. Thus, we assumed that the
asymptotic wave trains undergo a period-doubling bifurcation, as solutions to the traveling-
wave ODE or to the reaction-diffusion system on the real line, and investigated the implications
for spiral spectra on large bounded domains. We found that there are four generic cases for how
the critical, neutrally stable parts of spiral spectra may look, of which three are consistent with
spatio-temporal period-doubling of spiral waves. These four cases are illustrated in Figure 16,
and we discuss them now in more detail.

First, we recall that the absolute spectrum associated with the period-doubling modes of
the asymptotic wave trains is invariant under reflections across the line Imλ = ω∗/2. Hence,
branches of the absolute spectrum are either symmetric, i.e., contained in the line of reflection
(Figure 16(ii)), or asymmetric, i.e., not intersecting this line (Figure 16(i)); both cases are
generic, and symmetric spectrum leads to robust Hopf bifurcations with frequency ω∗/2, while
asymmetric spectrum does not. We also showed that the critical part of the absolute spectrum
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is always symmetric if the wave trains have sufficiently small wave number, that is, are close to
being spatially homogeneous. We stress that the absolute spectrum repeats itself periodically
in the vertical direction with period iω∗, so that there are infinitely many branches of absolute
spectrum that cross the imaginary axis simultaneously.

Besides the PDE eigenvalues that lie near the absolute spectrum and accumulate onto it
as the domain size increases, other isolated eigenvalues may arise in three different ways:

(1) Discrete eigenvalues and resonance poles of the planar spiral wave persist on large
domains.

(2) A family of discrete eigenvalues may emerge from the edges of the absolute spectrum
as indicated in Figure 16(iii), depending on a certain sign condition derived in [41].

(3) Discrete eigenvalues and resonance poles of the boundary sink that accommodates the
boundary conditions persist on large domains.

As argued above, the resulting eigenvalues from (1), which can be associated with the core of
the spiral wave, typically have an imaginary part different from ω∗/2. The eigenvalues from (2)
emerge from the edge of each of the infinitely many branches of the absolute spectrum and
are due to the 1/r curvature terms in the Laplacian: they have an imaginary part close to
ω∗/2 and lead therefore to spatio-temporal period-doubling. Last, Neumann boundary sinks
may, as shown in section 5.4, have a simple eigenvalue near the line Imλ = ω∗/2 for wave
trains that are almost spatially homogeneous; see Figure 16(iv). For the Rössler system with
Neumann conditions, the evidence presented in section 6 indicates that period-doubling of
spirals is caused by the boundary sink as illustrated in Figure 16(iv).

The conclusions on the different possible spectral instability scenarios presented above are
valid for generic boundary conditions. We also expect them to hold when domain boundaries
are replaced by interfaces to other patterns. One example is period-doubling of spiral waves
in domains with periodic boundary conditions which has been reported in [15, Figure 1a].
The effective boundary for each spiral wave is then given by the Lax-shock interface that is
formed between wave trains that propagate toward each other.

A key ingredient to realizing spatio-temporal period-doubling of spirals in a given reaction-
diffusion system is therefore that the associated traveling-wave ODE exhibits period-doubling
bifurcations of wave trains or periodic orbits. Besides the Rössler system (1.3) and the related
three-component Willamoski–Rössler system (see [16] and references therein), we are not aware
of any systems that exhibit period-doubling bifurcations of wave trains, although these have
been observed in lattice maps [1].

While our spectral analysis is rigorous, large parts of our nonlinear analysis are only
formal. For instance, the prediction of drift for truncated sources is based on the reduced
equation (3.8) on an appropriate center manifold: It is not clear whether the center-manifold
reduction is valid in a uniform region near the source, and not even whether the Taylor jet
of the reduced vector field has a limit as the domain diameter goes to infinity. Similarly, we
are currently not able to analyze the nonlinear bifurcation of spiral waves on the plane or on
large bounded disks. The situation for spirals is worse, compared to that of 1D sources, as
infinitely many copies of essential and absolute spectra cross the imaginary axis simultaneously
at λ = iω∗/2 + iω∗� with � ∈ Z.

Line defects. The line defect visible in Figure 1(ii) is another interesting aspect of the
spatio-temporal period-doubling of spiral waves. Previous work on line defects (see [16, 29, 48])
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Figure 17. A snapshot of a period-doubled spiral wave with five interacting line defects is plotted for the
Rössler system (6.1) with C = 3.4.

modeled line defects using kinetic theory. We clarified the structure of line defects near onset in
systems where the asymptotic wave trains are close to spatially homogeneous by showing that
they are sources or reversible contact defects. The spatial asymptotics of spiral eigenmodes
in (4.11), which reflects the periodicity of spiral spectra in the complex plane, indicate that
multiple line defects are possible as higher harmonics of a single line defect, and Figure 17
shows that several line defects can indeed be excited near onset. Neighboring line defects
typically attract each other, which eventually leads to pairwise annihilation. Preliminary
analyses show that the time scales of this interaction depend strongly on whether the line
defects are of source or contact type.

Besides straight line defects similar to those shown in Figure 1(ii), other types of defects
have been observed in experiments. Examples are line defects2 which curl around and form
spirals. For the Belousov–Zhabotinsky reaction, stationary defects of this type were first
found in [27], while meandering curved line defects were reported in [28]. In [16, 27], line-
defect turbulence, consisting of turbulent states that are mediated by curved line defects which
interact in a complicated way, was observed in experiments and numerical simulations.

Period-doubling cascades. The Rössler ODE exhibits a period-doubling cascade, and
one may therefore expect to see a cascade of period-doubling bifurcations of spirals in the
Rössler PDE (1.3). Higher-order period-doubling of spiral waves has indeed been observed
experimentally and numerically in [14, 27]. The conclusions of our spectral analysis remain
valid for these bifurcations as they rely only on the spectral properties of the asymptotic wave
trains. As discussed in [14, 16], higher-order period-doubling engenders different types of line
defects which mediate between different individual wave trains in a period-k orbit. We refer
the reader to [14, Figure 6] for an illustration and to [16] for an extensive discussion of the
different types of line defects that occur in higher-order period-doubling bifurcations of spiral
waves.

Appendix A. Spectra of sources on large bounded domains. We outline the proof of
Theorem 3. Suppose that u∗(x, t) is a source on (−L,L) obtained from Theorem 1 as the

2We continue to refer to curved defects that accommodate phase differences between adjacent wave trains
as “line” defects even though they are not straight lines.
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concatenation of a source on R and two boundary sinks. The linearization of (3.4) about u∗
is given by

vt = Dvxx + fu(u∗(x, t);μ)v, x ∈ (−L,L),

0 = vx(±L, t),

and we denote its evolution by Φ′
t. Floquet multipliers ρ can be found by seeking nontrivial

solutions v0 to Φ′
T v0 = ρv0, where T = 2π/ω∗ denotes the temporal period of the source u∗.

Writing

v(x, t) = eΛtu(x, t)

for v(x, t) = Φ′
tv0, we see that ρ = eΛT is a Floquet multiplier if and only if u(x, t) satisfies

ut = Duxx + fu(u∗(x, t);μ)u− Λu, x ∈ (−L,L),(A.1)

0 = ux(±L, t),

with u(x, t) being T -periodic in t. As in [38, section 4.1], we write (A.1) as

(A.2)

(
ux

vx

)
=

(
0 1

D−1[∂t − fu(u∗(x, t);μ) + Λ] 0

)(
u
v

)
,

with u = (u, v) ∈ X := H
1/2
per (0, T )×L2

per(0, T ) for all x, together with the boundary conditions

u(±L) ∈ H
1/2
per (0, T ) × {0}.

We want to prove that the Floquet spectrum of the truncated source u∗ is the union of two
disjoint sets: One of these approaches the absolute spectrum of the asymptotic wave trains
uwt(k∗x−ω∗t) in the symmetric Hausdorff distance as L → ∞, while the other one converges
to the union of the extended point spectra of the source on R and the two boundary sinks.
This issue has previously been addressed in [34] in the case where the linearized problem (A.2)
is an ODE.

The convergence proof for the absolute spectrum in [34, section 5.3] involves only exponen-
tial dichotomies and Lyapunov–Schmidt reduction and therefore carries over immediately to
(A.2) once the absolute spectrum of the wave trains uwt is identified. For constant-coefficient
problems

ux = A(Λ)u, u ∈ R
2n,

the absolute spectrum is given by

Σabs = {Λ ∈ C; Re νn = Re νn+1},

where νj = νj(Λ) with j = 1, . . . , 2n are the eigenvalues of the matrix A(Λ), ordered with
increasing real part. The corresponding definition for (A.2) uses spatial Floquet exponents
instead of eigenvalues. We consider the asymptotic 2π/k∗-periodic system

ux =

(
0 1

D−1[∂t − fu(uwt(k∗x− ω∗t);μ) + Λ] 0

)
u
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whose spatial Floquet exponents ν are found by seeking solutions u ∈ X of the form

u(x, t) = eνxu0(k∗x− ω∗t),

where u0 is 2π-periodic in its argument. As shown in [37, Proposition 2.10 and section 4]
or [38, section 3.4], there are infinitely many spatial Floquet exponents νj(Λ) for each fixed
Λ which, alternatively, can also be found as roots ν of the function D(Λ, ν). Ordering the
resulting roots νj by increasing real part, we end up with the absolute spectrum (2.19) of
the wave trains in the laboratory frame. With this identification, the proofs given in [34,
section 5.3] for the absolute spectrum carry over to (A.2).

It remains to prove that the remaining spectrum converges to the union of the extended
point spectra of the source on R and the boundary sinks. There are two different proofs
that give this result: First, we may invoke [32], where the spectrum of concatenated multi-
pulses was investigated, using again only exponential dichotomies and Lyapunov–Schmidt
reduction. An alternative proof uses the same topological winding-number arguments based
on Evans functions as in [34, section 4.3] but now applied to a finite-dimensional Galerkin
approximation of (A.2). It is a consequence of the results proved in [21, 37] that a sufficiently
high-dimensional Galerkin approximation captures all eigenvalues of the truncated source.
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Abstract. This paper is concerned with model-independent approaches for the analysis of inception and sup-
pression of oscillations in certain feedback interconnections arising in aerospace and industrial ap-
plications. One of the subsystems in the interconnection is known and assumed here to be the wave
equation on the circle. The dynamic model of the other subsystem is uncertain, and the approach
assumes only its structure, namely its symmetry properties. We show that only the structure (skew-
symmetry) of the feedback can be used to explain the instability, and manipulation of the structure
(mistuning) can be used to suppress the instability.

Key words. dynamical systems, jet engines, wave equation, symmetry, bifurcation, design of dynamics, mis-
tuning

AMS subject classifications. 74H60

DOI. 10.1137/060666044

1. Introduction. In several applications, feedback interconnections between dynamical
subsystems can lead to large sensitivity, instability, and bifurcation to (often) detrimental be-
havior. Examples include thermoacoustic (combustion) instabilities where feedback coupling
arises between acoustics and combustion [23], aeroacoustic instabilities with feedback coupling
between acoustics and flow [58], and flutter instabilities with fluid-structure coupling [26]. In
these examples, the dynamic model of one of the subsystems (for, e.g., combustion and fluid
dynamics) in the feedback loop is complex and very often CFD-based. As a result, analysis,
let alone suppression and control, of instability becomes a challenge.

This paper considers the problem of a feedback interconnection, shown in Figure 1, where
the simpler known subsystem is a wave equation on the circle. The motivation comes from
several examples of oscillatory phenomena in aerospace and industrial applications with cir-
cular geometries; Figure 2 depicts a few key examples, such as fan blade flutter, rotating
stall, aeroacoustic, and thermoacoustic instabilities in jet engines. Of particular interest is
the thermoacoustic instability where the wave equation is a simplified model of acoustics and
the feedback subsystem models the effects due to combustion: turbulent reacting flow, multi-
phase fuel transport, chemical kinetics, and distributed heat release [12]. Needless to say, even
the CFD-based models of combustion are at best approximations and often computationally
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Figure 1. Interconnection of a wave equation on a circle in feedback with a complex dynamical system.

Figure 2. A jet engine with cylindrical geometry: the dynamics can often be approximately described using
a wave equation on a circle with dynamic feedback.

intractable for realistic operating conditions and geometries. Analysis approaches for insta-
bilities range from computational methods [57, 46] to the use of simplified ad hoc models for
predicting qualitative trends and control [4, 15]. Both the approaches typically suffer from
large uncertainty in models, do not provide robust explanation of the observed instabilities
and the resulting dynamic behavior, and are not applicable to design methods for suppression
of instabilities.

Current practical remedies for thermoacoustic oscillations include (a) operating in design
space where these instabilities are mild [11], (b) using diagnostics such as monitoring for blade
fatigue [24], (c) passive fixes such as tuned Helmholtz resonators and liners that serve to dis-
sipate acoustic energy in the case of combustion instability [31, 9, 54], and (d) active feedback
control approaches [17, 50, 8]. These passive approaches suffer from increased weight, cost,
and performance penalties. Active control approaches require accurate models for controller
design, and most importantly suffer from fundamental performance limitations due to physical
factors such as delay, actuator bandwidth, etc. [16, 7].

In this paper, we propose a symmetry/structure-based approach for the analysis of in-
terconnection shown in Figure 1. Our two main contributions are that (a) the symmetry
properties alone of the feedback can be used to explain the inception of instability, and (b) ma-
nipulation (mistuning) of certain structural aspects can be used to suppress the instability.
The key innovation is that both the analysis and control are feedback model-independent :
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it assumes only the structural properties such as symmetry of the feedback subsystem and
not its particular dynamic model. This makes the approach robust to the uncertainty of the
complex feedback model, and thus suitable for practical applications; cf. [41].

In addition to the present focus on thermoacoustic oscillations, recent work on symmetry-
breaking has focused on the application of minimizing fan blade flutter. Studies concerning
stability properties of turbine blade flutter after introduction of spatial nonuniformities has
appeared in [10, 47] among many others. Optimal mistuning in arrays of bladed disks has
appeared in [45, 53]. In these studies, mistuning of the stiffness of the individual blades
was employed to reduce vibrations. The optimal mistuning pattern was determined from
large scale optimization problems, where the symmetry properties of the system were used
to reduce the size of the optimization problem. Such optimization problems often result in
model-specific nonrobust solutions. Furthermore, the role of the symmetry properties of the
feedback on instability and its suppression was not addressed.

In analysis of the instability, we use the equivariance (symmetry) properties of the wave
equations on the circle. Without explicitly assuming dynamics of the feedback subsystem, the
role of its symmetry on instability is investigated. In particular, it is shown that a certain
skew-symmetry in feedback can lead to instability in a robust manner, irrespective of the
dynamics. A bifurcation result is then presented to show that such an instability can lead
to a rotating wave with a preferential direction of rotation. This is indeed consistent with
the experimental evidence of rotating wave instabilities seen in jet engines with cylindrical
geometries. The analysis results are useful because they provide for a model-independent
explanation of the instability. In particular, the sign of the feedback gain is not important
as long as it has certain skew-symmetric structure. This nonintuitive result arises because of
the assumed O(2)-equivariance of the wave equation. In fact, the results are relevant to the
general case of O(2)-equivariant dynamics with feedback. Other well-known examples of such
systems where instability analysis is important are also noted.

In suppression of the instability, the idea is to modify the structural aspects of the inter-
connection model. This is accomplished by introducing precise spatial variations (mistuning)
in the mean properties such as wave speed of the wave equation. It is shown that just as skew-
symmetry in feedback provides a dynamic-independent explanation of the instability, mistun-
ing provides for its robust suppression by reversing the effect of skew-symmetry irrespective
of the feedback dynamics. A physical interpretation in terms of damping augmentation is
provided, whereby damped system modes are shown to stabilize the unstable modes. For a
given skew-symmetric feedback, there is a fundamental limitation on the efficacy of mistuning
beyond which it becomes ineffective. This limit is used to establish guidelines for optimal
design modification.

Symmetry-based methods have long been used for representation and analysis of equivari-
ant (symmetric) dynamical systems. Group representation theory [52] provides for a simpler
(diagonal) representation of any linear dynamical system that commutes with a group action.
For nonlinear dynamical systems, methods of equivariant bifurcation theory are by now well
developed for the study of (local) bifurcations; cf. [30]. These methods have also proved useful
in the study of nonlinear partial differential equations (pde) with symmetry; cf. [49, 35, 29].
In the context of this paper, equivariant bifurcation theory has been used to provide an ele-
gant explanation of wave solutions seen in numerous physical systems with spatial translation
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(SO(2) or Zn) and reflection (Z2) symmetry. Examples include rotating waves in coupled
identical oscillator systems [1], traveling waves in translation invariant fluid systems with pla-
nar [13] and circular [14] geometries, rotating waves in elastic rods [34] and pipes [2], spiral
waves in reaction-diffusion [22], and in pattern-formation systems [19]. General results for
the local bifurcation analysis of dynamical systems with O(2) spatial symmetry appear in
[25, 28, 30, 18, 21, 29].

Symmetry-based methods are powerful because they provide for model-independent con-
clusions on dynamics. However, these methods only delineate the possibilities in a model-
independent fashion. The actual solution behavior is a function of dynamics (gain and phase,
damping, and frequencies) present in the problem. By studying feedback interconnection of
Figure 1 with a nominally symmetric wave equation, we not only study an important ap-
plication but also use symmetry methods to obtain results on (feedback) model-independent
but dynamically robust behavior. We further combine this with symmetry-breaking ideas,
an area that, to the best of our knowledge, has not been investigated within the equivariant
bifurcation literature.

The outline of this paper is as follows. In section 2, we describe the interconnection models
considered in this paper, formulate the problem, and summarize a few example problems where
these models and problems arise. In section 3, we study the role of symmetry in sensitivity of
the feedback loop, inception of instability, and bifurcation. In section 4, we present symmetry-
breaking as a method for stabilization of a class of instabilities, relate it to the symmetry
properties of the interconnected system, study its fundamental limitations, and comment on
the robustness of both the instability analysis and the approach proposed for its suppression.
Finally, we summarize the conclusions in section 5.

2. Problem statement.

2.1. Wave-equation with feedback. Figure 1 depicts the feedback interconnection of an
azimuthally distributed one-dimensional wave equation in feedback with another dynamic
subsystem. The interconnection is modeled as the pde

(2.1)
∂2p

∂t2
− a2(x)

∂2p

∂x2
= εQ

[
∂

∂t
,
∂

∂x

]
(p),

where x denotes the azimuthal angle coordinate, t denotes the time, a is the wave-speed,
and ε is a real-valued parameter. Q denotes a general nonlinear, dynamic, and distributed
feedback with Q(0) = 0. p(x) ≡ 0 is thus the trivial solution of the interconnection (2.1).
Define L

.
= DpQ(0) to be the linearization of the dynamic feedback at this trivial solution;

Dp denotes the derivative with respect to p. Using this notation, the linearization of the
interconnection is given by

(2.2)
∂2p

∂t2
− a2(x)

∂2p

∂x2
= εL

[
∂

∂t
,
∂

∂x

]
(p).

The parameter ε will be used to bookkeep O(ε) perturbations in the eigenvalues of the wave
equation as a result of the feedback.
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In several applications of interest, p represents acoustic pressure, px
.
= ∂p

∂x may be scaled to
get acoustic velocity, and Q represents the effect of combustion, fluid, or structural coupling.
Specific simple and well-known examples for the feedback term Q include

Mean flow: Q(p) = m · px,(2.3)

Damping: Q(p) = −b · pt,(2.4)

Delay model of combustion: Q(p) =
∂q

∂t
(px(t− τ)),(2.5)

where ∂q
∂t is the so-called heat release rate, which in the delay model is simply taken to be some

function of the acoustic velocity px with a delay τ . The mean flow may arise due to swirl,
the damping term is used to model acoustic losses on the boundaries due to acoustic liners,
and delay arises due to finite speed of fuel-air propagation in combustion models. Note that
in applications a reduced order model for the feedback may be a combination of (2.3)–(2.5).

Crucial to the subject of this paper is the symmetry and the structure of the interconnected
models. In the absence of any feedback (Q = 0), and with a2(x) = a2

0 a homogeneous constant,
the wave equation (2.1) is equivariant with respect to the spatial symmetry group O(2):

SO(2) : τθ[p(x)] = p(x + θ) for θ ∈ [0, 2π],

Z2 : σ[p(x)] = p(−x).(2.6)

The translation symmetry SO(2) arises because (2.1) is spatially homogeneous in x. To see
that the equations are Z2-equivariant, note that

(2.7) σ[ptt − a2
0pxx] =

(
∂2

∂t2
− a2

0

∂2

∂x2

)
σ[p].

The dynamic feedback Q in general destroys the O(2) equivariance for the interconnected
feedback system, and symmetry is not thought to be relevant to many practical applications.
Motivated by rotating wave instabilities seen in numerous physical applications arising in
jet engines, we use the wave equation with O(2) symmetry as the “organizing center” for
our analysis; the term in quotes has been used by Golubitsky to highlight the relevance of
symmetry methods in physical problems [27].

In order to study the simplest and perhaps the most relevant case first, we make the
additional assumption that the feedback subsystem Q is itself SO(2)-equivariant. In partic-
ular, this rules out explicit x-dependence in coefficients of Q. The assumption is motivated
by the presence of identical components in many feedback subsystems of interest [3]. For
example, combustion feedback is due to the presence of many identical combustor elements:
flameholders in bluff body stabilized augmentors [5], or swirlers in swirl stabilized combustion
chambers [55, 38, 37]. Two special classes of the SO(2)-equivariant feedback subsystem of
interest include (spatially) local and integral models:

1. Local feedback:

(2.8) Q(p)(x, t) = Q

[
∂

∂t
, e−sτ

]
px(x, t),
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where Q is a function consisting of time-derivative ∂
∂t and delay e−sτ operator. In fact,

a delay with static nonlinearity is often a simple model of the combustion feedback
[4, 7].

2. Integral feedback:

(2.9) Q(p)(x, t) =

∫ 2π

0
K(x− θ)pt(θ, t)dθ,

where the special form of kernel K arises due to the assumption on the SO(2)-
equivariance of the operator.

For an SO(2)-equivariant Q, it follows that the linearization L, taken about the fully sym-
metric trivial solution, also commutes with SO(2).

In general, the assumption of SO(2)-equivariance is only an idealization. Although the
physics in circular geometries such as jet engines is often translation invariant, there are two
mechanisms by which symmetry is broken. One, the feedback subsystems such as combustors
or blades are often composed of discrete elements. The resulting rotation symmetry group
is thus finite: SO(2) is replaced by the discrete rotation group ZN with N large. For such
a case, one can simply repeat the analysis of this paper under the assumption of a discrete
symmetry group DN instead of the continuous group O(2) in (2.6). As sketched in section 3.4,
the conclusions of this paper are not expected to be different, provided that the spatial length
scale of the instability is much larger than the smallest length scale of discrete symmetry.
The second mechanism for breaking symmetry is where the wave equation (the left-hand side
of (2.1) or (2.2)) is derived with a spatially inhomogeneous mean. This often introduces
parametric inhomogeneities, such as x-dependent wave speed a(x). Influence of some of these
asymmetries on instability will be studied in section 4.

There are three topics of interest in this paper:
1. role of symmetry of the dynamic feedback subsystem on the sensitivity of the feedback

loop, inception of instability, and possible bifurcations;
2. role of parametric inhomogeneities in the suppression of instability;
3. robustness of these results with respect to the uncertainty in the dynamics of the

feedback subsystem.

2.2. Other examples. Other than the wave equation in circular geometries, the O(2)
symmetry of subsystems in feedback interconnections is also relevant to other physically im-
portant examples where instability is important. Two such examples, the nonlinear Moore–
Greitzer model of compressor instability and the planar Couette flow equation, are depicted
in Figure 3. The nonlinear Moore–Greitzer model describes the dynamics of the axial flow
through the compressor, which are determined by the compressor blade forcing and the over-
all pressure differential [44]. The model is used for analysis of the so-called rotating stall
and surge instabilities observed in axial compressors. The planar Couette flow problem refers
to the incompressible two-dimensional flow between two planes that move with a constant
velocity relative to each other [51]. The role of instabilities in the transition to turbulence
observed in this flow represents a longstanding problem of historical interest. In both these
examples, the basic (laminar) solution state is O(2)-symmetric, and thus the linearization (of
the appropriate equations) taken about this solution commutes with the group action. Fig-
ure 3 depicts the symmetry in these two example problems. Since we use the O(2) symmetry
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Figure 3. Schematics of (a) the Moore–Greitzer problem where the laminar solution is symmetric with
respect to rotations θ → θ+c and reflection θ → −θ and (b) the planar Couette flow problem where the laminar
solution is symmetric with respect to translations x → x + c and reflection (x, y) → (−x,−y).

as the organizing center for our analysis, the results of this paper are also relevant to these
important example problems.

3. Symmetry, instability, and bifurcation.

3.1. Symmetry and eigenvalues. The eigenvalues of any O(2)-equivariant dynamic model
are double. This is because the so-called irreducible representation of the abstract O(2) group
is two-dimensional. For the homogeneous wave equation on the circle, the kth eigenvalue pair
is

(3.1) λk = ±ika0,

and the eigenvectors {eik(x±a0t), e−ik(x±a0t)} span a four-dimensional real vector space. Like-
wise, the linearized Moore–Greitzer model has double real eigenvalues [33], and the lineariza-
tion of the planar Couette flow has double real and complex eigenvalues that lie in the complex
left half-plane (LHP) for all values of the Reynolds number [42].

Since the eigenvalues are double due to the symmetry of the problem, their double nature
will persist, irrespective of the dynamics of the feedback subsystem, as long as the feedback
subsystem also shares the O(2)-equivariance. In the following section, we study the influence
of only the symmetry properties of the feedback on these eigenvalues.

3.2. Decomposition of linear feedback dynamics. We assume that the feedback dynam-
ics are SO(2)-equivariant:

(3.2) Lτθ = τθL.

As already noted, if the feedback dynamics are additionally Z2-equivariant, then the double
nature of the eigenvalues persists. In order to study the more general situation, we consider
the following decomposition of dynamics. Define

(3.3) L∗ = σLσ,

where σ denotes the reflection subgroup as defined in (2.6). It is easy to see that if L is
Z2-equivariant, then L∗ = σLσ = σ2L = L. Use L∗ to consider a decomposition

L =
L + L∗

2
+

L− L∗

2
symmetric + skew-symmetric,(3.4)
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where the terminology symmetric and skew-symmetric are used because
(
L + L∗

2

)
σ =

Lσ + σL

2
= σ

(
L + L∗

2

)
,(3.5)

(
L− L∗

2

)
σ =

Lσ − σL

2
= −σ

(
L− L∗

2

)
.(3.6)

Example 3.1.
1.

(3.7)

(
∂

∂t

)∗
=

∂

∂t
,

(
∂

∂x

)∗
= − ∂

∂x

are examples of symmetric and skew-symmetric dynamics, respectively.
2. Consider the linear integral dynamics

(3.8) L(p)(x) =

∫ 2π

0
K(x− θ)pt(θ, t)dθ.

A simple calculation shows that

(3.9) L∗(p)(x) =

∫ 2π

0
K(−x + θ)pt(θ, t)dθ.

L is symmetric if K(θ) is an even function of θ and is skew-symmetric if K is an odd
function. In general, the decomposition here is given by
(3.10)

L(p)(x) =

∫
K(x− θ) + K(−x + θ)

2
pt(θ, t)dθ +

∫
K(x− θ) −K(−x + θ)

2
pt(θ, t)dθ,

which corresponds to decomposition of the kernel K as a sum of even and odd func-
tions.

In the following section, we obtain symmetry-dependent conclusions on instability for the
linear interconnection (2.2) with a(x) = a0:

(3.11)
∂2p

∂t2
− a2

0

∂2p

∂x2
= εL(p).

For a closed-loop stable interconnection, we will sometimes include an additive input distur-
bance d on the right-hand side of the equation.

3.3. Symmetry and instability. Equation (2.6) describes a particular representation of
the abstract groups SO(2) and Z2 for the vector space L2(0, 2π). From group representation
theory, a representation defines a unique isotypic decomposition—into the so-called symmetry
coordinates—of the vector space [52]. Isotypic decomposition is convenient because it serves
to diagonalize any commuting linear operator. For the representation corresponding to SO(2)
or O(2), the isotypic decomposition of L2(0, 2π) is given by the Fourier modes:

(3.12) L2 =
⊕

k
Vk,
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where
⊕

is used to denote the direct sum and where the kth component

(3.13) Vk = {sk sin(kx) + ck cos(kx) : ck, sk ∈ R}

is a two-dimensional vector space in L2; cf. [29]. If L in (3.11) commutes with the represen-
tation of SO(2)—as in (3.2)—the diagonalization means that L : Vk → Vk. Taking a Fourier
series expansion of the pressure in these symmetry coordinates,

(3.14) p(x) = c0 +
∑

k

sk sin(kx) + ck cos(kx),

we simplify the analysis of linear pde (3.11). For the representation (2.6), the induced group
action for the Fourier coordinate (sk, ck) is given by

SO(2) : τθ

[
sk
ck

]
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
sk
ck

]
,

Z2 : σ

[
sk
ck

]
=

[ −1 0
0 1

] [
sk
ck

]
.(3.15)

We denote the restriction as Lk
.
= L|Vk

. By the property of isotypic decomposition, Lk :
Vk → Vk. After taking the Laplace transform, Lk(s) is simply a 2 × 2 matrix defined with
respect to the coordinate (sk, ck) of the two-dimensional vector space Vk.

The induced action given by (3.15) together with SO(2)-commutativity in (3.2) can be
further used to simplify Lk(s). A simple calculation shows that any 2×2 matrix that commutes

with
[ cos(θ) − sin(θ)

sin(θ) cos(θ)

]
must be of the form

(3.16) Lk(s) =

[
Ak(s) −Bk(s)
Bk(s) Ak(s)

]
.

Finally, we use σ =
[−1 0

0 1

]
in (3.15) to construct the decomposition of (3.4):

Lk(s) = Ak(s)I + Bk(s)J

symmetric + skew-symmetric,(3.17)

where I =
[

1 0
0 1

]
and J =

[
0 −1
1 0

]
. Substituting this into (3.11), the linear dynamics in subspace

Vk are given by the matrix equation

(3.18) (s2 + a2
0k

2)I

[
sk
ck

]
= ε(Ak(s)I + Bk(s)J)

[
sk
ck

]
+

[
ds
dc

]
,

where ds and dc are the Fourier components of the input disturbance d. Ak(s) and Bk(s)
model the symmetric and skew-symmetric components, respectively, of the linearization of
any general SO(2)-equivariant feedback subsystem Q.

Example 3.2.
1. For a symmetric L = − ∂

∂t , Ak(s) = −s and Bk(s) = 0.

2. For a skew-symmetric L = − ∂
∂x , Ak(s) = 0 and Bk(s) = 1.



558 P. G. MEHTA, G. HAGEN, AND A. BANASZUK

3. For L(p)(x) =
∫ 2π
0 K(x − θ)pt(θ, t)dθ, let K(x) = K0 + 1

π

∑
k ak cos(kx) + bk sin(kx);

then a simple calculation shows that Ak(s) = ak · s and Bk = −bk · s. For an even
kernel K the integral is symmetric and Bk = 0, and for an odd kernel the integral is
skew-symmetric and Ak = 0.

In the following, we study perturbations of the nominal eigenvalues λk = ±ia0k of the
homogeneous wave equation (see (3.1)) as a result of the feedback Ak(s)I + Bk(s)J . In
particular, destabilization of these eigenvalues is of interest. The eigenvalues of the closed
loop (3.11), referred to as the perturbed kth eigenvalues, are given by roots of the determinant
equation

(3.19)

∣
∣
∣
∣
s2 + a2

0k
2 − εAk(s) εBk(s)

−εBk(s) s2 + a2
0k

2 − εAk(s)

∣
∣
∣
∣ = 0,

from which follow

s2 + a2
0k

2 = ε(Ak(s) + iBk(s)),(3.20)

s2 + a2
0k

2 = ε(Ak(s) − iBk(s)).(3.21)

Equations (3.20) and (3.21) have complex conjugate roots; i.e., s is a root of (3.20) if and
only if s̄ is a root of (3.21). As a result, it suffices to evaluate roots of (3.20) alone. Since
perturbation to the nominal eigenvalues ±ia0k is of special interest, we express these roots as
regular perturbations in the small parameter ε:

s+ = εr+ + i(a0k + εq+) + o(ε),

s− = εr− + i(−a0k + εq−) + o(ε).(3.22)

The real parts r± correspond to the roots s± of (3.20). We note that in general s± need not
be complex conjugate.

In the absence of skew-symmetric feedback (Bk(s) = 0), (3.20) has real coefficients and
its roots are complex conjugate. The eigenvalues of (3.19) are thus double and move as a
pair: either both the eigenvalues move into the left half-plane or they both move into the
right half-plane. This depends upon the particular dynamic model Ak(s). For example,
Ak(s) = s is destabilizing while Ak(s) = −s is stabilizing. The following theorem summarizes
the conclusion on the eigenvalue movement on account of symmetric and skew-symmetric
feedbacks.

Theorem 3.3. Consider the eigenvalue problem for the linear pde (3.11), where the linear
feedback L commutes with the representation of SO(2) in (2.6). In the limit as ε → 0,

1. the sum of the real part of the kth eigenvalues

(3.23) r+ + r− =
Imag(Ak(ia0k))

a0k
;

2. the difference of the real part of the kth eigenvalues

(3.24) r+ − r− =
Real(Bk(ia0k))

a0k
.



SYMMETRY-BREAKING FOR WAVE EQUATION WITH FEEDBACK 559

Proof. Substituting the regular perturbation (3.22) into (3.20), the O(ε) balance yields

O(ε) : 2r+a0k = Real(Bk(ia0k)) + Imag(Ak(ia0k)),(3.25)

−2r−a0k = Real(Bk(−ia0k)) − Imag(Ak(ia0k)).(3.26)

Equations (3.23)–(3.24) follow by subtracting and adding the two expressions, respectively.
Thus, the cumulative damping of the system is fixed by symmetric feedback Ak(s), while the
skew-symmetric feedback merely serves to exchange damping.

For a purely skew-symmetric feedback with Ak(s) = 0,

(3.27) r+ + r− = 0,

i.e., to O(ε) the sum of real parts of the roots due to an arbitrary skew-symmetric feedback
is 0. As a result, the eigenvalues of (3.19) split: if one of the eigenvalue pair moves into the
LHP, then the other must move into the right half-plane.

Equations (3.23)–(3.24) can also be derived by considering a broadband approximation of
the feedback, where Ak(s) ≈ Ak(±ia0k) and Bk(s) ≈ Bk(±ia0k) are used for the computations
of the kth eigenvalues. Such a broadband approximation is often used in determination of
eigenvalues for cases where the phase of the feedback subsystem rolls off “slowly” near the
natural frequency.

Remark 3.4. Depending upon the sign of Imag(Ak(ia0k)) in (3.23), the symmetric feed-
back can either stabilize or destabilize the interconnection’s eigenvalues. In contrast, the skew-
symmetric feedback always causes destabilization—movement of one eigenvalue pair into the
right half-plane—for the generic case of Real(Bk(ia0k)) �= 0.

Example 3.5. Consider the wave equation

∂2p

∂t2
− a2

0

∂2p

∂x2
= εa

∂p

∂t
+ εb

∂p

∂x
symmetric + skew-symmetric.(3.28)

Figure 4(a) depicts the nominal eigenvalues ±ia0k without any feedback (εa = εb = 0). In the
presence of feedback, Ak(s) = εas, Bk(s) = εb, and the kth eigenvalue is determined by the
roots of

(3.29) (s2 + a2
0k

2)I = εas · I + εb · J.

As shown in Figure 4(b), the symmetric feedback can destabilize both eigenvalues, and the
sum of the real part of the eigenvalues is in fact given by

(3.30) r+ + r− = εa =
Imag(Ak(ia0k))

a0k
.

As shown in Figure 4(c), the presence of the skew-symmetric feedback splits the nominal
eigenvalues such that

(3.31) r+ − r− ≈ εb
a0k

=
Real(Bk(ia0k))

a0k
.
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Figure 4. The kth eigenvalues for (a) the nominal homogeneous wave equation, (b) with symmetric desta-
bilizing feedback, and (c) with arbitrary skew-symmetric feedback.

Figure 5. The closed-loop dynamics in Vk: (a) with symmetric feedback Ak(s) alone, and (b) together
with skew-symmetric feedback Bk(s). dc and ds are the components of the input disturbance (right-hand side
of (3.11)) in Vk.

Figure 5 provides another interpretation of the role of symmetric and skew-symmetric
feedback in the kth Fourier subspace Vk. We begin by noting that the SO(2) symmetry implies
that there is no coupling between dynamics in distinct Fourier subspaces. With symmetric
feedback, there are two identical uncoupled closed-loop dynamical systems corresponding to
the two Fourier modes {cos(kx), sin(kx)} in Vk. The individual systems capture the feedback
coupling of the homogeneous wave equation with Ak(s). The presence of skew-symmetric
feedback Bk(s) serves to couple these two systems. Although the strength of the coupling
depends upon Bk(s), it always destabilizes one of the two Fourier modes. We refer to such a
destabilization (instability) as robust because the conclusion is feedback model-independent.
It depends only upon the (skew-symmetric) structure of the feedback. Figure 5 depicts the
dynamical systems in Vk together with input disturbance. Such a model is applicable for
description of oscillations in a stable regime [7]. The role of the skew-symmetric feedback here
is to make the closed loop sensitive by moving an eigenvalue pair close to the imaginary axis.
Sensitivity of the loop can then lead to large oscillations in the presence of disturbance.
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3.4. Discrete symmetry. In jet engine applications, the feedback subsystems are often
composed of discrete elements (combustors, blades, etc.). The resulting rotation symmetry
group is thus finite. SO(2) is replaced by the discrete rotation group ZN :

(3.32) ZN : τθs [p(x)] = p(x + θs),

where θs = 2πs
N for s = 0, 1, . . . , N − 1, and N denotes the number of discrete elements

(typically large). Equation (3.2) is replaced by the condition of ZN -equivariance:

(3.33) Lτθs = τθsL.

The model-independent conclusions of the preceding section depended upon the isotypic de-
composition of L2[0, 2π] into Fourier subspace Vk. As a result of this decomposition, closed-
loop dynamics can easily be analyzed in decoupled subspaces (see Figure 5). With discrete
symmetry, such a fine decomposition no longer holds, but the conclusion of Theorem 3.3 and
Figure 5 is still valid, provided that the wave number k of instability is small compared to
N . This is because of the following lemma, which clarifies the nature of coupling between the
Fourier subspaces.

Lemma 3.6. Consider the dynamics of the closed-loop (3.11), where the linear feedback L
commutes with the representation of ZN in (3.32). A necessary condition for the kth Fourier
subspace Vk to couple, via feedback, with the mth Fourier subspace Vm is

(3.34) |k ±m| = 0 mod N.

Proof. For p(x) ∈ Vk(x), consider a Fourier expansion L(p)(x) =
∑

m ameimx. Using the
commutativity (3.33), one obtains

(3.35) amei(m−k)θs = am for s = 0, 1, . . . , N − 1,

which implies the condition in (3.34) or am = 0. Since the nominal wave equation is SO(2)-
equivariant, any coupling arises due to the feedback alone. The result follows.

In order to analyze the effect of discrete symmetry, we assume that k � N . Such a
condition is consistent with applications where the number of discrete elements (N) is typically
large compared to the wave number (k) of the global instability mode. Using the result of
Lemma 3.6, the feedback serves to couple the kth Fourier mode with the (k ± mN)th for
m = 1, . . . . Using the wave equation, the nominal eigenvalues of these modes are ±ia0k and
±ia0(k±mN), respectively. For k � N , the difference in these eigenvalues is large (> a0N),
and the insensitivity of the eigenvalue locations to such higher mode couplings then follows
from root locus arguments.

3.5. Bifurcation. Post linear destabilization, a nonlinearity Q in (2.1) can result in a limit
cycle. In the context of the preceding analysis, there are two kinds of local bifurcation results
corresponding to the symmetric and skew-symmetric cases. In this section, we summarize
the Hopf bifurcation result for the skew-symmetric case. In order to facilitate the bifurcation
analysis, we consider a damped version of the interconnection:

(3.36)
∂2p

∂t2
+ b

∂p

∂t
− a2

0

∂2p

∂x2
= εQ

[
∂

∂t
,
∂

∂x

]
(p),
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where b > 0 and εQ denotes a nonlinear feedback term. As before, L denotes the linearization
of Q taken about the trivial solution. It is assumed to be skew-symmetric. We further assume
that the resulting linearization of (3.36),

(3.37)
∂2p

∂t2
+ b

∂p

∂t
− a2

0

∂2p

∂x2
= εL

[
∂

∂t
,
∂

∂x

]
(p),

yields a Fredholm operator of index 0 (the dimension of its eigenspace is finite-dimensional),
and that the kth eigenvalue pair crosses the imaginary axis with a nonzero speed at the critical
parameter value of ε = ε0. The general bifurcation result then follows as a Hopf bifurcation
for pdes via the method of Lyapunov and Schmidt.

Theorem 3.7. Consider the nonlinear wave equation (3.36) together with its linearization
(3.37), where L is assumed to be skew-symmetric. Equation (3.37) is assumed to be Fredholm.
Let s(ε) denote the kth complex eigenvalue pair and r(ε) its real part. Assume that

1. s(ε0) is purely imaginary,
2. no other eigenvalues of (3.37) lie on the imaginary axis, and
3. the speed of the real part of eigenvalue r′(ε0) is nonzero.

Then there is a unique branch of nontrivial rotating wave solutions p(x − at) bifurcating at
the critical value of parameter ε = ε0. a(ε) is the wave-speed, such that a(ε0) is either a0 or
−a0. To leading order, the rotating wave solution is given as

(3.38) p = Ceik(x−at) + h.o.t.,

where eik(x−at) is the eigenfunction of the linearized (3.37) at ε = ε0, “h.o.t.” stands for higher
order terms, and the amplitude C satisfies one of the two normal forms

(ε− ε0)C + C3 = 0,

(ε− ε0)C − C3 = 0,(3.39)

where the sign depends upon the nonlinearity Q.
The proof follows from the general Hopf bifurcation theorem for nonlinear pdes with a

Fredholm linearization; cf. [36]. The bifurcation theorem provides a nonlinear counterpart to
the linear destabilization result because of skew-symmetric feedback.

3.6. Couette flow example. The nonlinear equations of motion for planar Couette flow
are O(2)-equivariant with a certain representation of O(2), as indicated in Figure 3. The
linearization taken about the fully symmetric laminar solution thus commutes with the group
action. As a result, the eigenvalues of the planar Couette flow’s linearization are double.
Furthermore, these eigenvalues are known to reside in the LHP for all values of the Reynolds
number [48].

As an example of destabilization caused by introduction of a skew-symmetric feedback,
consider a perturbation of the planar Couette flow due to the planar Poiseuille flow (with a
parabolic velocity profile). Figure 6(a) depicts the schematic of the planar Poiseuille–Couette
flow. The Poiseuille flow is spatially homogeneous and preserves the translation (SO(2))
symmetry but destroys the reflection (Z2) symmetry. Figure 6(b) summarizes the effect on
the eigenvalues: the double eigenvalues split on account of the skew-symmetric component
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Figure 6. (a) Schematic of the planar Poiseuille–Couette flow, (b) double eigenvalues of the planar Couette
flow split as a result of the Poiseuille perturbation, and (c) two-dimensional traveling wave solution branches
for the Poiseuille–Couette flow.

of the feedback. The planar Couette flow is destabilized for a large enough perturbation
(feedback) due to Poiseuille flow, which leads to traveling wave solutions for the nonlinear
problem. Figure 6(c) depicts such a solution branch obtained using the continuation code
AUTO. The kinetic energy E ∝ ∫ |u|2 is used as a solution measure (u denotes the two-
dimensional velocity of the perturbation).

Planar Couette flow is thus another O(2)-equivariant example where introduction of a
(linear) skew-symmetric perturbation leads to destabilization via splitting of the nominally
double eigenvalues. In the presence of nonlinearities, here due to the convective term in the
Navier–Stokes equation, such a destabilization leads to traveling waves, as shown in Figure 6.
These solutions suggest nonlinear sensitivity of the planar Couette flow to (skew-symmetric)
perturbations. However, the two-dimensional solutions of the perturbed problem are not
believed to be relevant in explaining the experimentally observed three-dimensional vortex
“streaks” seen in the Couette flow experiments; cf. [51]. Additional details on the discretiza-
tion, nonlinear bifurcation analysis, computations, role of symmetry and perturbations to the
planar Couette flow problem appear in the thesis [39] and the papers [40, 42].

4. Symmetry-breaking and suppression.

4.1. Wave-speed mistuning. In this section, we study a mistuned version of the linearized
wave equation with feedback:

(4.1) ptt − a2(x)pxx = εL

[
∂

∂t
,
∂

∂x

]
(p).

εL(p) denotes an arbitrary SO(2)-equivariant linear feedback as before, and

(4.2) a2(x) = a2
0 + εα(x),

where α(x) models the spatial inhomogeneity in wave speed. It is assumed to be some (pe-
riodic) function defined on a circle [0, 2π]. The objective is to study the effects of a “small”
amount of mistuning on the eigenvalues of the linearized problem. In particular, it is of inter-
est to use mistuning to ameliorate the detrimental effects of the destabilizing skew-symmetric
feedback. This is the reason for scaling both the mistuning and feedback L by parameter ε.
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We note that an inhomogeneity α(x) will in general break the SO(2)-equivariance of
the wave equation, so the methods of the previous section need to be suitably modified.
To compute the eigenvalues, we take the Laplace transform and consider a boundary value
problem along the coordinate x:

(4.3) a2
0pxx − s2p + εα(x)pxx + εL

[
s,

∂

∂x

]
(p) = 0,

with periodic boundary conditions

p(0) = p(2π),

px(0) = px(2π).(4.4)

The term εα(x)pxx models the effect of wave-speed parameter mistuning, and εL(s, ·)p repre-
sents the feedback term after taking the Laplace transform. We are interested in the eigenval-
ues of (4.3)–(4.4), i.e., values of s for which a periodic solution p(x) exists. To compute these,
we use a perturbation method expressing the eigenfunction and eigenvalue in a series form:

p(x) = p0(x) + εp1(x) + o(ε),(4.5)

s = s0 + εs1 + o(ε).(4.6)

We note that εs1 denotes the perturbation to the nominal eigenvalue s0 as a result of (a) feed-
back εL (this case has already been studied in section 3), and (b) mistuning. Substituting
(4.6) into (4.3),

(4.7) O(1) : a2
0(p0)xx − s2

0p0 = 0,

whose periodic eigensolution is given by

p0 = ck cos(kx) + dk sin(kx),(4.8)

s2
0 = −a2

0k
2,(4.9)

where k is any integer and {ck, sk} are arbitrary real constants. Next,

O(ε) : a2
0(p1)xx − s2

0p1 = 2s0s1p0 − α(x)(p0)xx − L

(
s0,

∂

∂x

)
(p0)

.
= R.(4.10)

Substituting s2
0 = −a2

0k
2 on the left-hand side leads to a resonance condition for the right-

hand-side term, denoted by R. In particular, for a solution p1 to exist, R must lie in the range
space of the linear operator

(4.11)

(
a2

0

∂2

∂x2
+ a2

0k
2

)
.
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For the self-adjoint operator, the range space is given by the complement of its null space
Vk = span{sin(kx), cos(kx)}. This gives the resonance conditions

1

π
〈R, sin(kx)〉 = 0,

1

π
〈R, cos(kx)〉 = 0,(4.12)

where 〈·, ·〉 denotes the standard inner product in L2(0, 2π). Explicitly, this leads to a matrix
equation,

(4.13)

[
2s0s1 −Ak(s0) Bk(s0)

−Bk(s0) 2s0s1 −Ak(s0)

] [
sk
ck

]
− 1

π

[ 〈α(x)(p0)xx, sin(kx)〉
〈α(x)(p0)xx, cos(kx)〉

]
= 0.

Without mistuning (α(x) ≡ 0), this gives an approximation of the determinant equation
(3.19),

(4.14)

∣∣∣∣
2s0s1 −Ak(s0) Bk(s0)

−Bk(s0) 2s0s1 −Ak(s0)

∣∣∣∣ = 0,

where s0 = ±ia0k; note 2εs0s1 = s2+a2
0k

2+O(ε2). Its solution s1 provides an O(ε) correction,
on account of the feedback εL alone, to the eigenvalue s0 = ±ia0k. Let r+ and r− be the
real parts corresponding to the two roots s1 = s+ and s−, respectively. By taking trace and
determinant, it follows that

r+ + r− =
Imag(Ak(ia0k))

a0k
,

r+ − r− =
Real(Bk(ia0k))

a0k
.(4.15)

These are in fact also (3.23)–(3.24). In the following, we evaluate the effect of parametric
mistuning on these two quantities.

The resonance term on account of the wave-speed mistuning is given by

− 1

π
〈α(x)(p0)xx, sin(kx)〉 =

k2

π
(Ics · ck + Iss · sk) ,

− 1

π
〈α(x)(p0)xx, cos(kx)〉 =

k2

π
(Icc · ck + Ics · sk) ,(4.16)

where

Ics =

∫ 2π

0
α(x) cos(kx) sin(kx)dx,

Iss =

∫ 2π

0
α(x) sin(kx) sin(kx)dx,

Icc =

∫ 2π

0
α(x) cos(kx) cos(kx)dx.(4.17)
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Evaluating these integrals gives

(4.18)
1

π

[ 〈α(x)(p0)xx, sin(kx)〉
〈α(x)(p0)xx, cos(kx)〉

]
=

[
α0 − αc αs

αs α0 + αc

] [
sk
ck

]
,

where

α0 =
k2

2π

∫ 2π

0
α(x)dx,

αc =
k2

2π

∫ 2π

0
α(x) cos(2kx)dx,

αs =
k2

2π

∫ 2π

0
α(x) sin(2kx)dx.(4.19)

We denote by

(4.20) α2
2
.
= α2

c + α2
s

the “amplitude” of the perturbation corresponding to a 2k spatial harmonic. The effect of the
resonant term due to the wave-speed mistuning (in (4.18)) on the eigenvalues is summarized
in the following theorem. The simplest case, where Bk(±ia0k) is real-valued, is treated first.
We note that this represents the most important case because the instability results from a
split in the real part of the eigenvalues and the difference r+ − r− depends only on the real
part of Bk(ia0k), as shown in (4.15).

Theorem 4.1. Consider the parametric wave-speed mistuning with nonzero α(x) in the lin-
earized pde (4.1). Additionally, assume that Bk(ia0k) is real-valued. In the limit as ε → 0,

1. the sum of the real part of the kth eigenvalues is unchanged by mistuning, i.e.,

(4.21) r+ + r− =
Imag(Ak(ia0k))

a0k
,

2. the difference of the real part of the kth eigenvalues

(4.22) r+ − r− =

⎧
⎨

⎩

1

a0k
Imag

(
α2

2 −Bk(ia0k)2
) 1

2 for α2 < |Bk(ia0k)|,
0 otherwise.

Proof. With the term in (4.1) due to the wave-speed mistuning, the resonance condition
is modified to

(4.23)

[
2s0s1 −Ak(s0) − α0 − αc Bk(s0) + αs

−Bk(s0) + αs 2s0s1 −Ak(s0) − α0 + αc

] [
sk
ck

]
= 0.

The roots are determined by the determinant

(4.24)

∣∣∣∣
2s0s1 −Ak(s0) − α0 − αc Bk(s0) + αs

−Bk(s0) + αs 2s0s1 −Ak(s0) − α0 + αc

∣∣∣∣ = 0,
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where s0 = ±ia0k. Let r+ and r− be the real parts corresponding to the two roots s1 = s+

and s−, respectively. By taking the trace with s0 = ia0k, it follows that

(4.25) r+ + r− =
Imag(Ak(ia0k))

a0k
;

i.e., the net amount of damping in the system is not modified by introducing mistuning. With
s0 = −ia0k, one obtains the same conclusion, and the eigenvalues s0 + εs1 for the choice of
s0 = ±ia0k arise as complex conjugates. This also shows (1) in the proof. To show (2), we
evaluate the determinant which leads to

(4.26) 2s0s1 = Ak(s0) + α0 ±
(
α2

2 −Bk(s0)
2
) 1

2 .

This gives

(4.27) r+ − r− =
1

a0k
Imag

(
α2

2 −Bk(s0)
2
) 1

2 .

Since Bk(ia0k) is assumed to be real, the right-hand side is zero for values of α2 > |Bk(ia0k)|.
Thus, mistuning serves to reverse the effect of skew-symmetry by bringing the eigenvalues
closer. A critical amount of mistuning α2 = |Bk(ia0k)| completely cancels the effect of skew-
symmetry. Additional mistuning does not add additional damping.

Although the expression in (4.21)–(4.22) relating mistuning to symmetric and skew-
symmetric feedback is particularly simple for real-valued Bk(ia0k), a similar result holds
for the general case of complex Bk(ia0k) too. In particular, (4.21) remains unaffected, and
the net amount of system damping is a function of symmetric feedback Ak alone. For a
complex-valued Bk, we still have (4.27) and

(4.28) r+ − r− =
1

a0k
Imag

(
α2

2 −Bk(s0)
2
) 1

2 .

If Bk(s0) is purely imaginary, then (3.24) implies that r+ − r− = 0, and there is no instability
on account of skew-symmetry. It is also clear from (4.28) that the mistuning is not needed for
such a case. For a complex-valued Bk(ia0k), the mistuning causes |r+ − r−| to decrease and
is thus always beneficial, but the relative benefit becomes smaller for larger mistuning levels.
A good rule of thumb is to define optimal mistuning as

(4.29) αo
2 = |Real(Bk(ia0k))|,

the amount needed to completely cancel the effect of Real(Bk(ia0k)).
Remark 4.2. Mistuning does not affect the net amount of damping in the system, which is

a function of the symmetric feedback Imag(Ak(ia0k)) as in (4.21). The mistuning ameliorates
the detrimental effect of skew-symmetric feedback, and both the destabilization because of
skew-symmetry and stabilization due to mistuning are model-independent.

We provide two interpretations for stabilization due to mistuning. One is in terms of
1:2 spatial resonance of the kth instability mode with 2kth spatial harmonic of the mistun-
ing. Such a “parametric resonance” effect is well studied in nonlinear oscillator models with
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parametric excitation, the Mathieu’s equation being one well-known example [56]. There is
one important difference here because the circular geometry fixes the spatial frequencies to
a discrete set. Thus, the 1:2 spatial resonance is exact here—the kth instability mode and
the 2kth spatial harmonic of the mistuning. In models of distributed systems with extended
domains, such as planar Couette flow, thicker “Arnold tongues” with beneficial regions of sta-
bilization due to spatial resonance are expected. Such is the case in the mistuning literature
on structures where these regions arise as the so-called stop-bands [10].

The other interpretation is in terms of the dynamic model of interconnection in the sub-
space Vk (see Figure 5). It has already been pointed out that the presence of skew-symmetric
feedback Bk(s) serves to detrimentally couple the two dynamical systems corresponding to
the two Fourier modes {cos(kx), sin(kx)} in the subspace Vk. Although the strength of the
coupling depends upon Bk(s), it always destabilizes one of the two Fourier modes at the ex-
pense of the other. Similar, but now beneficial, coupling occurs in the presence of mistuning:
the two kth Fourier modes are coupled due to the 2kth spatial mistuning term. Mistuning,
as the name suggests, causes the frequencies (imaginary part) of any O(2)-symmetric double
eigenvalues to split. Such a split of the frequencies effectively desensitizes the feedback loop
to a certain maximal amount of skew-symmetric feedback.

4.2. Application. We consider a model of thermoacoustic oscillations on a circular domain
similar to the one described in [32, 5]. It is used to model counter-rotating transverse acoustic
modes coupled via simple models of damping and an unsteady heat-release process. The
system is of the form of (2.3), (2.4), with wave-speed mistuning α(x):

∂2p

∂t2
− a2

0

∂2p

∂x2
= −b

(
1 − ∂2

∂x2

)
∂p

∂t
+ m

∂p

∂x
+ α(x)

∂2p

∂x2

symmetric + skew-symmetric + mistuning.(4.30)

We illustrate the stability properties of the system with respect to variations in the feedback
components b and m and wave-speed mistuning α(x). The homogeneous case with α(x) = 0
is considered first to compare the effects of the symmetric and skew-symmetric feedback
components. Figure 7 shows the maximum real part of the closed-loop eigenvalues as a
function of b and m. Note that the stability of the least stable eigenvalue depends directly on
the sign of b but is independent of the sign of m. This is in agreement with the schematic shown
in Figure 4 because the acoustic damping term −b(1− ∂2

∂x2 )∂p∂t is Z2-equivariant, and the skew-

symmetric feedback term m ∂p
∂x is always destabilizing. This implies that the phase-response of

the symmetric feedback directly affects the stability of the system. If the phase-response of b
is 180◦ out of phase with the acoustic pressure, the effect will actually destabilize the system,
while if the phase-response of b is in phase with the acoustic pressure, the effect will stabilize
the system. In the case of a symmetric heat-release response, this is equivalent to the familiar
Rayleigh criterion (see, e.g., [20]). Furthermore, this effect must also be considered for the
application of acoustic damping using tuned resonators, as in [31]. On the other hand, the
skew-symmetric coupling through the transverse acoustic velocity always has a destabilizing
effect on the system, regardless of its phase-response.

We next consider the stabilizing effect of wave-speed mistuning for the system with skew-
symmetric feedback. Figure 8 shows the contours of p(x, t) resulting from a simulation of
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Figure 7. Contours of the least stable eigenvalue for varying skew-symmetric (mean-flow) and symmetric
(liner) feedback components. The eigenvalues become less stable for increasing values of |m| and more stable
for increasing values of b. The stability properties depend on the sign of b but are independent of the sign of m.

Figure 8. Contours of p(x, t) for the wave equation with symmetric and skew-symmetric feedback compo-
nents. The wave-speed mistuning is initially set to zero, and the skew-symmetric feedback causes the instability
of a rotating wave (indicated by the slanted contours between time = 5 and 15). At time = 15, the wave-speed
mistuning is applied and the rotating wave is stabilized.

the full wave equation with wave-speed mistuning initially set to zero. The skew-symmetric
feedback causes the instability of a rotating wave (indicated by the slanted contours between
time = 5 and 15. At time = 15, the wave-speed mistuning is applied and the rotating wave is
stabilized.

In thermoacoustic applications, the precise value and sign of the parameter m describing
the unsteady coupling between the transverse velocity and pressure is difficult to predict, as
it may generally depend on a number of physical parameters such as the combustion chamber
geometry, the inlet flow conditions, and the unsteady combustion process. If the sign of m
changes, the result is that the instability wave rotates in the opposite direction. Therefore
it is of interest to suppress acoustic waves rotating in either direction. Figure 9 shows the
contours of p(x, t) resulting from a simulation of the full wave equation with the sign of m
opposite of what is shown in Figure 8. Notice that the wave rotates in the opposite direction
(the contours are slanted in the opposite direction between time = 5 and time = 15). At
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Figure 9. Contours of p(x, t) for the wave equation with symmetric and skew-symmetric feedback compo-
nents. The skew-symmetric feedback is of opposite sign to that shown in Figure 8, and the wave rotates in the
opposite direction. The wave-speed mistuning is initially set to zero, and the skew-symmetric feedback causes
the instability of a rotating wave (indicated by the slanted contours between time = 5 and 15). At time = 15,
the wave-speed mistuning is applied and the rotating wave is stabilized.

time = 15 the same wave-speed mistuning is applied, and the rotating wave decays over time.
This shows that the wave-speed mistuning stabilizes waves with either direction of rotation.

4.3. Fundamental limitation. The total amount of damping in the system is set by the
symmetric feedback Ak(s). Both the skew-symmetry and mistuning merely serve to exchange
damping between the modes. Skew-symmetric feedback destabilizes one mode at the expense
of the other, while mistuning reverses this. For a given skew-symmetric feedback (split of
eigenvalues), there is an optimal amount of mistuning that reverses the destabilizing effect of
skew-symmetric feedback. The optimal mistuning corresponds to the 2kth spatial harmonic
of amplitude

(4.31) α2 = |Real(Bk(ia0k))|.
Let Δr denote the split in the real eigenvalues |r+ − r−| without any mistuning (α(x) ≡ 0).
Using (3.24), a useful formula for the optimal level of mistuning expressed only in terms of
the eigenvalue split is given by

(4.32) α0
2 = Δr · a0k.

This optimal amount corresponds to the eigenvalue diagram where the kth eigenvalue pair is
the closest. Decreasing the amount of mistuning from the optimal amount causes one of the
modes to become more damped at the expense of the other mode, which becomes less damped.
On the other hand, increasing the mistuning beyond the optimal amount causes the frequencies
of the two modes to shift without any additional damping augmentation. This can be seen
in Figure 10, which shows the first eigenvalues of the system (4.30) with nonzero b and m.
The nominal eigenvalues of the system with symmetric damping and skew-symmetric feedback
components are shown as red diamonds. Notice that one eigenvalue is stable, while the other
eigenvalue is unstable. The wave-speed mistuning causes the eigenvalues to exchange stability,
effectively stabilizing the unstable eigenvalue while destabilizing the stable eigenvalue. At the
optimal mistuning amount, the eigenvalues meet at the black triangle. Further addition of
wave-speed mistuning causes the eigenvalues to split in frequency to the blue squares.
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Figure 10. The first eigenvalues of the system (4.30) with nonzero b and m and increasing amounts of
wave-speed mistuning α2. The nominal eigenvalues are shown as red diamonds. The wave-speed mistuning
exchanges damping between the two modes until the optimal mistuning is reached, at which the eigenvalues
meet at the black triangle. Further mistuning causes the eigenvalues to split in frequency to the blue squares.

Figure 11. Contours of the least stable eigenvalue for varying skew-symmetric (mean-flow) feedback and
wave-speed mistuning. The eigenvalues become less stable for increasing values of |m| and more stable for
increasing values of |α2

2|. The stability properties are independent of the signs of these parameters.

4.4. Robustness. Skew-symmetry gives a feedback model-independent conclusion on the
inception of instability, while mistuning of the mean properties yields model-independent
suppression of the instability. Figure 11 shows a model-independent stability boundary as
a function of skew-symmetry and wave-speed mistuning. It is applicable to quite general
dynamics or even physics of the feedback model. Moreover, the unmodeled dynamics can
be lumped as part of the dynamic feedback. This makes the approach suitable to practical
applications, where it has been used for the following:

1. developing a set of computational tools to identify and analyze time-series instability
data from engine experiments. In particular, we formulate the feedback model in terms
of its symmetric and skew-symmetric components and seek to identify these from the
data.
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2. designing changes on one of the engines. The optimal formula in (4.32) is particularly
useful because the optimal value can be readily identified from experimental data.
Furthermore, even smaller than optimal values of mistuning help the system stability.
Hence, mistuning provides engineers with a robust and flexible design option.

A distinct advantage of using mistuning is that it constitutes a passive design change that is
generally preferred in aerospace applications. A liner is a passive solution to augment the net
damping—it works by stabilizing both the modes. In contrast, mistuning is a passive solution
that uses the more damped system mode to stabilize the less damped one.

One of the disadvantages of using passive liners such as narrow-band tuned resonators
is that if the frequency of oscillations changes, the performance deteriorates sharply [6]. In
contrast, this approach is robust to many unmodeled physical effects, such as changes in
frequency, as long as the modal structure of the problem is approximately preserved. Quan-
titative amounts of mistuning necessary for stabilization depend only upon the mean-flow
effects. Such models are typically more reliable than their dynamic counterparts. Finally, the
precise amount of mistuning can be “switched on” via gain scheduling or adaptation perhaps,
only over a small portion of engine operating conditions where the instability is present.

5. Conclusion. In this paper, we outlined an approach for robust analysis and suppression
of instability that utilizes the structure in the problem, namely its equivariance or symmetry
properties. We obtained the results for a wave equation on a circle in feedback with a dy-
namic model, whose structure is assumed to be known. The two main ideas presented in this
paper are that (a) the structure of the feedback can be used to explain the instability, and
(b) manipulation of the structure can be used to control the instability.

The first idea, based on the methods of equivariant bifurcation theory, is to use only
the symmetry properties of the feedback model in Figure 1 to explain the instability. The
homogeneous wave equation has the so-called spatial symmetry group O(2), whereby the pde
is equivariant with respect to rotations and reflections. As a result of this, the individual
eigenvalues are double. Moreover, because of physical considerations, these eigenvalues are
lightly damped and close to the imaginary axis. The double eigenvalues correspond to the
fact that a clockwise-rotating eigenmode is accompanied by its counter-clockwise-rotating
symmetric counterpart. The instability phenomenon is related to the migration of one of
these eigenvalues into the right half complex plane because of the dynamics of the feedback
model.

To derive results on stability, it was shown that a feedback model can be decomposed as
a sum of a symmetric and a skew-symmetric feedback. Conceptually, the symmetric feedback
corresponds to dynamics that have reflection (about centerline) symmetry, while the skew-
symmetry is a result of local asymmetry in feedback. Figure 4 shows the impact of symmetric
and skew-symmetric heat release feedback on any double eigenvalues of the acoustics. The
symmetric feedback causes the two eigenvalues to move as a pair in the same directions. It
can either stabilize or destabilize, depending upon the feedback model. The skew-symmetric
feedback, on the other hand, is always detrimental regardless of the feedback model. It splits
the eigenvalues, causing one rotating mode to gain damping while causing the other rotating
mode to lose the same amount of damping.

The second idea was to modify the structural aspects of the model in order to control
the instability. This was accomplished by introducing precise spatial variations (mistuning)
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in the mean properties such as wave-speed of the wave equation. While the skew-symmetric
feedback causes the two eigenvalues to move apart, mistuning causes the eigenvalues to move
closer, as shown in Figure 10. In either case, the net amount of damping in the system
remains the same. This net damping depends upon the net symmetric feedback, due to the
presence of liner perhaps, and is not affected by spatial variation in the mean. In effect, the
mistuning utilizes the more heavily damped system modes to augment the damping of the
lightly damped modes.

For a given skew-symmetric feedback (split of eigenvalues), there is an optimal amount of
mean variation that reverses the detrimental effect of skew-symmetric feedback. This optimal
amount corresponds to the eigenvalue diagram where the nominally double eigenvalues are the
closest. Decreasing the amount of mistuning from the optimal amount causes one of the modes
to become more damped at the expense of the other mode, which becomes less damped. On
the other hand, increasing the mistuning beyond the optimal amount causes the frequencies
of the two counter-rotating modes to shift without any additional damping augmentation.

The innovation lies in using only the symmetry structure of the feedback model to carry
out both the analysis of the instability and design for its suppression. Skew-symmetry in
feedback gives a feedback model-independent conclusion on stability, while mistuning of the
mean properties yields model-independent suppression of the instability. Figure 11 shows a
model-independent stability boundary as a function of skew-symmetry and mistuning.
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1. Introduction. In recent numerical constructions of multimoon orbiters for the Jupiter
system, multiple gravity assists for a spacecraft in the exterior and interior Hill’s regions were
used to construct low energy transfers between moons [25, 35]. These gravity assists do not
lend themselves to the patched-conic approach of astrodynamics as they occur even when the
spacecraft remains outside of the perturbing moon’s sphere of influence or Hill sphere.

In this paper, we investigate such gravity assists by the explicit construction of an energy
kick function approximating the effect of the perturbing moon on a spacecraft’s jovicentric
orbit. We use Picard’s method of successive approximations to generate a symplectic twist
map for the planar restricted three-body problem which approximates a Poincaré map at the
surface of section corresponding to the periapsis condition. Other authors [23, 6, 16, 36] have
considered similar maps to study the long-time evolution of nearly parabolic comets.

The family of maps we develop are applicable to objects on near-Keplerian elliptical orbits
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whose periapse or apoapse (closest and furthest approach to the central body, respectively)
grazes the Hill sphere of the perturbing body. The engineering application envisioned is the
design of low energy trajectories [7, 2], specifically between moons in the satellite system of
one of the giant planets [15, 12]. Multiple gravity assists in resonance with the perturber
are a key physical mechanism which could be exploited in future scientific missions [25, 26].
For example, a trajectory sent from Earth to the Jovian system, just grazing the orbit of
the outermost icy moon Callisto, can migrate using little or no fuel from orbits with large
apoapses to smaller ones.

The advantage of considering an analytical two-dimensional map as opposed to full numer-
ical integration of the restricted three-body equations of motion is that we can apply all the
theoretical and computational machinery applicable to phase space transport in symplectic
twist maps [24, 19, 9]. We also make connections with earlier work on the restricted three-
body problem, particularly capture via tube dynamics [14]. The result is a fuller picture of
the global dynamics in the restricted three-body problem.

The paper is organized as follows. In section 2, we write the Hamiltonian for the restricted
three-body problem in a form appropriate for application of Picard’s method and introduce
the energy regime we are considering. In section 3, we apply Picard’s method of successive
approximations to determine the orbital changes over one orbit. In section 4, we develop a
family of area-preserving twist map approximations to the Poincaré return map which take
one periapsis passage to another for orbits exterior to the secondary mass. The dynamics of
the maps are discussed in sections 5 and 6, in particular, the relationship of multiple gravity
assist trajectories to capture around the secondary mass and escape to infinity. We discuss
our results and indicate future directions in section 7.

2. The Hamiltonian. Consider the planar circular restricted three-body problem
(PCR3BP) with a test particle P in the gravitational field of two primary masses, m1 and m2,
which are on circular orbits about their common center of mass. For illustrative purposes, we
take m1 to be Jupiter, m2 to be one of its moons, and the particle to be a natural object or
spacecraft of insignificant mass.

We use the standard system of units; the m1-m2 distance is scaled to 1, as is their mean
motion about the center of mass, and their mass ratio is μ = m2/(m1 + m2) � 1. The
PCR3BP is a perturbation of the two-body Kepler problem, where the particle is assumed to
be on a near-Keplerian orbit around the m1-m2 barycenter. We can write the Hamiltonian in
a frame centered on the barycenter,

(2.1) Hiner =
1

2
(p2

x + p2
y) −

1 − μ

r1
− μ

r2
.

We can write r1 and r2 in terms of (r, θ), where r � μ is the distance between the particle
and the barycenter, and θ, as shown in Figure 1, is the angle between the particle and m2,
measured from the barycenter. Using r =

√
r2
1 − 2μr1 cos θ + μ2 = r1 − μ cos θ + O(μ2) we

can write

(2.2)
1

r1
=

1

r
− μ

r2
cos θ + O(μ2).
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Figure 1. The relationship between distances in the restricted three-body problem.

Our Hamiltonian (2.1) can be rewritten as

Hiner =

(
1

2
(p2

x + p2
y) −

1

r

)
+ μ

(
− 1

r2
+

cos θ

r2
+

1

r

)
+ O(μ2)

= K + μR + O(μ2),(2.3)

where K = −1/(2a) is the Keplerian part and μR the perturbing part to first order in μ. The
particle’s phase space position is given by its instantaneous semimajor axis a, eccentricity
e, argument of periapsis ω, and true anomaly ν, which have geometric descriptions as given
in Figure 2. These orbital elements are referred to as “osculating” or instantaneous orbital
elements since they represent an instantaneous approximation of the motion of the object as
a Keplerian orbit, which is the kind of orbit it would have if other perturbations were not
present. In a celestial mechanics perturbation problem like the one we are considering, these
elements are very useful.

For the perturbing function, we have

R = − 1

r2
+

cos θ

r2
+

1

r

= − 1√
1 + r2 − 2 r cos θ

+
cos θ

r2
+

1

r
.(2.4)

The angle θ can be related to the traditional osculating elliptic elements of the particle as
θ = ω + ν − t, where ν = ν(t) is the true anomaly of the particle and a function of time, ω is
the particle’s angle of periapsis, r = p/(1 + e cos ν), and p = a(1 − e2).

In the frame corotating with m2 and m1 about their barycenter, the time-dependent
Hamiltonian (2.3) can be rewritten in a time-independent form,

(2.5) Hrot(a, e, ω̄, ν) = K(a) + μR(a, e, ω̄, ν) −G(a, e),

where G =
√

a(1 − e2) =
√
p is the angular momentum of the particle’s orbit and we drop

the O(μ2) terms. In the rotating frame, the coordinate conjugate to G is ω̄ = ω− t, the angle
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Figure 2. The osculating or instantaneous orbital elements for a particle P in a near-Keplerian orbit about
a massive central body m1. The perturbing body, m2, is in a circular orbit about m1 of unit frequency, and
the x axis of the rotating frame is defined as the line from m1 to m2, where the y axis of the rotating frame
completes a right-handed coordinate system.

of periapsis measured from the m1-m2 line. Hamiltonian (2.5) is time-independent [31] and
therefore constant along particle trajectories. We refer to this constant as the Jacobi constant,
CJ = −2Hrot. Although the invariance of the Hamiltonian in the rotating frame is useful, we
continue to use ω (in the inertial frame) for the computations described in the next section.

The Jacobi constant allows us to obtain a coarse partition of accessible phase space for
the particle. For some values of CJ , there are inaccessible regions in the rotating frame. The
inaccessible regions whose boundaries are zero velocity curves divide the accessible regions,
known historically as Hill’s regions, naturally into three regions. For a given μ there are five
basic cases of connectivity between the regions, corresponding to five intervals of CJ (see [14]
for details). The cases are shown in Figure 3. The divisions between the cases are given by
the Jacobi constant at the Lagrange points, i.e., Ci = CJ(Li).

We are focusing on particle motion which remains in the exterior region. According to
the cases, this would mean CJ > C2. In the Jupiter–Callisto system (μ = 5.667 × 10−5), for
example, we have C2 = 3.00618. Even though motion from the exterior to the regions around
m2 and m1 is possible for cases 3, 4, and 5 we find that for energies close to but below C2,
particle motion can remain in the exterior region for long times. Transit from the exterior
region to the region around m2 is possible for CJ < C2, and the connection between multiple
gravity assists and capture orbits will be discussed in section 6.

3. Changes in orbital elements over one orbit. To evaluate changes in the osculating
orbital elements over one orbit, we use the first iteration of Picard’s method of successive
approximations, following [27] and [33].
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Figure 3. Regions of possible motion. Zero velocity curves for five values of the Jacobi constant CJ , one
in each of the cases, are shown on the x-y plane for μ = 0.3. These curves bound the zone, in white, accessible
by the particle P for a given CJ . The part of the x-y plane which is shaded is inaccessible for a given energy
and is known as the forbidden region. The outermost accessible region, known as the exterior region, extends
to infinity. In the fifth case, the forbidden region vanishes and motion over the entire x-y plane is possible. In
the last panel, the (μ,CJ)-plane is partitioned into the five cases of Hill’s regions.

Picard iteration. First, we introduce Picard’s method. Let t ∈ R be the time and x(t)
and f(x, t) be functions with values in Rn. Consider the problem of finding solutions for the
dynamical system

dx

dt
= f(x, t),

x(t0) = x0,(3.1)

where t0 ∈ R and x0 ∈ Rn are the initial time and configuration of the system.

The Picard iterate of a function y(t) with initial condition x0 is defined as

(3.2) Px0y(t) = x0 +

∫ t

t0

f(y(τ), τ) dτ.
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Let P 2
x0
y(t) = Px0(Px0y(t)), P

3
x0
y(t) = Px0(P

2
x0
y(t)), and so on. If f and ∂f

∂t are continuous,
then it can be shown that given any continuous initial curve y(t), its mth Picard iterate
Pm
x0
y(t) converges to the solution of (3.1) as m → ∞ if t is in a suitable interval of values close

to t0 (see, for example, [4]).

Approximating changes in orbital elements. We use Picard’s method as follows. Suppose
y(t) represents the osculating orbital elements of a particle in an orbit about the large primary
body m1. The function f includes the perturbation of the secondary body m2 of mass μ. The
unperturbed orbital elements are a constant function y(t) = x0 over the time interval [t0, t1],
t1 > t0. The first iteration of Picard’s method yields

(3.3) Px0y(t) = x0 +

∫ t

t0

f(x0, τ) dτ,

where the time variation in the integrand is due to the perturbation of the m2 and the true
anomaly ν of the particle orbit. Noting that Px0y(t0) = x0, and making the approximation
y(t1) ≈ Px0y(t1), we derive the first order change in the orbital elements over one orbit as

(3.4) Δy =

∫ t1

t0

f(x0, τ) dτ,

where T = t1 − t0 is one period of the unperturbed particle orbit.

Perturbations to particles exterior to the orbit of the secondary mass. Consider a particle in
the exterior realm, with Jacobi constant close to but above that of L2; see case 2 in Figure 3.
In this situation, the particle travels on a near-Keplerian orbit around the central mass m1.
The greatest perturbation occurs at periapsis, when the particle’s orbit comes closest to the
orbit of the perturbing mass. We therefore take the limits of integration to be from apoapsis
to apoapsis, with t0 = t∗ − T/2, t1 = t∗ + T/2, where T = 2πa3/2 is the unperturbed orbital
period of the particle and t∗ is the time of periapsis passage. We take t∗ = 0 in general.
Periapsis passage occurs at ν = t = 0, and thus at the moment over which the perturbation
is evaluated, the angles ω, ω̄, and θ coincide.

For our computations, it is useful to use the canonical form of the Lagrange planetary
equations [5] which express the change in G as

(3.5)
dG

dt
= −μ

∂R

∂ω
,

where, from (2.4), we calculate

(3.6)
∂R

∂ω
=

r

r3
2

sin(ω + ν − t) − 1

r2
sin(ω + ν − t).

The change in G over one orbit can be computed to first order in μ using (3.5) as the
dynamical system for which we apply the approximation (3.4):
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ΔG = −μ

∫ T/2

−T/2

∂R

∂ω
dt

= −μ

∫ T/2

−T/2

[
r

r3
2

sin(ω + ν(t) − t) − 1

r2
sin(ω + ν(t) − t)

]
dt

= − μ√
p

∫ π

−π

[(
r

r2

)3

sin(ω + ν − t(ν)) − sin(ω + ν − t(ν))

]

dν

= − μ√
p

[(∫ π

−π

(
r

r2

)3

sin(ω + ν − t(ν)) dν

)

− sinω

(
2

∫ π

0
cos(ν − t(ν)) dν

)]

.(3.7)

If the first integral is expanded as a Fourier series in ω, the integrals can be expressed as
functions of Hansen coefficients [28]. However, there is no significant advantage in this for the
current application, and so the integrals are evaluated by quadratures in their current form.

Our goal is to compute ΔK, the change in Keplerian energy over one orbit. By the
invariance of the Jacobi constant we have ΔHrot = 0 and, therefore, from (2.5),

(3.8) ΔK = ΔG− μΔR,

where

ΔR = R(ν = π) −R(ν = −π),

=
1

√
1 + Q2 + 2Q cos(ω + τ)

− 1
√

1 + Q2 + 2Q cos(ω − τ)
+

2

Q2
sinω sin τ,(3.9)

with Q = a(1 + e) and τ = πa3/2 the apoapsis distance and half period of the unperturbed
orbit, respectively.

ΔK is a function of ω, K, and e. The invariance of the Jacobi constant yields a relation-
ship among these three variables, implying ΔK = ΔKCJ

(ω,K), where CJ is a parameter.
The expression (3.8) can be written as ΔKCJ

= μf(ω,K), where f is the energy kick func-
tion following the terminology of [16, 36, 21]. Physically, the energy kick ΔKCJ

between
consecutive apoapsis passages can be approximated as a discrete event occurring at periapsis
passage. Since ω = ω̄ at the moment the kick takes place, we will drop the bar from now on
but will consider ω to be the angle of periapsis as measured in the rotating frame, that is,
with respect to the m1-m2 line; in other words, ω is the azimuthal separation of the particle
and the perturbing body m2 at the moment of periapsis passage and therefore at the moment
of the kick.

For our application, Q � q > 1, and it is straightforward to show that ΔR is bounded:

(3.10) |ΔR| ≤ 4(Q2 − 1
2)

Q2(Q2 − 1)
≈ 4

Q2
.

For values of K and CJ used in this study, the maximum contribution of μΔR is much smaller
than that of ΔG, so we ignore it for the remainder of the paper; i.e.,

(3.11) f(ω,K) = ΔKCJ
(ω,K)/μ = ΔG/μ
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is assumed.

In Figure 4(a), we plot f versus ω for CJ = 3 and an example value of semimajor axis a.
Notice that the location and angular width of the greatest perturbations are anti-symmetric
about the m1-m2 line (ω = 0) and are independent of the size of the perturbation μ. As
shown in Figure 4(c), particle orbits whose periapsis passages occur slightly ahead of m2 in
its orbit (ω > 0) will decrease their energy, while those with periapsis passages just behind
m2 (ω < 0) will increase their energy. The location and magnitude of the maximum kicks are
plotted as a function of a in Figure 4(b).

We want to look at the cumulative effect of multiple passes near m2. Such a trajectory has
an invariant Jacobi constant, although its orbital elements a and e may change dramatically
over time. In the next section, we consider ΔKCJ

where CJ = constant. As the orbital energy
K and thus the semimajor axis a changes according to ΔKCJ

for each kick, e changes to leave
invariant (2.5), rewritten as

(3.12) CJ =
1

a
+ 2

√
a(1 − e2) + 2μ

(
1

r2
− 1

r1

)
.

For our application, the terms of O(μ) are small and we are left with the Tisserand parameter
from which we obtain the eccentricity.

4. The Keplerian map derived. Consider the PCR3BP energy surface given by the pair
(μ,CJ), where μ � 1 and CJ ≈ 3 is close to the Jacobi constant of L2. We want to compute
the sequence of pairs (ωn,Kn), n = 1, 2, 3, . . . , which result from an initial condition (ω0,K0).
These pairs are the azimuthal separation of the particle and the perturbing mass and the
particle’s Keplerian energy at the nth periapsis passage.

In our approximation, (ωn,Kn) represents the particle’s orbit just before receiving an
energy kick. Consider, for example, one of the trajectories in Figure 4(c) before the kick was
received. Immediately following the kick, the orbit becomes (ωn+1,Kn+1). The time until the

next periapsis passage is now Δt = 2πa
3/2
n+1 = 2π(−2Kn+1)

−3/2. The change in the periapsis
angle during this period is Δω = −Δt modulo 2π. Note, we are neglecting the direct effect
of the gravity interaction on the argument of periapsis, considering only its indirect effect
through the change in Keplerian energy. We therefore obtain a two-dimensional update map
(ωn+1,Kn+1) = F (ωn,Kn) of the cylinder A = S1 × R onto itself; i.e., F : A → A, where

(4.1) F

(
ωn

Kn

)
=

(
ωn+1

Kn+1

)
=

(
ωn − 2π(−2Kn+1)

−3/2 (mod 2π)
Kn + μf(ωn,Kn)

)
.

The Jacobian determinant of F is 1 + μ ∂f
∂K . If we assume f is independent of K, then we

have a symplectic (area-preserving) twist map, desirable for many known properties of such
maps [19, 8]. For the remainder of this paper, we neglect the K dependence of f . Given a
reference K̄, we let f(ω) = f(ω, K̄) and thereby make F area-preserving:

(4.2) F

(
ωn

Kn

)
=

(
ωn+1

Kn+1

)
=

(
ωn − 2π(−2Kn+1)

−3/2 (mod 2π)
Kn + μf(ωn)

)
.
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(a) (b)

(c)

Figure 4. (a) The energy kick function f versus ω for CJ = 3, for a = 15. The plot is odd in ω,
f(−ω) = −f(ω). (b) The location and magnitude of the maximum kicks as a function of a. For fmax,
the vertical axis is logarithmic. The largest positive kick is at −ωmax, i.e., fmax = f(−ωmax). The largest
negative kick is at −ωmax with value −fmax. Notice that smaller a orbits yield larger maximum kicks. (c) Two
trajectories with semimajor axis a0 begin at the same position with slightly different velocities, shown here
schematically in the rotating frame for energy case 3. The solid trajectory has its periapsis passage at ωmax,
receives the largest negative energy kick, and drops in semimajor axis, shown in the time history on the right
panel. The dashed trajectory has its periapsis passage at −ωmax and gets kicked to a larger semimajor axis.
As shown schematically in the time history, the energy kick is nearly instantaneous.
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Figure 5. Plot of a versus ω for μ = 5.667 × 10−5, CJ = 3, ā = −1/(2K̄) = 1.35. The left-hand plot
shows trajectories computed using the Keplerian map. The right-hand plot shows trajectories computed via full
integration of the circular restricted three-body problem, using a Poincaré surface of section at periapsis. The
initial conditions for both were taken initially in the chaotic sea and followed for 104 iterates, thus producing
the “Swiss cheese” appearance, where holes corresponding to stable resonant islands reside.

This map has a twist to the right:

(4.3)
∂ωn+1

∂Kn

∣∣∣∣
ωn

= 3π (−2(Kn + μf(ωn)))−5/2 > 0

for Kn < −μf(ωn). From here on, we will understand F to be defined over the appropriate
section of the cylinder A for which (4.3) holds.

The map (4.2) has been called the Keplerian map by earlier authors who derived it by
other means for the case of near-parabolic orbits [23, 16]. Pan and Sari [21] considered the
large a limit, referring to their map as the eccentric mapping. Our form is appropriate for
elliptical orbits (e < 1), even those of low to moderate eccentricity. For a given Jacobi constant
and reference energy K̄ (where, say, K̄ = K0), F is a mapping approximating the dynamics
of the PCR3BP for orbits with nearby Keplerian energies, i.e., Kn close to K̄. Specifically, F
approximates the Poincaré return map of the fully integrated equations of motion where the
surface of section is taken at periapsis, a map used recently in the study of the Hill problem
[34, 22].

5. Dynamics of the Keplerian map. Other authors have considered similar maps to
study the long-time evolution of nearly parabolic comets [6, 16, 36]. We apply our map to
the identification of transfer trajectories applicable to spacecraft in a planet-moon system.
For example, we can consider a spacecraft in the Jupiter–Callisto system (μ = 5.667 × 10−5)
with CJ = 3. Using semimajor axis as our vertical coordinate and applying the map (4.2) for
several initial values in the (ω, a)-plane result in the left-hand plot of Figure 5. Throughout
the paper we will reference a and K interchangeably; the context should make it clear which
coordinate we are using.
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For our map computations, we need only calculate f(ω) once from (3.11) for a grid of
points ω ∈ [−π, π]. Saving the results in a look-up table, we use interpolation to obtain f for
arbitrary ω. The initial values for the left-hand side of Figure 5 were chosen in a connected
chaotic sea (an irregular component in the sense of Birkhoff), avoiding the stable islands
corresponding to stable mean motion resonances of the particle’s orbit with Callisto’s. As our
phase space is the cylinder, the left and right sides of the plot (ω = ±π) are to be identified.
The right-hand plot shows trajectories computed via full integration of the PCR3BP, using a
Poincaré surface of section at periapsis.

The accuracy of the Keplerian map is demonstrated by the resemblance between the results
of the map and fully integrated trajectories of the PCR3BP. The location and widths of the
resonant islands appear to be in agreement. As discussed below, the geometrical features
directing the motion of phase space regions are approximated well. The notable difference
is the “warping” of trajectories of the map near ω = 0, not seen in the full system. The
full system Hamiltonian has a discrete time-reversal symmetry such that if (ω0, a0) maps to
(ω1, a1) then (−ω1, a1) maps to (−ω0, a0). In our approximate map this symmetry is broken,
albeit slightly.

Some remarks on the resonant structure of the map are in order. Transport in the map
can be understood in terms of lobe dynamics and resonance zones [10, 25]. Lobes are parcels
of phase space bounded by pieces of stable and unstable manifolds of hyperbolic points. The
hyperbolic points of (4.2) occur at s : r mean motion resonances, ares = (r/s)2/3, where in
inertial space the moon orbits Jupiter in r complete circuits for every s particle orbits. In
Figure 5, these appear as periodic points of period r−s > 0. These resonances are also known
as being of order r−s. For every ares, there is a band of at least 2(r−s) alternating elliptic and
hyperbolic points, with stable islands (the holes in Figure 5) surrounding the elliptic points.

Let us consider the lowest order resonance in Figure 5, the first order 1:2 resonance.
The period-one hyperbolic point (fixed point) corresponding to this resonance is located at
pres = (ωres, ares), where ωres = 0 and ares = (2)2/3 ≈ 1.587. The stable and unstable
manifolds for the hyperbolic point are shown in Figure 6. The shaded region is the resonance
zone for this resonance, bounded by pieces of upper and lower branches of the stable and
unstable manifolds, from the point pres to a primary intersection point of the manifolds. The
primary intersection points are also homoclinic orbits doubly asymptotic to pres.

The unstable manifold is produced by first finding the unstable direction in the neigh-
borhood of pres and mapping forward a small seed of points along this direction using F .
Linearizing F in the neighborhood of pres, we obtain

(5.1)

(
δωn+1

δKn+1

)
=

(
1 + μβγ −γ
−μβ 1

)(
δωn

δKn

)
,

where β = − ∂f
∂ω |ω=ωres and γ = 6π(ares)

5/2. The unstable manifold is locally tangent to the
eigenvector belonging to the maximum eigenvalue,

(5.2) λ =
1

2

(
2 + μβγ +

√
μβγ(μβγ + 4)

)
.

The stable manifold is produced similarly, substituting F−1 for F in the above procedure.
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Figure 6. Against the background of Figure 5, the stable and unstable manifolds of the central black point
are plotted, the period-one hyperbolic fixed point pres = (ωres, ares) = (0, (2)2/3) corresponding to the 1:2 mean
motion resonance. The closed curves in the gray region are restricted to the stable island and disconnected from
the connected chaotic sea.

A similar picture of intersecting manifolds exists around each horizontal resonance zone
encompassing the stable resonance holes and is similar to the resonance manifolds computed in
the full equations [17]. The manifolds of different resonances intersect one another, providing
the template for the migration of orbits through semimajor axis.

Finding the orbits which yield maximum change in semimajor axis. We consider the following
problem: for a given a0 = −1/(2K0), find the ω0 which yields the maximum change |an − a0|
after n periapses. Given our map F , a diffeomorphism of the cylinder to itself, we can consider
iterates of the circle at a0,

(5.3) Γ0 = {(ω0, a0) ∈ A | ω0 ∈ S1}.
In Figure 7(a), we plot Γ0 and its images Γn = Fn(Γ0), n ≥ 1, in terms of the change in
semimajor axis Δa = an − a0 versus ω0. The calculations are for a particle with a0 = 1.54,
CJ = 3 in the Jupiter–Callisto system, using ā = 1.35 for the map (4.2). The figure shows the
effect of multiple periapses, using successive magnifications to reveal the complex self-similar
structure as we follow the region with the greatest decrease in semimajor axis.

The function Δan(ω0) gets very complex even for small n. For increasing n, maxω0 Δan
and minω0 Δan have increased magnitude, and the domains of the largest changes get thinner.
We can estimate the size of these domains as follows. Suppose the local maxima and minima
spike features at iterate n have a minimum width α(n) in ω. We can estimate α(1) from
the kick function f and then assume that α(n) = [α(1)]n. From Figure 4, it is reasonable to
approximate α(1) as 2ωmax. For ā = 1.35, we have ωmax = 0.01π; thus α(n) = (0.0628)n.
From simulation, we find that this is a very conservative lower bound. Nevertheless, for
computations to resolve the thin features at iterate n, we use adaptive refinement of a mesh
of sample points, described elsewhere [9].

Figure 7(b) shows an example of a trajectory which quickly decreases semimajor axis over
a duration of 25 orbits. This trajectory corresponds to an initial condition chosen such that it
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(a) (b)

Figure 7. (a) The total change in semimajor axis Δa after n periapsis passages is shown versus the initial
angle, ω, where (μ,CJ , ā) = (5.667× 10−5, 3, 1.35). In the top panel, the initial circle Γ0 and its second image
Γ2 = F 2(Γ0) are shown. The second panel from the top shows a magnification and the tenth image, and so on.
The bottom panel shows a portion of ω with Γ25. We see small regions of significantly decreased semimajor
axis after 25 periapsis passages. (b) Upper panel: The phase space trajectory of the trajectory marked as b
in (a). The initial point is marked with a triangle and the final point with a square. Lower panel: The
configuration space projections in an inertial frame for this trajectory. Jupiter and Callisto are shown at their
initial positions, and Callisto’s orbit is dashed. The particle migration is from larger to smaller semimajor axes,
keeping the periapsis direction roughly constant in inertial space. Both the particle and Callisto orbit Jupiter
in a counterclockwise sense.

repeatedly experiences a periapsis kick near a minimum of the kick function; see Figure 4(a).
For a randomly chosen initial condition, the effect of such kicks tends to average to zero. But
trajectories like the one shown in Figure 7(b) can be found which exhibit large increases or
decreases over small times—potentially useful trajectories for space missions.

Multiple gravity assists outside sphere of influence. We note that over the course of these
multiple gravity assists, the particle does not come within the sphere of influence of the
perturber. For the example in Figure 7(b), the particle at closest approach to the perturber is
at a nondimensional distance of r2,min = 0.0341, whereas the sphere of influence, approximated
as the Hill’s radius, is rh = (μ/3)1/3 = 0.0266. The phenomenon involved here is not the
typical picture of a gravity assist from the patched-conic perspective, wherein a particle’s
path enters the sphere of influence of a perturber and can be approximated as a hyperbolic
Keplerian trajectory with respect to the perturber [1].



MULTIPLE GRAVITY ASSISTS IN THE THREE-BODY PROBLEM 589

(a) (b)

Figure 8. (a) The maximum and minimum semimajor axes reached as function of the number of orbits for
a trajectory starting at a0 = 1.54. For CJ = 3.00, the reachable orbits are those in the darker shaded zone, and
those for CJ = 2.99 are in the lighter shaded zone. The parameters for the map are the same as in the preceding
figures, μ = 5.667 × 10−5 and ā = 1.35. (b) The variation in the location and magnitude of the maximum
kick with Jacobi constant CJ for three values of ā as labeled (same line labeling for both panels). Values are
independent of μ.

6. Reachable orbits, capture, and escape. Related to the previous discussion is the
question of what is the reachable set of orbits as a function of n for orbits initially on the
circle Γ0? In Figure 8(a), the maximum and minimum semimajor axes reached as a function
of the number of orbits are plotted for two values of the Jacobi constant. As particles migrate
from an initial semimajor axis through resonance zones via lobe dynamics, the set of reachable
orbits grows. The maximum (minimum) semimajor axis as a function of n is monotonically
increasing (decreasing). Although our map (4.2) lacks the time-reversal symmetry, we can
consider it to be close to the time-reversal symmetry of the full PCR3BP equations. In the
full equations, the reachable orbit set could be extended to n < 0 and would be the mirror
image of the n > 0 set. This implies that if an orbit of semimajor axis an can be reached in
n orbits from a0, an orbit of semimajor axis a−n = an can reach a0 in n orbits.

For CJ = 2.99, the growth is more rapid than for CJ = 3. For lower values of Jacobi
constant (higher three-body energies, per (2.5)), we expect migration in the phase space to
be faster since the kick function yields larger maximum kicks; see Figure 8(b).

Variation of ωmax and fmax with ā is also shown in Figure 8(b). For each ā, there is a
critical value C∗

J corresponding to a periapsis distance of 1 and a singularity of the map. Below
C∗
J , the kick function changes its character as the particle can now cross into the interior of

the perturber’s orbit, a regime investigated in [16].

Exits leading to capture. We can consider what the limits to the growth are for the reachable
set, in terms of a lower and upper bound in a. We first consider the lower bounds, and we
consider the full equations of the PCR3BP. For our case of interest, case 3 with CJ < C2,
a particle beginning in the exterior realm must remain there for all time in the absence of
an outside perturbation (see Figure 3); it cannot collide with or enter the phase space realm
around m2. For CJ below this value, a bottleneck region opens up around the Lagrange
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point L2, permitting particles to enter into orbit around m2. In what follows, we summarize
the mechanism for this capture as discussed in detail in [14]. On each three-dimensional
energy surface with CJ < C2, within the L2 bottleneck region there is a planar clockwise
orbit surrounding the location of L2, shown as a dashed curve in Figure 9(a). This orbit has
two-dimensional stable and unstable manifolds, with cylindrical (S1 × R) geometry. As two-
dimensional objects in a three-dimensional energy surface, these cylinders partition the energy
surface, acting as separatrices for the flow through the bottleneck region [7, 18]. The interior
of these cylinders in the energy surface form three-dimensional tubes of trajectories, termed
Conley–McGehee tubes [17]. Only particles inside the tubes will move from the exterior realm
to the m2 realm and vice versa; those outside the tubes will not.

The capture branch of Conley–McGehee tubes associated to the L2 bottleneck is shown
in Figure 9(a) as projected onto the configuration space. A tube projection appears as a strip
of varying width. Trajectories within the tubes wind around them in phase space and their
projection appears similar to the example trajectory within the tube in Figure 9(a). There is
also an escape branch (not shown) which appears as the mirror image of the capture branch,
reflected across the horizontal axis.

In order to find capture trajectories, we consider the Poincaré surface of section taken at
periapsis. In terms of the Delaunay (action-angle) variables (L,G, l, ω), where L =

√
a and l

is the mean anomaly, the surface of section at periapsis in the exterior realm is defined as

(6.1) Σe = {(ω, a) ∈ A | l = 0, a > 1},

where the condition of periapsis l = 0 is equivalent to setting the true anomaly ν to zero.
The Hamiltonian flow induces a Poincaré return map on Σe, F : Σe → Σe defined for almost
all points on Σe. In Σe, the last cross-section of a tube before it enters the realm around
m2 appears as an exit, diffeomorphic to a disk, as shown schematically in Figure 9(b) and
numerically in Figure 9(c). When trajectories of F reach the exit, they are transported to
the realm around m2, where we can consider them emerging within the entrance on Σm2 , a
suitably defined Poincaré surface of section in the m2 realm.

The Keplerian map F defined in (4.2) is an approximation to F . When trajectories of
F reach the exit, the Keplerian map approximation breaks down and the full equations of
motion must be considered. The trajectory can no longer be approximated as near-Keplerian
around the central body; it will instead be in orbit about the perturber. We can consider the
location of an exit in (ω, a) space (in Σe) to give us an effective lower bound in the growth of
a reachable set when CJ < C2.

Escaping to infinity, upper bounds, and rotational invariant circles. For large values of μ,
there may not be an upper bound to the reachable set as n increases. Numerically, we have
found some particles which escape onto unbound parabolic and hyperbolic orbits (K ≥ 0) in
finite time (n < ∞) from orbits with relatively small a. The set of bound orbits in (ω,K)
space which will become unbound after their next periapsis passage is given by lobes bounded
above by K = 0 and below by K = −μf(ω) when f(ω) < 0, as illustrated in Figure 10(a).

If μ is smaller than a critical value, circulating trajectories lying on invariant circles may
exist, forming an upper boundary. McGehee [18] proved that for small μ in the PCR3BP,
the energy surface is broken up into regions bounded by invariant tori. These invariant tori
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(a)

(b) (c)

Figure 9. (a) A spacecraft P inside a tube of gravitational capture orbits will find itself going from an
orbit about Jupiter to an orbit about a moon, as shown schematically. The spacecraft is initially inside a tube
whose boundary is the stable invariant manifold of a periodic orbit about L2. The tube, made up of individual
trajectories, is shown as projected onto configuration space. (b) Poincaré sections in different realms—in this
case in the exterior and m2 realms, Σe and Σm2 , respectively—are linked by tubes in the phase space which
live in surfaces of constant energy (CJ = constant). Under the Poincaré map on Σe, a trajectory z0, z1, . . .
reaches an exit; the cross-section of the tube of capture orbits at the final periapsis before passage through the L2

bottleneck. Under the Hamiltonian flow, points in the exit of Σe map to the entrance of Σm2 . The trajectory
then evolves under the action of the Poincaré map on Σm2 . (c) The numerically computed location of the
exit on Σe. The axes are the argument of periapsis in the rotating frame ω and the semimajor axis a of the
instantaneous conic orbit about Jupiter, as in earlier figures. The location of the exit in configuration space is
labeled in the left panel of (a). This surface of section was generated using the full equations of motion with
μ = 5.667 × 10−5 and CJ = 3.005.
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(a) (b)

(c) (d)

Figure 10. (a) Bound trajectories enclosed by the lobes will become unbound after the next periapsis passage.
(b) The projection of invariant tori (darkly shaded) on position space for case 3. (c) A rotational invariant circle
(RIC) is an invariant loop that encircles the cylinder, i.e., a loop that cannot be contracted to a point. (d) A
stable circulating trajectory forms an upper boundary to the chaotic sea, preventing particles from migrating
to large a values. The calculation was done using the Keplerian map approximation with parameter values
(μ,CJ , ā) = (5 × 10−6, 3, 2.5).

project onto the darkly shaded annuli A1 and A2 shown for case 3 in Figure 10(b). These annuli
separate the Hill’s region into sections corresponding to the invariant regions in the energy
surface. For case 3, masses m1 and m2 are separated from each other by an invariant torus;
thus making it impossible for a particle to pass from arbitrarily close to m1 to arbitrarily
close to m2. Similarly, the two masses are separated from infinity by an invariant torus;
i.e., the exterior realm phase space is divided by a transport barrier whose projection onto
configuration space is A2. Let us call T2 that part of the exterior realm outside a neighborhood
of L2 which extends up to the bounding surface A2.
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We find such a boundary in the Keplerian map for small μ values, understood from
the point of view of absolute transport barriers in symplectic twist maps of the cylinder,
following [19]. An invariant circle is a curve C such that F (C) = C. A rotational invariant
circle (RIC) is a closed loop that encircles the cylinder (i.e., it cannot be contracted to a
point; see Figure 10(c)). Birkhoff’s theorem [3] implies that any RIC must be the graph of a
function a = A(ω). An RIC divides the cylinder into two invariant regions. In other words,
it prevents transport between the upper and lower “halves” of the cylinder. RICs are in fact
the only absolute barriers to transport for symplectic twist maps of the cylinder. Therefore,
in connected chaotic sets such as those shown in Figure 5 where amin < a < amax, we can say
that no RIC can exist entirely in that portion of the cylinder.

If we find an RIC for our map, we have found an upper bound in the phase space be-
yond which particles with a greater than but close to 1 cannot pass. As a computational
experiment motivated by calculations of [21], we consider the Keplerian map for (μ,CJ , ā) =
(5 × 10−6, 3, 2.8). We find an orbit at the top of Figure 10(d) which marches around the
cylinder, densely covering a circle. This is an RIC at the lower edge of the 1:4 resonance
island and is therefore a bounding surface. By the smoothness of the map F in its parameter
μ, we can expect a bounding surface for all μ below at least 5 × 10−6 for fixed CJ and ā.

This result is based on the structure of symplectic twist maps and not the KAM theo-
rem [19]. However, we note that in our context the KAM theorem implies that RIC’s present
in the unperturbed integrable area-preserving map, i.e, (4.2) with μ = 0,

(6.2)

(
ω′

K ′

)
=

(
ω − 2π(−2K)−3/2 (mod 2π)
K

)
,

will persist under small area-preserving perturbations of the unperturbed map. For the un-
perturbed map, all trajectories lie on RIC’s. The perturbed map for small μ is written

(6.3)

(
ω′

K ′

)
=

(
ω − 2π(−2K)−3/2 − μg(ω,K) (mod 2π)
K + μf(ω)

)
,

where g(ω,K) = 6πf(ω)(−2K)−5/2. In order for there to be invariant circles, we need the
average of f(ω) over ω to be zero,

(6.4)

∫ π

−π
f(ω) dω = 0,

which our kick function satisfies, being odd in ω. The KAM theorem for our problem takes
the form of [20], which says that for sufficiently small perturbations, most RICs will persist.

7. Discussion and conclusions. Using Picard’s method of successive approximations, we
derive a family of two-dimensional symplectic twist maps to approximate a particle’s motion
in the planar circular restricted three-body problem (PCR3BP) with Jacobi constant near 3.
The maps model a particle on a near-Keplerian orbit about a central body of unit mass,
where the spacecraft is perturbed by a smaller body of mass μ. The interaction of the particle
with the perturber is modeled as an impulsive kick at periapsis passage, encapsulated in a
kick function f . The maps are identified as an approximation of a Poincaré return map of
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the full equations of motion where the surface of section is taken at periapsis, mapping each
periapsis passage to the next in terms of ω, the azimuthal separation of the particle and small
perturbing body, and K, the Keplerian orbital energy of the particle about the central body.

The map captures well the dynamics of the full equations of motion; namely, the phase
space is densely covered by chains of stable resonant islands, in between which is a con-
nected chaotic zone. The chaotic zone, far from being structureless, contains lanes of fast
migration between orbits of different semimajor axes. The advantage of having an analytical
two-dimensional map over full numerical integration is that we can apply all the machinery
of the theory of transport in symplectic twist maps [24, 19, 9].

An interesting consequence of the approximation used to construct the map is that the
time-reversal symmetry of the original Hamiltonian system is broken, albeit slightly. The
origins of this symmetry breaking and development of a modified approximation process to
avoid it are currently under investigation.

Other authors have considered similar maps, so-called Keplerian maps, to study the long-
time evolution of nearly parabolic comets and comet-like objects [6, 36, 21]. By including the
dependence of the map on the Keplerian energy K, we have achieved one of the goals of [16],
which allows us to consider the map for orbits of moderate eccentricities and semimajor axes.

Our application is different from these papers. We apply our Keplerian map to the iden-
tification of transfer trajectories applicable to spacecraft transfers in a planet-moon system.
The use of subtle gravitational effects described by the map may be feasible for future missions
to explore the outer planet-moon systems where the timescale of orbits is measured in days
instead of years and low energy trajectories may be considered for intermoon transfers.

Physically, particles in the regime we study undergo multiple gravity assists of a different
kind than the hyperbolic flybys of, say, the Voyager missions. The gravity assists we study are
for particles on orbits with semimajor axes greater than the perturber’s and whose periapsis
passages occur close to, but beyond, the sphere of influence of the perturbing body (as con-
servatively estimated by the Hill sphere). The effect of gravity assists is largest for particles
whose passages occur slightly behind (resp., in front of) the perturbing body, resulting in a
larger (resp., smaller) semimajor axis. This makes the apoapsis distance grow (resp., shrink)
while keeping the periapsis distance relatively unchanged.

Dramatic orbital changes result from repeated gravity assists which are timed such that
changes accumulate steadily in one direction (e.g., steadily shrinking apoapsis distance). This
process can be understood in terms of phase space transport between resonance zones, i.e.,
resonant gravity assist. It is a three-body problem phenomenon not amenable to a patched-
conic approach. This work therefore fills a gap in the understanding of multiple gravity assist
mission design, which has been successful for Jacobi constants (Tisserand parameters) much
less than 3, where the subtle effects described here play little role [30].

This paper extends earlier work which considered the dynamical connection between res-
onances in the exterior realm and interior realm and their relationship to escape and capture
from a planetary or satellite neighborhood [14]. With straightforward modifications, the
method used here can be applied to orbits entirely in the interior realm, where the Poincaré
map is taken at apoapsis (where the perturbation due to the small mass is greatest) instead
of periapsis.

Future work will consider extension of the Keplerian map to include (i) out of plane
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motion, i.e., a four-dimensional symplectic map; (ii) multiple perturbers; (iii) eccentric orbits
for the perturbers; and (iv) control and uncertainty [29]. This will increase the tools available
to space mission designers and may shed light on the mechanism by which some minor bodies
and impact ejecta get handed off between planets and moons of the solar system [11, 32, 13].

Given the success of the current application to celestial mechanics, we intend to investigate
the general applicability of Picard’s method of successive iterates to approximations of a
Poincaré return map for perturbed Hamiltonian systems and other dynamical systems.
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Abstract. We are concerned with existence, uniqueness, and stability of the traveling wave of a nonlocal model
equation which incorporates spatial temporal delay due to the finite propagation velocity of action
potentials along axons. In particular, we investigate how wave shape, speed, and stability vary as
the synaptic coupling and the model parameters change. The synaptic coupling may be of pure
excitation, lateral inhibition, or lateral excitation. We introduce two concepts: the speed index
function and the stability index function. One interesting point is that we can define the stability
index function through the speed index function. By using this relationship, the stability of the
traveling wave can be analyzed easily. These concepts (the speed index function and the stability
index function) may play very important roles in rigorous mathematical analysis of traveling waves
of nonlinear singularly perturbed systems of integral differential equations. The analysis and results
on the speed, the speed index function, and the stability index function can be applied to dynamical
systems and computational neuroscience.
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1. Introduction. The main focus of this paper is on mathematical analysis of an infinite-
dimensional dynamical system, particularly the existence, uniqueness, and stability of a trav-
eling wave front and analysis of its speed.

Since the fundamental work of the pioneers (e.g., Hodgkin and Huxley [26] and Wilson
and Cowan [38]), neuronal network models have attracted many experts to investigate the
rich dynamics underlying various spatial temporal pattern formations, such as traveling wave
fronts, pulses, spirals, and target waves, as well as Hopf bifurcations and dynamic Turing Hopf
instabilities. The formation and propagation of excitation/inhibition patterns in synaptically
coupled neuronal networks play a very important role in understanding basic information
processing in the nervous system; see [20] and [21]. Experimental results and numerical
simulations of the brain demonstrate the occurrence of propagating patterns of activity in
cortex neurons and in thalamus neurons; see Pinto and Ermentrout [29], [30], and Terman,
Ermentrout, and Yew [36]. The propagating activities can appear spontaneously or can be
caused by external stimulation.

Nonlinear traveling waves are of fundamental importance in neurobiology and in applied
mathematics. Motivated by several important papers, we are concerned with a biophysically
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motivated nonlinear nonlocal firing rate model equation, which involves the convolution prod-
uct of a kernel function and the Heaviside step function. The model also involves spatial
temporal delay resulting from the finite conduction velocity of action potentials along axons.
There are three parameters in the model, and all of them are closely related to nonlocal
interactions between neurons in a network.

We are going to investigate how various neurobiological mechanisms (in particular, synap-
tic coupling and spatial temporal delay) influence traveling wave front, speed, and wave stabil-
ity. We will be concerned with three kinds of synaptic couplings: pure excitation (modeled by
a nonnegative kernel function), lateral inhibition (modeled by a Mexican hat kernel function),
and lateral excitation (modeled by an upside down Mexican hat kernel function). We are not
going to consider the influence of pure inhibition (modeled by a negative kernel function), as
there exists no traveling wave in this case. We are concerned with asymptotic behaviors of
the speed as the model parameters approach zero or infinity.

We introduce two concepts, the speed index function and stability index function (the
latter is often referred to as the Evans function in PDEs and IDEs; see Sandstede [34]), and
we plan to use them to investigate the relationship between the existence and the stability of
the front. We will establish the existence, uniqueness, and stability of a traveling wave front of
the model. We also will derive a formula on speed and then use examples to compare speeds
corresponding to different kinds of kernels. These results can be applied to computational
neuroscience and dynamical systems.

The speed index function is very interesting and important for the following reasons.
There exists a unique solution to an equation involving the speed index function and the
intrinsic parameters, and this unique solution is precisely the wave speed of the front; the
details will be given later. Through this we will be able to investigate how the speed depends
on various parameters as well as the synaptic coupling. Many estimates and asymptotic
behaviors of the speed as the parameters approach zero or infinity can be investigated very
effectively. By using properties of the speed index function, we are able to prove a simple but
elegant identity, which connects the speed of the front of the model where there is a delay
to the speed of the front where there is no delay. It is worth mentioning that Golomb and
Ermentrout [20] have obtained a similar identity before. There is a nice relationship between
the speed index function and the stability index function; see also Coombes [10]. By using this
relationship, the stability index function can be analyzed easily. As is well known, the zeros
of the stability index function coincide with the eigenvalues of an associated linear operator,
and the eigenvalues determine wave stability/instability; see Coombes and Owen [8], Jones
[27], Kapitula, Kutz, and Sandstede [28], Pinto, Jackson, and Wayne [31], Sandstede [34], and
Zhang [40], [41], [42].

1.1. The model equation and its biological background. An important ingredient of
neuronal activity is the input-output behavior of synapses which convert incoming pulses to
postsynaptic potentials. In the coarse-grained population model, at position x and time t
in the field, ensembles of excitatory and inhibitory chemical synapses respond to incoming
pulse activity, yielding an effective postsynaptic potential u(x, t). In classical models of a
homogeneous field, the dynamics of u can be described by nonlocal equations. Consider the
following nonlinear scalar integral differential equation with spatial temporal delay:
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ut + u = α

∫

Rn

K(x − y)H

(
u

(
y, t− 1

c
|x − y|

)
− θ

)
dy + I(x, t),(1)

where 0 < c ≤ ∞, α > 0, and θ > 0 are constants. The parameter α denotes the synaptic
rate constant in a neuronal network, θ represents the threshold for excitation of the neuronal
network, c represents the finite propagation speed of action potentials along axons, and 1

c |x−y|
denotes the spatial temporal delay, where the distance is defined in the usual way: |x −
y| =

√|x1 − y1|2 + |x2 − y2|2 + · · · + |xn − yn|2, with x = (x1, x2, . . . , xn)T ∈ R
n and y =

(y1, y2, . . . , yn)T ∈ R
n.

In (1), u(x, t) stands for the average membrane potential (mean voltage activity level) of
a neuron population at position x = (x1, x2, . . . , xn)T and time t, and H(u − θ) denotes the
output firing rate of a neuron. K represents synaptic coupling between neurons in the tissue
(which is considered to be a continuous medium because the spatial density of the neurons
is very large: it is approximately 104 neurons/mm3). In addition to regular nonnegative
symmetric kernels, K may be a Mexican hat kernel function or upside down Mexican hat kernel
function, on-center or off-center, symmetric or asymmetric, and with or without compact
support. Overall, the synaptic coupling in this work is very general. The symbol H denotes
the Heaviside gain function: H(u − θ) = 0 for all u < θ, H(θ) = 1

2 , and H(u − θ) = 1
for all u > θ. This gain function will make the model equation (1) analytically tractable.
The convolution product represents nonlocal interactions between synapses through axon
connections. In (1), I stands for an external applied current, such as I(x, t) = κ exp

[− λ(v ·
x + μt)2

]
or I(x, t) = 1 + β tanh(γv · x + δt), where β, γ, δ, λ, μ, and κ are real constants

and v = (v1, v2, . . . , vn)T ∈ R
n is a unit constant vector. This model was derived with the

assumption that action potential propagation along axons with finite propagation velocity c
is not damped and no additional constant delay is present. See Atay and Hutt [4], Coombes,
Lord, and Owen [7], Coombes and Owen [8], Hutt and Atay [24], Ermentrout [12], and Pinto
and Ermentrout [29], [30], for the same or very similar models. In particular, the following
integral equation is closely connected to (1):

u(x, t) =

∫ t

−∞
η(t− s)

[
α

∫

Rn

K(x − y)H

(
u

(
y, s− 1

c
|x − y|

)
− θ

)
dy + I(x, s)

]
ds.(2)

Here the synaptic input current u(x, t) is equal to the convolution product over space and time
of the kernel function and the presynaptic firing rate function H(u− θ). It is straightforward
to show that this equation is equivalent to (1) if the synaptic processing kernel η is chosen to
be η(t) = e−t and the solution satisfies the boundary condition limt→−∞

[
etu(x, t)

]
= 0 for all

real vectors x.
For related wave problems modeled by reaction diffusion equations, see Aronson and Wein-

berger [2], [3] and Jones [27].
The observed waves of excitation/inhibition in synaptically coupled neuronal networks

propagate more slowly than the action potentials along axons: the propagation speed of the
traveling wave front is typically of the order 0.06 meters per second (m/s), while the action
potential propagates along axons with a characteristic velocity of 0.5 m/s. Biologically, it
makes sense to investigate the wave with speed μ so that 0 < μ < c, as Coombes and Owen [8]
and Pinto and Ermentrout [29], [30] did in their papers. On the other hand, both biologically
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and mathematically, there exists no wave solution with speed μ ≤ 0 or μ > c under the
assumption 0 < 2θ < α.

In many previous studies, the effect of the spatial temporal delay in neuronal networks has
been neglected from mathematical analysis by letting c → ∞ (i.e., the propagation of action
potentials along axons is sufficiently fast). Note that for this special choice c = ∞, that is,
there is no time delay; the field at point y has an instantaneous influence on the field at point
x. Then (1) reduces to

ut + u = α

∫

Rn

K(x − y)H
(
u(y, t) − θ

)
dy + I(x, t).(3)

In [24] Hutt and Atay introduced a more general integral differential equation incorporating
transmission velocity distribution:

ut + u = α

∫ b

a
η(c)

[∫

R

K(x− y)φ

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dy

]
dc + I(x, t),(4)

where φ = H or φ has a sigmoidal shape, η(c) is a statistical distribution of action potential

velocities with compact support, η ≥ 0 on (a, b), and
∫ b
a η(c)dc = 1. Additionally, a and b are

positive numbers denoting, respectively, the lower and upper bounds of biologically possible
transmission velocities. They studied stability and bifurcations of equilibrium solutions and
give a brief discussion on traveling wave solutions. Using a perturbation approach, they
determined the effect of distributed velocities on bifurcations of equilibrium. In [25] Hutt
considered the more interesting model equation

ut + u = α

∫

R

K(x− y)H

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dy

+β

∫

R

J(x− y)H(u(y, t− τ) − θ)dy,

where c and τ are the propagation velocity of action potential and feedback delay, respectively.
Hutt examined briefly the dependence of the speed of the front on various parameters.

1.2. More previous results and open problems. There have been many very interesting
research results on traveling wave solutions of these model equations. Based on different
biophysical interpretations, by using concrete examples, through analytic approaches and
numerical simulations, important properties of waves, such as their propagation speeds and
their dependence on the parameters and degree of homogeneity of the network, have been
established for (1)–(3) and the following neuronal network equations:

ut + u + w = α

∫

R

K(x− y)φ

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dy,(5)

wt = εu− γw,(6)

where φ(u) = H(u) or φ(u) = 1
1+exp(−βu) for some positive constant β, and the model

ut + f(u) + w = α

∫

R

K(x− y)H(u(y, t) − θ)dy + I(x, t),(7)

wt = εg(u) − γw.(8)
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The systems (5)–(6) and (7)–(8) include the so-called effects of spike frequency adaptation.
Here is a partial collection of previous results relevant to this work. Due to space limitation,
it is impossible to give a full list. Amari [1] investigated the existence and stability of standing
waves of (3) with lateral inhibition. Atay and Hutt [4] studied stability and Hopf bifurcations
of equilibrium solutions of (1) for a general class of connectivity kernels. They give sufficient
conditions for asymptotic stability. They also studied stationary and nonstationary Turing
instability; the propagation delays play a significant role in nonstationary bifurcations of
equilibrium. Bressloff [5], Bressloff and Folias [6], and Folias and Bressloff [18], [19] studied
weakly interacting pulses in [5], front bifurcations in [6], breathing pulses in [18] as well as
stimulus-locked traveling waves and breathers in [19] of system (7)–(8). Coombes, Lord, and
Owen [7], Coombes and Owen [8], [9], and Coombes [10] investigated existence and stability of
traveling wave fronts, traveling wave pulses, and time-independent bumps of scalar equations
(2) and systems of integral equations (5)–(6), where I = 0. In particular, Coombes and
Owen [8] constructed Evans functions for the waves of (2) and (5)–(6) with Heaviside gain
function and established the stability of traveling wave solutions. They used certain examples
of positive, Mexican hat, and inverted Mexican hat kernels to model synaptic couplings.
Moreover, some of their model equations [7] incorporate two types of gain functions: either the
Heaviside step function or the sigmoid smooth function. In some of their papers the synaptic
processing kernel η(t) = γ exp(−γt) or η(t) = γ2t exp(−γt), where γ > 0 is a constant.
Kapitula, Kutz, and Sandstede [28] constructed Evans functions for traveling pulses of (7)–
(8) as well as a nonlocal Schrödinger-type equation (the master mode-locking equation, that
is, a model for the solid state cavity laser). Sandstede [34] proved the equivalence of linear
stability and nonlinear stability of traveling pulses for (7)–(8). We hope that his ideas and
results can be extended to this model. This may not be obvious, as the eigenvalue problem is
nonlinear in terms of the eigenvalue parameter. Venkov, Coombes, and Matthews [37] used
Laplace transform and Fourier–Laplace transform as well as Taylor expansions to establish
pattern formation beyond a dynamic Turing instability (Turing–Hopf bifurcation). Assuming
the existence and uniqueness of a monotonically increasing traveling wave front of (1) without
inhomogeneity, i.e. U(0) = θ, U(−∞) = 0, U(∞) = α, U ′ ≥ 0 on R, and U ′(±∞) = 0,
Pinto and Ermentrout [29], [30] found a nice relationship between the speed and the model
parameters of (1). The spike frequency adaptation model was also investigated in great detail
in the work of Pinto and Ermentrout [29], [30] and Pinto, Jackson, and Wayne [31]. Zhang
[40] established the existence and stability of a front of (3) with I = 0 and a back of (3) with
I = 2θ − α for the special case c = ∞ with the case c < ∞ left open. Hopf bifurcations,
Turing–Hopf bifurcations, and Turing dynamic instability of a standing pulse leading to a pair
of traveling pulses are also investigated, either briefly or in great detail, in the work of [4], [5],
[6], [8], [9], [10], and [37].

As we can easily see, the main body of the existence, uniqueness, and stability proofs
of traveling waves for all kernels in the three classes (pure excitation, lateral inhibition, and
lateral excitation) are still open. For example, there has been very little rigorous mathematical
analysis on (1) with asymmetric, Mexican hat, or upside down Mexican hat kernel functions.
The rigorous mathematical analysis and application of stability index functions for all three
classes of kernel functions have been open for a long time. The propagation velocities of the
action potentials along the axon depend on a number of factors, such as its myelination. The
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myelin is a fatty material, composed mainly of lipids and lipoproteins, that encloses certain
axons and nerve fibers and affects their electrical conductance. Natural diversity in the degree
of myelination of the axons leads to a diversity in their propagation velocities. Thus it is of
great biological interest to investigate how the wave speed changes as the velocity of the
action potentials varies. Overall, the dependence of the speed on the kernel function and
other parameters is a very important topic. Only very special cases (see Coombes, Lord,
and Owen [7], Coombes and Owen [8], Pinto and Ermentrout [29], [30], and Zhang [40])
have been investigated. Our goal is to provide positive solutions to these open problems.
The theoretical results of this paper (Theorem 4) partly validate the experimental results
(modulation of neuronal threshold can speed up, slow down, and even block traveling waves
in neocortical slices) conducted by Richardson, Schiff, and Gluckman [32]. We hope to find
more real applications to their work.

1.3. Main goal. We will establish the existence and stability of traveling waves of (1)
by applying fundamental ideas in differential equations and functional analysis (see [14], [15],
[16], [17], [33], [39]) and by using the method of linearization. In particular, we will introduce
two concepts: the speed index function and stability index function. We will derive formulas
for the speed in terms of the given data, namely, the kernel function, as well as the parameters
α, θ, and c. We will consider the asymptotic behaviors of the wave and the speed as the kernel
function and the parameters tend to certain critical cases, such as c → 0, c → ∞, θ

α → 0,

and θ
α → 1

2 . We will also demonstrate the valuable relation between the speed index function
and stability index function (i.e., complex analytic function). This is extremely important
for studying the stability of the traveling wave. Note that there have been many nice results
using the so-called Evans function (i.e., the stability index function) to investigate stability of
traveling waves; see [8], [9], [27], [28], [31], [34].

1.4. Mathematical assumptions. Suppose that the positive parameters α, θ, and c satisfy
the conditions 0 < 2θ < α and 0 < c ≤ ∞. To include the case c → ∞, it is understood
that c−μ

cμ = 1
μ when c = ∞. We will consider three general classes of kernel functions. Note

that the kernel function can be on-center (the maximum of K is attained only at the center
x = 0) or off-center (the maximum of K is attained only at points other than the center
x = 0), symmetric or asymmetric, with or without compact support. For each of the kernel
functions mentioned below, suppose that K is continuous at x = 0, almost everywhere smooth,
satisfying the conditions

∫

R

K(x)dx = 1, |K(x)| ≤ C exp(−ρ|x|) on R,(9)

for two positive constants C and ρ.
(A) The first class consists of nonnegative kernel functions (pure excitation), such as

K1(x) = 1
2(1 + sinx) exp(−|x|) and K2(x) =

√
1
π exp(−x2).

(B) The second class consists of Mexican hat kernel functions (lateral inhibition), that is,
K ≥ 0 on (−M,N) and K ≤ 0 on (−∞,−M)∪ (N,∞) for some positive constants M and N
such that

∫ 0

−∞
|x|K(x)dx ≥ 0.(10)
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Figure 1: Graphs of kernel functions

An on-center kernel function

An off-center kernel function

Figure 1. Comparison of synaptic couplings (between an on-center kernel and an off-center kernel).

This condition is sufficient to guarantee the existence and uniqueness of the speed.
(C) The third class consists of upside down Mexican hat kernel functions (lateral exci-

tation), that is, K ≤ 0 on (−M,N) and K ≥ 0 on (−∞,−M) ∪ (N,∞), for two positive
constants M and N , such that

α

2
+ α

∫ N

0
K(x)dx ≥ θ.(11)

For examples, K5(x) = (1+tanhx)[|x| exp(−|x|)−2|x| exp(−2|x|)] and K6(x) = |x| exp(−1
2x

2)−
2|x| exp(−2x2) belong to this class; see Figures 1 and 2. See Curtu and Ermentrout [11], Guo
and Chow [22], [23], and Pinto and Ermentrout [29], [30] for the biological interpretations of
these functions. For simplicity, we assume that

∫ 0

−∞
K(x)dx =

∫ ∞

0
K(x)dx =

1

2
.(12)

These assumptions will make the notation and presentation very simple. Nevertheless, we
should mention that the same results of this paper remain valid even if 0 <

∫ 0
−∞K(x)dx �= 1

2

and 0 <
∫ ∞
0 K(x)dx �= 1

2 . Overall, these above conditions imply that excitation dominates
inhibition in a neuronal network. Each of the integrals

∫
R
|K(x)|dx in the last two classes may

be arbitrarily large, although
∫

R
K(x)dx = 1.

1.5. Difficulty. When c = ∞ and K ≥ 0 on R, it is very easy to establish the existence,
uniqueness, and stability of the traveling wave front together with a unique positive speed;
see Pinto and Ermentrout [29], [30] and Zhang [40]. When 0 < c < ∞ and K ≥ 0 is not
guaranteed, in particular for Mexican hat kernel functions and for upside down Mexican hat
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Figure 2: Graphs of kernel functions:

Figure 2. Comparison of synaptic couplings (between a Mexican hat kernel and an upside down Mexican
hat kernel).

kernel functions, it is completely not straightforward to prove these results; even the existence
and uniqueness of the speed is very difficult. We need to impose certain conditions such as
those in (9)–(11). When we investigate the stability of the wave, we must solve an eigenvalue
problem. It turns out that the eigenvalue problem corresponding to (1) is nonlinear in terms
of the eigenvalue parameter λ. We have to overcome certain difficulties to investigate the
eigenvalues. We will extend the mathematical analysis and application of the speed index
function and the stability index function from nonnegative symmetric kernels to very general
kernel functions.

2. Existence analysis of the traveling wave front. We have to make rigorous mathe-
matical analysis before providing delicate estimates and limits on wave speeds. The analysis
on speed given in later sections can be potentially applied to dynamical systems and neuro-
science. Setting n = 1 and I(x, t) ≡ I, which is a constant independent of x and t, without
loss of generality, let I ≡ 0 in this section. Therefore, we will consider the homogeneous scalar
integral differential equation

ut + u = α

∫

R

K(x− y)H

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dy.(13)

The model (13) has two constant solutions: U0 ≡ 0 and U1 ≡ α. The constant solutions exist
only when 0 < θ < α. They play a fundamental role for our existence and uniqueness problem.
Traveling waves of (13) are functions of the form u(x, t) = U(x + μt), where z = x + μt and
μ represents a speed, satisfying certain boundary conditions at plus/minus infinity, and the
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equation

μU ′ + U = α

∫

R

K(z − y)H
(
U

(
y − μ

c
|z − y|

)
− θ

)
dy.

A fundamental property of the traveling wave is the so-called translation invariance: if U =
U(z) is a solution of (13), then Ũ = U(z + h) is also a solution of that equation, for any real
constant h ∈ R. Another important property is the exponential convergence at plus/minus
infinity: there exist two positive constants C and ρ such that

|U(z)| ≤ C exp(−ρ|z|) for all z < 0,

|U(z) − α| ≤ C exp(−ρ|z|) for all z > 0,

|U ′(z)| ≤ C exp(−ρ|z|) for all z ∈ R.

The main goal of this section is to use the sufficient conditions provided earlier to establish
the existence and uniqueness (up to translation invariance) of the traveling wave front of the
model equation (13) with general kernel functions described in classes (A), (B), and (C). We
will also establish the relationship between the speed and the model parameters (in particular,
the kernel function and the constants α, θ, and c).

The main goal of this section is to state the existence and uniqueness of the front together
with the speed. Some asymptotic behaviors of the front and the speed of the wave as the
parameters approach certain finite numbers or infinity are also presented.

2.1. Existence and uniqueness of the traveling wave front.
Theorem 1. For any kernel function K in the three classes (A), (B), and (C), and for any

positive parameters α, θ, and c including the case c = ∞, if 0 < 2θ < α, then there exists a
unique traveling wave front U = U(c, μ0, ·) together with a unique speed μ0 = μ0(c, α, θ) such
that 0 < μ0 < c. (I) The front satisfies the traveling wave equation

μ0U
′ + U = α

∫

R

K(z − y)H
(
U

(
y − μ0

c
|z − y|

)
− θ

)
dy,(14)

the phase conditions U(c, μ0, 0) = θ and Uz(c, μ0, 0) > 0, and U < θ on (−∞, 0) and U > θ
on (0,∞), and the following boundary conditions:

lim
z→−∞U(c, μ0, z) = 0, lim

z→∞U(c, μ0, z) = α, lim
z→±∞Uz(c, μ0, z) = 0.(15)

(II) Furthermore,

lim
c→0

μ0(c, α, θ) = 0, lim
c→∞μ0(c, α, θ) = ν0(α, θ),(16)

lim
c→0

U(c, μ0, z) =

[
α

2
+ α

∫ z/2

0
K(x)dx

]

H(z),(17)

lim
c→∞U(c, μ0, z) = α

∫ z

−∞
K(x)dx− α

∫ z

−∞
exp

(
x− z

ν0

)
K(x)dx,(18)
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where μ0(c, α, θ) and ν0(α, θ) satisfy

α

∫ 0

−∞
exp

[
c− μ0(c, α, θ)

cμ0(c, α, θ)
ξ

]
K(ξ)dξ =

α

2
− θ(19)

and

α

∫ 0

−∞
exp

[
1

ν0(α, θ)
ξ

]
K(ξ)dξ =

α

2
− θ,(20)

respectively. (III) Additionally, if we define the function U by U(z) = 0 on (−∞, 0), U(0) = α
2 ,

and

U(z) =
α

2
+ α

∫ z/2

0
K(x)dx− α

2

∫ z

0
exp

(
x− z

c

)
K

(x
2

)
dx

on (0,∞), then

lim
θ
α
→0

μ0(c, α, θ) = c, lim
θ
α
→ 1

2

μ0(c, α, θ) = 0,(21)

lim
θ
α
→0

U(c, μ0, z) = U(z), lim
θ
α
→ 1

2

U(c, μ0, z) = α

∫ z

−∞
K(x)dx.(22)

See Appendix 1 (section 6.1) for the complete proof of Theorem 1.
Remark 1. Under the above conditions, there also exists a unique monotone front with the

negative speed −μ0 such that

lim
z→−∞U(c,−μ0, z) = α, lim

z→∞U(c,−μ0, z) = 0, lim
z→±∞Uz(c,−μ0, z) = 0.

To keep the analysis and results clear, we will focus on the wave front with the positive speed
μ0.

2.2. The speed index function—Existence and uniqueness of the speed. We now define
the so-called speed index function ϕ on the open domain (0, c) by

ϕ(μ) = α

∫ 0

−∞
exp

(
c− μ

cμ
ξ

)
K(ξ)dξ.(23)

This function will play a pivotal role in this paper. Clearly we have

ϕ′(μ) =
α

μ2

∫ 0

−∞
|ξ| exp

(
c− μ

cμ
ξ

)
K(ξ)dξ,

lim
c→∞ϕ(μ) = α

∫ 0

−∞
exp

(
ξ

μ

)
K(ξ)dξ,

lim
c→∞ϕ′(μ) =

α

μ2

∫ 0

−∞
|ξ| exp

(
ξ

μ

)
K(ξ)dξ.



WAVES IN NONLINEAR NONLOCAL NEURONAL NETWORKS 607

Therefore the speed index function ϕ is defined on (0,∞) if c = ∞. Overall, it is a smooth
function in its domain. To see the behavior of ϕ′(μ) when μ is very small, let us make the
change of variable η = ξ

μ . Then

ϕ′(μ) = α

∫ 0

−∞
|η| exp

(
c− μ

c
η

)
K(μη)dη

→ α

∫ 0

−∞
|η| exp(η)K(0)dη = αK(0)

as μ → 0, provided that the kernel function K is at least piecewise continuous on R. Therefore,
ϕ′(μ) > 0 on [0, δ] for some constant δ > 0 if K(0) > 0, and ϕ′(μ) < 0 on [0, δ] for some
constant δ > 0 if K(0) < 0. Obviously

lim
μ→0+

ϕ′(μ) = 0

if K(0) = 0. However, we can easily establish that if K(0) = 0, K ≤ 0 on (−∞,−M), and
K ≥ 0 on (−M, 0), then

ϕ′(μ) = α

∫ 0

−∞
|η| exp

(
c− μ

c
η

)
K(μη)dη

> α exp

(
−c− μ

cμ
M

) ∫ 0

−∞
|η|K(μη)dη > 0

on (0, c); if K(0) = 0, K ≥ 0 on (−∞,−M), and K ≤ 0 on (−M, 0), then ϕ′(μ) < 0 on (0, δ).
Similarly, we can study the behavior of ϕ(μ) as μ → c. Clearly

lim
μ→c

α

μ2

∫ 0

−∞
|ξ| exp

(
c− μ

cμ
ξ

)
K(ξ)dξ =

α

c2

∫ 0

−∞
|ξ|K(ξ)dξ > 0

if K is a nonnegative or upside down Mexican hat kernel function. This limit is nonnegative
if K is a Mexican hat kernel function. First, let us consider the case

∫ 0

−∞
|ξ|K(ξ)dξ > 0.

We have ϕ′(μ) > 0 on [c − δ, c]. Second, if
∫ 0
−∞ |ξ|K(ξ)dξ = 0, then we can also show that

there exists a constant 0 < δ 
 1 such that ϕ′(μ) > 0 on (c− δ, c). Moreover, even if c = ∞,
there exists a constant 0 < δ 
 1 such that ϕ′(μ) > 0 on

(
1
δ ,∞

)
.

Lemma 1. There exists a unique positive number μ0 ∈ (0, c) such that

ϕ(μ0) =
α

2
− θ.(24)

Furthermore,

lim
c→0

μ0(c, α, θ) = 0, lim
c→∞μ0(c, α, θ) = ν0(α, θ),(25)

lim
θ
α
→0

μ0(c, α, θ) = c, lim
θ
α
→ 1

2

μ0(c, α, θ) = 0.(26)
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See section 6.2 for the complete proof of Lemma 1.
Remark 2. For all kernel functions in classes (A) and (B), the speed index function

ϕ(μ) = α

∫ 0

−∞
exp

(
c− μ

cμ
ξ

)
K(ξ)dξ

is strictly increasing on (0, c).
Remark 3. For all kernel functions in class (C), ϕ′(μ0) > 0 if ϕ(μ0) = α

2 − θ > 0. For
any given upside down Mexican hat kernel function K, there exists a unique number μ∗ =
μ∗(K) > 0 such that

ϕ(μ∗) = α

∫ 0

−∞
exp

(
c− μ∗
cμ∗

ξ

)
K(ξ)dξ = 0.

It turns out that μ∗ is the lower bound for the speed, that is, 0 < μ∗ < μ0 < c.

3. Speed index function and speed analysis. The main focus of this section is on speed
analysis. First, we present some examples. Then we study the behaviors (estimates as well
as limits) of the speed.

We have defined the speed index function ϕ earlier by

ϕ(μ) = α

∫ 0

−∞
exp

(
c− μ

cμ
ξ

)
K(ξ)dξ

on (0, c). The speed μ0 of the front is the unique solution of the equation

ϕ(μ) =
α

2
− θ.

The speed index function will be associated with the stability of the front of (13).

3.1. Examples of speed index function and speed. Nothing helps us understand how
the wave speed depends on the intrinsic parameters better than lots of good examples. We
also compare the speeds in the next four examples.

Example 1. Let K(x) = ρ
2 exp(−ρ|x|), where ρ > 0 is a constant. This is a positive, on-

center, symmetric kernel function in class (A). The speed index function and the speed of the
front satisfy

ϕ(μ) =
cαρμ

2
(
cρμ + c− μ

) → αρμ

2(1 + ρμ)
as c → ∞,

μ0 =
(α− 2θ)c

α− 2θ + 2cρθ
.

Obviously, 0 < μ0 < c and 0 < μ0 < α−2θ
2ρθ . There hold the following limits (here we are

abusing the notation a bit: μ0 = μ0(c, α, θ, ρ)):

lim
ρ→∞μ0(c, α, θ, ρ) = 0, lim

ρ→0
μ0(c, α, θ, ρ) = c,

lim
c→∞μ0(c, α, θ, ρ) =

α− 2θ

2ρθ
, lim

c→0
μ0(c, α, θ, ρ) = 0.
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Example 2. Let K(x) = 1
2ρ

2|x| exp(−ρ|x|), where ρ > 0 is a constant. This is a nonnega-
tive, off-center, symmetric kernel function also in class (A). The speed index function and the
speed of the front satisfy

ϕ(μ) =
c2αρ2μ2

2
(
cρμ + c− μ

)2 → αρ2μ2

2(1 + ρμ)2
as c → ∞,

μ0 =
c
√
α− 2θ√

α− 2θ + cρ
(√

α−√
α− 2θ

) .

This speed is larger than the speed in Example 1 if the parameters c, α, θ, and ρ are held the
same in both examples. There hold the estimates

0 < μ0 < c, 0 < μ0 <

√
α− 2θ

ρ
(√

α−√
α− 2θ

) ,

and the limits

lim
ρ→∞μ0(c, α, θ, ρ) = 0, lim

ρ→0
μ0(c, α, θ, ρ) = c,

lim
c→∞μ0(c, α, θ, ρ) =

√
α− 2θ

ρ
(√

α−√
α− 2θ

) , lim
c→0

μ0(c, α, θ, ρ) = 0.

Example 3. Let K(x) = A exp(−a|x|) − B exp(−b|x|), where A > B > 0 and a > b > 0
are constants, such that

2A

a
− 2B

b
= 1,

B

b2
≤ A

a2
.

For example, the choice A = 4, a = 4, B = 1, b = 2 is fine. This is a symmetric Mexican hat
kernel function in class (B). The speed index function and the speed of the front satisfy

ϕ(μ) =
Acαμ

acμ + c− μ
− Bcαμ

bcμ + c− μ
→ Aαμ

1 + aμ
− Bαμ

1 + bμ
as c → ∞,

α− 2θ

2α
=

[
A

acμ0 + c− μ0
− B

bcμ0 + c− μ0

]
cμ0,

1

μ0
=

1

c
+

α

α− 2θ
(A−B) − a + b

2

+
1

2

√

(a− b)2 +

[
2α

α− 2θ
(A−B)

]2

+
4α

α− 2θ
(A + B)(b− a).

This speed is smaller than the speed in Example 1 if the parameters c, α, θ are kept the same
in these examples and if A−B > ρ

2 .
Example 4. Let K(x) = A|x| exp(−a|x|)−B|x| exp(−b|x|), where B > A > 0 and b > a > 0

are constants, such that
2A

a2
− 2B

b2
= 1.
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For example, A = 1, a = 1, B = 2, b = 2 is fine. This is a symmetric upside down Mexican
hat kernel function in class (C). The speed index function and the speed of the front satisfy

ϕ(μ) =
Ac2αμ2

(
acμ + c− μ

)2 − Bc2αμ2

(bcμ + c− μ)2
→ Aαμ2

(1 + aμ)2
− Bαμ2

(1 + bμ)2
as c → ∞,

α− 2θ

2α
=

[
A

(acμ0 + c− μ0)2
− B

(bcμ0 + c− μ0)2

]
c2μ0

2.

This speed is larger than the speed in Example 2 if the parameters c, α, θ are kept the same
in these examples and if ρ > a. In these speed comparisons, we used a simple result: the
equation

n∑

k=1

ck exp(ρkx) = 0,

where ck �= 0 and ρk �= ρl for k �= l, has at most n solutions.
Overall

μ0(4) > μ0(2) > μ0(1) > μ0(3),

where μ0(i) represents the speed of the front in example i. To illustrate these estimates, we
have to introduce an important concept. Given a kernel function K, define the moment

m =

∫

R

|x|K(x)dx.

Intuitively, a nonnegative off-center kernel function has a larger moment than a nonnegative
on-center kernel function. An upside down Mexican hat kernel function has a larger moment
than a nonnegative kernel function, and a nonnegative kernel function has a larger moment
than a Mexican hat kernel function. The speed of the front is not really proportional to the
moment. But roughly speaking, the larger the moment is, the bigger the speed is.

3.2. Estimates and limits of the speed. Note that the speed index function

α

∫ 0

−∞
exp

(
c− μ0

cμ0
ξ

)
K(ξ)dξ

=
α

2
− α

c− μ0

cμ0

∫ 0

−∞
exp

(
c− μ0

cμ0
ξ

) [∫ ξ

−∞
K(x)dx

]
dξ

=
α

2
− α

c− μ0

cμ0

∫ 0

−∞
|ξ|K(ξ)dξ

+ α

(
c− μ0

cμ0

)2 ∫ 0

−∞
exp

(
c− μ0

cμ0
ξ

) [∫ ξ

−∞
(ξ − x)K(x)dx

]
dξ.

If K is nonnegative on R, then we have the optimal estimates

0 <
cμ0

c− μ0
ln

α

α− 2θ
< 2

∫ 0

−∞
|x|K(x)dx.
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Let K be a fixed kernel function such as K(x) = 1
2 exp(−|x|) or K(x) =

√
1
π exp(−x2), or

any other function in the three classes. Define a new kernel by rescaling: K(ρ, x) = ρK(ρx),
where ρ > 0 is a parameter. Then

∫

R

K(ρ, x)dx = 1,

lim
ρ→0

K(ρ, x) = 0 uniformly on R, and

lim
ρ→∞K(ρ, x) =

⎧
⎨

⎩

δ(x) if K(0) > 0,
−δ(x) if K(0) < 0,

0 if K(0) = 0,

where δ is the Dirac delta impulse function.
Theorem 2. Suppose that ρ > 0 is a constant and that K(ρ, x) = ρK(ρx). Let μ0(c, α, θ, ρ)

and U(c, μ0(c, α, θ, ρ), ·) denote the speed and the front, respectively, of (13), where K is re-
placed with K. The speeds μ0 = μ0(c, α, θ, ρ) of the fronts satisfy

μ0(c, α, θ, ρ) =
cμ0(c, α, θ, 1)

μ0(c, α, θ, 1) + ρ[c− μ0(c, α, θ, 1)]
,(27)

lim
ρ→0

μ0(c, α, θ, ρ) = c, lim
ρ→0

c− μ0(c, α, θ, ρ)

ρ
=

c[c− μ0(c, α, θ, 1)]

μ0(c, α, θ, 1)
,(28)

lim
ρ→∞μ0(c, α, θ, ρ) = 0, lim

ρ→∞
[
ρμ0(c, α, θ, ρ)

]
=

cμ0(c, α, θ, 1)

c− μ0(c, α, θ, 1)
,(29)

and

lim
ρ→0

U(c, μ0(c, α, θ, ρ), z) =
α

2
uniformly on R,

lim
ρ→∞U(c, μ0(c, α, θ, ρ), z) =

{
αH(z) for z �= 0,

θ for z = 0.
(30)

Remark 4. Let c = ∞. Then

ν0(α, θ, ρ) =
1

ρ
ν0(α, θ, 1).

Proof. The identity (27) follows from the uniqueness of the wave speed. Note that

U(c, μ0(c, α, θ, ρ), z)

= α

∫ cz/[c+s(z)μ0(c,α,θ,ρ)]

−∞
ρK(ρx)dx

−α

∫ z

−∞
exp

(
x− z

μ0(c, α, θ, ρ)

)
cρ

c + s(x)μ0(c, α, θ, ρ)
K

(
cρ

c + s(x)μ0(c, α, θ, ρ)
x

)
dx

= α

∫ cρz/[c+s(z)μ0(c,α,θ,ρ)]

−∞
K(x)dx

−α

∫ ρz

−∞
exp

(
x− ρz

ρμ0(c, α, θ, ρ)

)
c

c + s(x)μ0(c, α, θ, ρ)
K

(
c

c + s(x)μ0(c, α, θ, ρ)
x

)
dx,
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where s(x/ρ) = s(x) since ρ > 0. The details of the proof of (28)–(30) are omitted because
they are straightforward.

3.3. How the speed depends on various parameters. In general, it is not very clear how
the speed depends on the model parameters. To study this topic, we have four choices: (i)
keeping α, θ, and K fixed and letting c vary; (ii) keeping c, θ, and K fixed and letting α vary;
(iii) keeping c, α, and K fixed and letting θ vary; (iv) keeping c, α, and θ fixed and letting K
vary. The first three choices will be studied below. These results tell us how the speed changes
as the parameters vary. In particular, they allow us to see the asymptotic behaviors as the
parameters approach certain numbers or infinity. The last choice has been briefly investigated
by using the Examples 1–4. We will have to calculate the partial derivatives and investigate
the asymptotic behaviors of the speed μ0. In particular, we have to compute

∂μ0

∂c
,

∂μ0

∂α
,

∂μ0

∂θ
.

Let μ0(c, α, θ) and ν0(α, θ) denote the speeds of the traveling waves corresponding to the cases
0 < c < ∞ and c = ∞, respectively. First, we will prove an identity associating μ0(c, α, θ) to
c and ν0(α, θ).

Theorem 3. Suppose that 0 < 2θ < α. Then the speeds of the traveling wave fronts of (13)
satisfy

1

μ0(c, α, θ)
=

1

c
+

1

ν0(α, θ)
,(31)

0 < μ0(c, α, θ) < c, 0 < μ0(c, α, θ) < ν0(α, θ),(32)

lim
c→∞μ0(c, α, θ) = ν0(α, θ), lim

c→0
μ0(c, α, θ) = 0, lim

c→0

μ0(c, α, θ)

c
= 1.(33)

These results are elegant because the formula does not depend on α, θ, and K directly.
A similar identity has been found by Golomb and Ermentrout in [20] for the propagation
velocity of pulses in a one-dimensional model of integrate-and-fire neurons that are coupled
by excitatory synapses with delay.

Proof. The speeds μ0(c, α, θ) and ν0(α, θ) satisfy the equations

α

∫ 0

−∞
exp

[
c− μ0(c, α, θ)

cμ0(c, α, θ)
ξ

]
K(ξ)dξ =

α

2
− θ

and

α

∫ 0

−∞
exp

[
ξ

ν0(α, θ)

]
K(ξ)dξ =

α

2
− θ,

respectively. By uniqueness, we obtain the relationship

c− μ0(c, α, θ)

cμ0(c, α, θ)
=

1

ν0(α, θ)
,

that is,

1

μ0(c, α, θ)
=

1

c
+

1

ν0(α, θ)
.
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The estimates and limits follow immediately from this above formula. The proof is now com-
plete.

The goal of next theorem is to investigate various behaviors of the speed when the param-
eters c, α, θ change. For example, we would like to see whether μ0 is an increasing function of
α, and whether it converges to c as α → ∞. If yes, we want to see how fast the convergence
is. This requires us to study the limit [c − μ0(c, α, θ)]/α as α → ∞. The behaviors of the
speed influence the behaviors of the stability index function as the parameters change. This
may play a role when we study the stability of the wave.

Theorem 4. Let the parameters satisfy 0 < 2θ < α. Then the speed of the traveling wave
front is monotonically increasing with respect to c and with respect to α, and it is monotonically
decreasing with respect to θ. More precisely, (I) when c = ∞, we have

∂ν0

∂α
(α, θ) > 0,

∂ν0

∂θ
(α, θ) < 0,(34)

lim
α→∞ ν0(α, θ) = ∞, lim

θ→0
ν0(α, θ) = ∞,(35)

lim
α→∞

ν0(α, θ)

α
=

1

θ

∫ 0

−∞
|ξ|K(ξ)dξ,(36)

lim
θ→0

[
θν0(α, θ)

]
= α

∫ 0

−∞
|ξ|K(ξ)dξ,(37)

lim
θ
α
→0

ν0(α, θ) = ∞, lim
θ
α
→ 1

2

ν0(α, θ) = 0,(38)

lim
θ
α
→0

θν0(α, θ)

α
=

∫ 0

−∞
|ξ|K(ξ)dξ,(39)

lim
θ
α
→ 1

2

2α

α− 2θ
ν0(α, θ) =

1

|K(0)| ,(40)

where in the last limit, we assume that K(0) �= 0; and (II) when 0 < c < ∞, we have

∂μ0

∂c
(c, α, θ) > 0,

∂μ0

∂α
(c, α, θ) > 0,

∂μ0

∂θ
(c, α, θ) < 0,(41)

lim
α→∞μ0(c, α, θ) = c, lim

θ→0
μ0(c, α, θ) = c, lim

θ
α
→ 1

2

μ0(c, α, θ) = 0,(42)

lim
c→∞

{
c[ν0(α, θ) − μ0(c, α, θ)]

}
=

[
ν0(α, θ)

]2
,(43)

lim
α→∞

{
α[c− μ0(c, α, θ)]

}
=

c2θ
∫ 0
−∞ |ξ|K(ξ)dξ

,(44)

lim
θ→0

c− μ0(c, α, θ)

θ
=

c2

α

∫ 0

−∞
|ξ|K(ξ)dξ,(45)

lim
θ
α
→0

{α

θ
[c− μ0(c, α, θ)]

}
= c2

∫ 0

−∞
|ξ|K(ξ)dξ,(46)

lim
θ
α
→ 1

2

μ0(c, α, θ)
2α

α− 2θ
=

1

|K(0)| if K(0) �= 0.(47)
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Proof. First of all, differentiating the equation 1
μ0(c,α,θ) = 1

c + 1
ν0(α,θ) with respect to c, and

noting that ν0(α, θ) is independent of c, we have

− 1
[
μ0(c, α, θ)

]2

∂μ0

∂c
(c, α, θ) = − 1

c2
.

Now we find that

∂μ0

∂c
(c, α, θ) =

[
μ0(c, α, θ)

]2

c2
> 0.

Secondly, differentiating 1
μ0(c,α,θ) = 1

c + 1
ν0(α,θ) with respect to α, we obtain

− 1
[
μ0(c, α, θ)

]2

∂μ0

∂α
(c, α, θ) = − 1

[
ν0(α, θ)

]2

∂ν0

∂α
(α, θ).

That is,

∂μ0

∂α
(c, α, θ) =

[
μ0(c, α, θ)

]2

[
ν0(α, θ)

]2

∂ν0

∂α
(α, θ).(48)

Now upon differentiating

α− 2θ

2α
=

∫ 0

−∞
exp

[
ξ

ν0(α, θ)

]
K(ξ)dξ

with respect to α, we get

θ

α2
=

1
[
ν0(α, θ)

]2

∂ν0

∂α
(α, θ)

∫ 0

−∞
|ξ| exp

[
ξ

ν0(α, θ)

]
K(ξ)dξ.

Therefore

∂ν0

∂α
(α, θ) =

θ

α2

[
ν0(α, θ)

]2
/

∫ 0

−∞
|ξ| exp

[
ξ

ν0(α, θ)

]
K(ξ)dξ =

θ

α

1

ϕ′(ν0)
> 0,(49)

and by (48),

∂μ0

∂α
(c, α, θ) =

θ

α2

[
μ0(c, α, θ)

]2
/

∫ 0

−∞
|ξ| exp

[
ξ

ν0(α, θ)

]
K(ξ)dξ > 0.(50)

Similarly, we can obtain the following partial derivatives with respect to θ:

∂μ0

∂θ
(c, α, θ) =

[
μ0(c, α, θ)

]2

[
ν0(α, θ)

]2

∂ν0

∂θ
(α, θ),(51)

∂ν0

∂θ
(α, θ) = −

[
ν0(α, θ)

]2

α
/

∫ 0

−∞
|ξ| exp

[
ξ

ν0(α, θ)

]
K(ξ)dξ < 0,(52)

∂μ0

∂θ
(c, α, θ) = −

[
μ0(c, α, θ)

]2

α
/

∫ 0

−∞
|ξ| exp

[
ξ

ν0(α, θ)

]
K(ξ)dξ < 0.(53)
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Recall that
∫ 0

−∞
exp

[
c− μ0(c, α, θ)

cμ0(c, α, θ)
ξ

]
K(ξ)dξ =

α− 2θ

2α
= β,

∂μ0

∂β
(c, α, θ) =

[
μ0(c, α, θ)

]2
/

∫ 0

−∞
|ξ| exp

[
c− μ0(c, α, θ)

cμ0(c, α, θ)
ξ

]
K(ξ)dξ =

α

ϕ′(μ0)
> 0,

∂μ0

∂(θ/α)
(c, α, θ) = −[

μ0(c, α, θ)
]2
/

∫ 0

−∞
|ξ| exp

[
c− μ0(c, α, θ)

cμ0(c, α, θ)
ξ

]
K(ξ)dξ = − α

ϕ′(μ0)
< 0,

and similarly
∫ 0

−∞
exp

[
1

ν0(α, θ)
ξ

]
K(ξ)dξ =

α− 2θ

2α
,

∂ν0

∂β
(α, θ) =

[
ν0(α, θ)

]2
/

∫ 0

−∞
|ξ| exp

[
1

ν0(α, θ)
ξ

]
K(ξ)dξ

= 1/

∫ 0

−∞
|x| exp(x)K(ν0(α, θ)x)dx,

where
∫ 0

−∞
|ξ| exp

[
c− μ0(c, α, θ)

cμ0(c, α, θ)
ξ

]
K(ξ)dξ > 0 and

∫ 0

−∞
|ξ| exp

[
1

ν0(α, θ)
ξ

]
K(ξ)dξ > 0.

Now let us look at the limits (35)–(36). As a function of α, ν0(α, θ) is increasing and positive,
and hence

0 < l := lim
α→∞ ν0(α, θ) ≤ ∞.

We conclude that l = ∞. Suppose that this is not true; i.e., the limit is finite, 0 < l < ∞. In
the speed equation

∫ 0

−∞
exp

[
ξ

ν0(α, θ)

]
K(ξ)dξ =

1

2
− θ

α
,

letting α → ∞, we find that

1

2
=

∫ 0

−∞
K(ξ)dξ >

∫ 0

−∞
exp

(
ξ

l

)
K(ξ)dξ =

1

2
.

This is a contradiction. Therefore

l = lim
α→∞ ν0(α, θ) = ∞.(54)

Roughly speaking, μ0 is proportional to α. By L’Hospital’s rule, we have

L : = lim
α→∞

ν0(α, θ)

α
= lim

α→∞
∂ν0

∂α
(α, θ)

=

[
lim
α→∞

ν0(α, θ)

α

]2

lim
α→∞

{
θ/

∫ 0

−∞
|ξ| exp

[
ξ

ν0(α, θ)

]
K(ξ)dξ

}
[by (49)]

= L2

[
θ/

∫ 0

−∞
|ξ|K(ξ)dξ

]
[by the limit (54)].
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Thus

L = lim
α→∞

ν0(α, θ)

α
=

1

θ

∫ 0

−∞
|ξ|K(ξ)dξ.(55)

Following this idea, the limits (37)–(39) are straightforward to establish. Let us prove (40).
Recall that β = α−2θ

2α . Now we have

lim
β→0

2α

α− 2θ
ν0(α, θ) = lim

β→0

ν0(α, θ)

β

= lim
β→0

∂ν0(α, θ)

∂β
= lim

β→0

[
ν0(α, θ)

]2
/

∫ 0

−∞
|ξ| exp

[
ξ

ν0(α, θ)

]
K(ξ)dξ

= lim
β→0

1/

∫ 0

−∞
|x| exp(x)K(ν0(α, θ)x)dx =

1

|K(0)| .

Now let us investigate the limits involving the delay: 0 < c < ∞. Obviously

lim
c→∞ c

[
ν0(α, θ) − μ0(c, α, θ)

]
= lim

c→∞
[
μ0(c, α, θ)ν0(α, θ)

]
=

[
ν0(α, θ)

]2
.

Thus (43) is true. We also have

lim
α→∞μ0(c, α, θ) = lim

α→∞
cν0(α, θ)

c + ν0(α, θ)
= c,

lim
α→∞α

[
c− μ0(c, α, θ)

]
= lim

α→∞
cαμ0(c, α, θ)

ν0(α, θ)
= c2θ/

∫ 0

−∞
|ξ|K(ξ)dξ.

Now (44) is proved. Moreover, we have

lim
θ→0

μ0(c, α, θ) = lim
θ→0

cν0(α, θ)

c + ν0(α, θ)
= c,

lim
θ→0

c− μ0(c, α, θ)

θ
= lim

θ→0

cμ0(c, α, θ)

θν0(α, θ)

=
c2

α
/

∫ 0

−∞
|ξ|K(ξ)dξ.

Hence (45) is valid. Finally

lim
θ
α
→0

μ0(c, α, θ) = lim
θ
α
→0

cν0(α, θ)

c + ν0(α, θ)
= c,

lim
θ
α
→0

α

θ

[
c− μ0(c, α, θ)

]
= lim

θ
α
→0

cαμ0(c, α, θ)

θν0(α, θ)
= c2/

∫ 0

−∞
|ξ|K(ξ)dξ.

The proof is complete.
Throughout this section, we find that

the moment m :=

∫ 0

−∞
|x|K(x)dx

is a very important quantity, because many limits are related to it. Roughly speaking, the
moment measures how fast the front propagates.
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4. Stability index function and stability analysis. The main goal of this section is to
build a relationship between the speed index function and the stability index function and use
this relationship to establish the stability of the front.

Define the operator

Lψ = −μ0ψz − ψ,

where ψ ∈ C1(R) ∩W 1,∞(R). Later, we will explain why we define the operator in this way.
The following definition is different from those of traditional eigenvalue problems.

Definition. The complex number λ0 is called an eigenvalue of the linear differential
operator L if there exists a bounded, uniformly continuous function ψ = ψ(λ0, z) such that

μ0ψz + (λ + 1)ψ

=
α

Uz(c, μ0, 0)

c

c + s(z)μ0
K

(
c

c + s(z)μ0
z

)
exp

[
− λ|z|
c + s(z)μ0

]
ψ(λ, 0).(56)

The function ψ is called an eigenfunction of the operator L corresponding to the eigenvalue
λ0.

This eigenvalue problem is nonlinear in the eigenvalue parameter λ. The nonlinearity
arises due to the presence of the spatial temporal delay. Obviously, if there is no delay, then
the eigenvalue problem becomes linear, ν0ψz +(λ+1)ψ = α

Uz(ν0,0)
K(z)ψ(λ, 0), which has been

studied before; see Zhang [40]. Without loss of generality, suppose that ψ(λ, 0) �= 0 for each
λ. Note that the eigenvalue problem cannot be represented as Lψ = λψ so we may not be
able to apply the general theory established by Evans [14], [15], [16], [17], or Sattinger [35]. In
particular, we are not sure whether the linearized stability criterion is still valid. It is an open
problem whether the spectral stability, linear stability, and nonlinear stability of the front are
equivalent to each other, since this is a nonlinear eigenvalue problem. For linear eigenvalue
problems, Sandstede [34] recently proved the equivalence.

To study the stability of the traveling wave of the integral differential equation (13), we
are going to compute the essential spectrum and the eigenvalues of the associated linear
differential operator L relative to the Banach space C0(R) ∩ L∞(R). The essential spectrum
σessential(L) is relatively easy to calculate: σessential(L) = {λ ∈ C: Reλ = −1}. We will use the
speed index function to construct the stability index function, which is defined in the right
half plane Ω = {λ ∈ C: Reλ > −1}, to locate all of the eigenvalues of L: σnormal(L).

4.1. The eigenvalue problem. Let z = x+μ0t be the moving coordinate, and set P (z, t) =
u(x, t); then ut = Pt + μ0Pz. Now (13) becomes

Pt + μ0Pz + P = α

∫

R

K(z − y)H

(
P

(
y − μ0

c
|z − y|, t− 1

c
|z − y|

)
− θ

)
dy.(57)

Recall that s(x) is the sign function, and keep in mind that 0 < μ0 < c. As before, we will
make the change of variable η = y − μ0

c |z − y|. Then the nonlocal term becomes
∫

R

K(z − y)H

(
P

(
y − μ0

c
|z − y|, t− 1

c
|z − y|

)
− θ

)
dy

=

∫

R

c

c + s(z − η)μ0
K

(
c

c + s(z − η)μ0
(z − η)

)
H

(
P

(
η, t− 1

c + s(z − η)μ0
|z − η|

)
− θ

)
dη.
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The traveling wave front is a stationary solution of (57), and we can linearize it to get

Qt + μ0Qz + Q

=
α

Uz(c, μ0, 0)
· c

c + s(z)μ0
·K

(
c

c + s(z)μ0
z

)
·Q

(
0, t− |z|

c + s(z)μ0

)
.(58)

Suppose that Q(z, t) = exp(λt)ψ(z) is a solution of (58), which grows or decays in time
depending on whether the real part of λ is positive or negative, respectively, therefore deter-
mining the stability of the traveling wave front. Upon substituting such solutions, we obtain
the following eigenvalue problem:

μ0ψz + (λ + 1)ψ =
α

Uz(c, μ0, 0)
· c

c + s(z)μ0
·K

(
c

c + s(z)μ0
z

)
· exp

[
− λ|z|
c + s(z)μ0

]
ψ(λ, 0).

The aforementioned definition of the differential operator is motivated by this eigenvalue
problem.1 As mentioned before, this problem is very interesting and is quite different from
previous eigenvalue problems arising from wave stability analysis, because the eigenvalue
parameter λ appears in a nonlinear way.

4.2. The solutions of the eigenvalue problem. One solution of the simple differential
equation μ0ψ

′ + (λ+ 1)ψ = 0 is ψ(λ, z) = exp(−λ+1
μ0

z) for all complex numbers λ. Define the
piecewise constant function

a(z) =
α

μ0Uz(c, μ0, 0)
· c

c + s(z)μ0
.

Recall that

Uz(c, μ0, 0) =
α− 2θ

2μ0
.

Hence

a(z) =
2cα

(α− 2θ)[c + s(z)μ0]
.

The general solutions of the eigenvalue problem are given by

ψ(λ, z) = C(λ) exp

(
−λ + 1

μ0
z

)

+ ψ(λ, 0)

∫ z

−∞
a(x)K

(
c

c + s(x)μ0
x

)
exp

[
λ + 1

μ0
(x− z)

]
exp

[
− λ|x|
c + s(x)μ0

]
dx,

where C(λ) is a complex constant to be specified later. Due to the condition |K(x)| ≤
C exp(−ρ|x|) on R, it can be demonstrated straightforwardly that, for each fixed λ with

1We could not define the operator in this way:

Lψ = −μ0ψz − ψ +
α

Uz(c, μ0, 0)
· c

c + s(z)μ0
·K

(
c

c + s(z)μ0
z

)
· exp

[
− λ|z|
c + s(z)μ0

]
ψ(λ, 0).

Note that the eigenvalue parameter λ is involved in this definition.
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Reλ > −1, the solution ψ is bounded on R if and only if C(λ) = 0. Setting z = 0 in this
solution, we have

C(λ) =

{
1 −

∫ 0

−∞
a(x)K

(
c

c + s(x)μ0
x

)
exp

(
λ + 1

μ0
x

)
exp

[
− λ|x|
c + s(x)μ0

]
dx

}
ψ(λ, 0).(59)

If ψ(λ, 0) = 0, then the eigenvalue problem has only one solution—the trivial solution ψ(λ, ·) ≡
0 on R. It turns out that for nonzero solutions there must hold ψ(λ, 0) �= 0. It is easy to show
that for each fixed λ the number C(λ) = 0 if and only if

1 −
∫ 0

−∞
a(x)K

(
c

c + s(x)μ0
x

)
exp

(
λ + 1

μ0
x

)
exp

[
− λ|x|
c + s(x)μ0

]
dx = 0.

4.3. The speed index function vs the stability index function. Note that

∫ 0

−∞
a(x)K

(
c

c + s(x)μ0
x

)
exp

(
λ + 1

μ0
x

)
exp

[
− λ|x|
c + s(x)μ0

]
dx

=
2α

α− 2θ

∫ 0

−∞
exp

[
(λ + 1)

c− μ0

cμ0
ξ

]
exp

(
λ

c
ξ

)
K(ξ)dξ

=
2α

α− 2θ

∫ 0

−∞
exp

[(
λ + 1

μ0
− 1

c

)
ξ

]
K(ξ)dξ

=
1

ϕ(μ0)
ϕ

(
μ0

λ + 1

)
.

We construct the stability index function for the front, with the open domain Ω = {λ ∈ C:
Reλ > −1}, by

E(λ) = 1 − 1

ϕ(μ0)
ϕ

(
μ0

λ + 1

)
,(60)

where we recall that the speed index function ϕ(μ) is defined by

ϕ(μ) = α

∫ 0

−∞
exp

(
c− μ

cμ
ξ

)
K(ξ)dξ.

It would be nice to see the behaviors of the stability index function as the synaptic coupling
and the parameters vary. We may gain important insights on the eigenvalues of the operator
(thus stability of the front). Obviously, we have the following limits: (I)

lim
c→∞ E(λ) = 1 −

∫ 0
−∞ exp

(
λ+1
ν0

ξ
)
K(ξ)dξ

∫ 0
−∞ exp

(
ξ
ν0

)
K(ξ)dξ

= 1 − 1

ϕ(ν0)
ϕ

(
ν0

λ + 1

)
,
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where ν0 = ν0(α, θ) is the speed of the front of (13) when there is no delay. Recall that for
0 < c < ∞ we have

lim
ρ→0

μ0(c, α, θ, ρ) = c, lim
ρ→0

c− μ0(c, α, θ, ρ)

ρ
=

c[c− μ0(c, α, θ, 1)]

μ0(c, α, θ, 1)
,

lim
ρ→0

1

ρ

c− μ0(c, α, θ, ρ)

cμ0(c, α, θ, ρ)
=

c− μ0(c, α, θ, 1)

cμ0(c, α, θ, 1)
,

lim
ρ→∞μ0(c, α, θ, ρ) = 0, lim

ρ→∞ ρμ0(c, α, θ, ρ) =
cμ0(c, α, θ, 1)

c− μ0(α, θ, 1)
,

lim
ρ→∞

1

ρ

c− μ0(c, α, θ, ρ)

cμ0(c, α, θ, ρ)
=

c− μ0(c, α, θ, 1)

cμ0(α, θ, 1)
.

Note that if ρ > 0 and K(x) is replaced with ρK(ρx), then the stability index function is also
a function of ρ. We have

lim
ρ→0

E(λ, ρ) = 1 − lim
ρ→0

∫ 0
−∞ exp

[(
λ+1

μ0(c,α,θ,ρ) − 1
c

)
ξ
]
ρK(ρξ)dξ

∫ 0
−∞ exp

[(
1

μ0(c,α,θ,ρ) − 1
c

)
ξ
]
ρK(ρξ)dξ

= 1 − lim
ρ→0

∫ 0
−∞ exp

[
1
ρ

(
λ+1

μ0(c,α,θ,ρ) − 1
c

)
x
]
K(x)dx

∫ 0
−∞ exp

[
1
ρ

(
1

μ0(c,α,θ,ρ) − 1
c

)
x
]
K(x)dx

= 1 for all λ �= 0 with Reλ ≥ 0, if 0 < c < ∞,

= 1 −
∫ 0
−∞ exp

[
λ+1

ν0(α,θ,1)x
]
K(x)dx

∫ 0
−∞ exp

[
1

ν0(α,θ,1)x
]
K(x)dx

if c = ∞,

for all nonzero complex numbers with Reλ ≥ 0 except for λ = 0; similarly

lim
ρ→∞ E(λ, ρ) = 1 − lim

ρ→∞

∫ 0
−∞ exp

[(
λ+1

μ0(c,α,θ,ρ) − 1
c

)
ξ
]
ρK(ρξ)dξ

∫ 0
−∞ exp

[(
1

μ0(c,α,θ,ρ) − 1
c

)
ξ
]
ρK(ρξ)dξ

= 1 −
∫ 0
−∞ exp

[
(λ + 1) c−μ0(c,α,θ,1)

cμ0(c,α,θ,1) x
]
K(x)dx

∫ 0
−∞ exp

[
c−μ0(c,α,θ,1)
cμ0(c,α,θ,1) x

]
K(x)dx

for all λ ∈ Ω. Recall that

lim
θ
α
→0

μ0(c, α, θ) = c, lim
θ
α
→ 1

2

μ0(c, α, θ) = 0.

Therefore

lim
θ
α
→0

E(λ) =

⎧
⎨

⎩
1 − 2

∫ 0
−∞ exp

(
λ

c
ξ

)
K(ξ)dξ if c < ∞,

0 if c = ∞,



WAVES IN NONLINEAR NONLOCAL NEURONAL NETWORKS 621

and

lim
θ
α
→ 1

2

E(λ) = 1 − 1

λ + 1
=

λ

λ + 1

if K(0) �= 0.
Certainly the limits of the stability index function help us understand much better the

dynamics of the waves.
For the traveling wave front, we also have

E ′(λ) =
μ0

ϕ(μ0)

1

(λ + 1)2
ϕ′

(
μ0

λ + 1

)
.(61)

Clearly, E ′(λ) > 0 for all real numbers λ > −1, provided that the kernel function is nonnegative
(pure excitation) or Mexican hat (lateral inhibition). In particular for the traveling wave front,
we have

E ′(0) = μ0
ϕ′(μ0)

ϕ(μ0)
> 0.(62)

The stability index function constructed in this paper is different from the stability index
function in our former work; see Zhang [40], [41].

4.4. Examples of the stability index function and eigenvalues. Again concrete examples
always help us understand the stability index function better than the abstract theory.

Example 5. Let K(x) = ρ
2 exp(−ρ|x|), where ρ > 0 is a constant. Then the stability index

function for the front is

E(λ) =
λ

λ + 1 + ρμ0 − μ0/c
→ 2θλ

α + 2θλ
,

as c → ∞. The only eigenvalue of L in the right half plane is λ = 0.
Example 6. Let K(x) = 1

2ρ
2|x| exp(−ρ|x|), where ρ > 0 is a constant. The stability index

function for the front

E(λ) = 1 − (1 + ρμ0 − μ0/c)
2

(λ + 1 + ρμ0 − μ0/c)2
=

λ + 2(1 + ρμ0 − μ0/c)

(λ + 1 + ρμ0 − μ0/c)2
λ

→ λ + 2 + 2ρν0

(λ + 1 + ρν0)2
λ

as c → ∞. There is only one solution to E(λ) = 0, that is, λ = 0.
Example 7. Let K(x) = A exp(−a|x|) − B exp(−b|x|), where A > B > 0 and a > b > 0

are constants, such that

2A

a
− 2B

b
= 1,

B

b2
≤ A

a2
.
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The stability index function for the front is

E(λ) = 1 −
[

A
λ+1+aμ0−μ0/c

− B
λ+1+bμ0−μ0/c

]

[
A

1+aμ0−μ0/c
− B

1+bμ0−μ0/c

]

→ 1 −
[

A
λ+1+aν0

− B
λ+1+bν0

]

[
A

1+aν0
− B

1+bν0

]

as c → ∞. There exists only one eigenvalue to L: λ = 0.
Example 8. Let K(x) = A|x| exp(−a|x|)−B|x| exp(−b|x|), where B > A > 0 and b > a > 0

are constants, such that
2A

a2
− 2B

b2
= 1.

The stability index function for the front

E(λ) = 1 −
[

A
(λ+1+aμ0−μ0/c)2

− B
(λ+1+bμ0−μ0/c)2

]

[
A

(1+aμ0−μ0/c)2
− B

(1+bμ0−μ0/c)2

]

→ 1 −
[

A
(λ+1+aν0)2

− B
(λ+1+bν0)2

]

[
A

(1+aν0)2
− B

(1+bν0)2

]

as c → ∞. There is only one solution to E(λ) = 0: λ = 0.
By very careful examination of these stability index functions, we find that the only

eigenvalue of the operator L in the right half plane {λ ∈ C: Reλ ≥ 0} is the neutral eigenvalue
λ = 0, which is simple. Therefore each of these traveling wave fronts may be stable. See
Figures 3 and 4.

4.5. Properties of the stability index function and eigenvalues.
Theorem 5. The following results are true relative to the Banach space C0(R) ∩ L∞(R):
(I) The stability index function E(λ) is complex analytic in λ, and it is real-valued if λ is

real.
(II) E(0) = 0. The complex number λ0 is an eigenvalue of the linear differential operator

L if and only if E(λ0) = 0. (This is the one-to-one correspondence.)
(III) The algebraic multiplicity of any eigenvalue λ0 of L is equal to the order of λ0 as a

zero of the stability index function, which is equal to one.
(IV) The stability index function enjoys the limit

lim
|λ|→∞

E(λ) = 1

in the right half plane {λ ∈ C : Reλ ≥ 0}.
(V) There exists no nonzero solution to E(λ) = 0 inside {λ ∈ C : Reλ ≥ 0}.
Proof. We only sketch the proof of (II) and (V). See Zhang [40] and [41] for the proofs

of other similar results. The complex number λ0 is an eigenvalue of the linear differential
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operator L if and only if there exists a bounded and uniformly continuous function ψ defined
on the entire real line R such that

μ0ψz + (λ0 + 1)ψ =
α

Uz(c, μ0, 0)

c

c + s(z)μ0
exp

[
− λ|z|
c + s(z)μ0

]
K

(
c

c + s(z)μ0
z

)
ψ(λ0, 0).
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By the assumptions on the kernel function and also by using L’Hospital’s rule, we can claim
that the solution of the eigenvalue problem is bounded on the real line if and only if C(λ0) = 0.
By the above analysis and (59), we obtain the relationship C(λ0) = E(λ0)ψ(λ0, 0). Hence λ0 is
an eigenvalue of L if and only if E(λ0) = 0, since ψ(λ0, 0) �= 0. Due to translation invariance
of the traveling wave front, λ = 0 is an eigenvalue of L, so E(0) = 0. The proof of (II) is
finished.

Suppose that the nonzero complex number λ satisfies Reλ ≥ 0. Then for any nonnegative
kernel function with

∫
R
K(x)dx = 1, there holds the estimate

∣
∣
∣
∣

∫ 0

−∞
exp

(
λ + 1

μ0
x

)
K(x)dx

∣
∣
∣
∣ <

∫ 0

−∞
exp

(
x

μ0

)
K(x)dx.(63)

The estimate is also true for Mexican hat kernel functions and for upside down Mexican hat
kernel functions as long as

∫ 0

−∞
|x|K(x)dx ≥ 0.(64)

The proof of (V) is finished immediately.

4.6. Stability of the traveling wave front.
Assumption—The linearized stability criterion. If max{Reλ : λ ∈ σ(L), λ �=

0} ≤ −c0 and λ = 0 is algebraically simple, where σ(L) denotes the spectrum of L and c0 > 0
is a constant, then the traveling wave of the integral differential equation (13) is exponentially
stable.

Obviously this assumption is true for c = ∞; see Sandstede [34]. Most possibly, it is also
true for 0 < c < ∞ even if we cannot represent the eigenvalue problem as Lψ = λψ.

Intuitively, other than the traveling wave itself, there exists no other biological mechanism
to generate a second eigenvalue of L.

Theorem 6. Let 0 < 2θ < α and 0 < c ≤ ∞. Then the traveling wave front of (13) is
exponentially stable.

Proof. Let the synaptic coupling be of a pure excitation or lateral inhibition-type kernel.
By virtue of similar analysis to the existence and uniqueness of the speed μ0, and by using
(61), we can show that E ′(λ) > 0 for all real numbers λ > −1. Let the synaptic coupling be
of lateral excitation. Recall that there exists a lower bound μ∗ > 0 for the speed such that
ϕ(μ∗) = 0 and μ∗ < μ0 < c. Then there exists a unique positive number λ∗ = μ0

μ∗ − 1 such

that E ′(λ) > 0 for −1 < λ < λ∗, E ′(λ∗) = 0, E ′(λ) < 0 for λ > λ∗. Note that

lim
|λ|→∞

E(λ) = 1.(65)

Therefore E(λ) > 0 for all real numbers 0 < λ < ∞. By using Theorem 5, there exists no
nonzero eigenvalue in the right half plane {λ ∈ C: Reλ ≥ 0}, and the neutral eigenvalue λ = 0
is simple. In particular, there holds the important relationship

E ′(0) = μ0
ϕ′(μ0)

ϕ(μ0)
> 0.(66)

By the linearized stability criterion, we claim that the front is exponentially stable.
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5. Concluding remarks on neuronal waves. We proved the existence and stability of
the traveling wave front of (13) for all kernel functions in classes (A), (B), (C) and for all
c ∈ (0,∞]. The analysis of the model provides valuable information regarding how the speed
of the traveling wave, which is relatively straightforward to measure experimentally, depends
on various features of the underlying network. Keeping the parameters fixed, we are able to
compare the speeds of the fronts corresponding to different synaptic couplings. Our analysis
and results on the speed, the speed index function, and the stability index function have
not been obtained before. The solid rigorous mathematical analysis is needed because we can
build up important properties for the speed index function and the stability index function. It
is based on these properties that we may find interesting applications to applied mathematics
and computational neuroscience. The analysis for the existence of the front together with the
speed is quite different from one class of kernel functions to another. Our results generalize
those of Coombes and Owen, Pinto and Ermentrout; see [8], [9], [29], [30]. The main goal of
this section is to present remarks on model equations and their wave solutions closely related
to (1). For more general nonlinear models, we may not be able to find the index functions.
Nevertheless, by using similar ideas, we can give nice estimates about the speed. For example,
for the front of the integral differential equation

ut + u(u− 1)(Au− 1) = α

∫

R

K(x− y)H(u(y, t) − θ)dy,(67)

where A > 1 is a constant, we have the estimates
α

2
− θ ≤ ϕ(μ0), ϕ(μ0) ≤ α

2
− θ(θ − 1)(Aθ − 1),(68)

where ϕ(μ) is the speed index function defined in (23). The speed index function and stability
index function may play very important roles in rigorous mathematical analysis of traveling
waves of nonlinear singularly perturbed systems of integral differential equations, such as the
spike frequency adaptation model

ut + u + w = α

∫

R

K(x− y)H

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dy,(69)

wt = ε(u− γw).(70)

Remark 5. For lateral inhibition (modeled by a Mexican hat kernel function), the condition∫ 0
−∞ |x|K(x)dx ≥ 0 is sufficient to guarantee the existence and uniqueness of the speed μ0

of the front, but we are not sure if it is also necessary. Suppose that
∫

R
K(x)dx = 1 and

∫ 0
−∞ |x|K(x)dx < 0 for a Mexican hat kernel function. Then interesting phenomena (e.g.,

bifurcations of steady states into stable and unstable waves) may occur. See Coombes and
Owen [8] and Coombes [10].

5.1. The case θ < α < 2θ. Mathematically, we can also study the existence and
stability of the traveling wave for the case θ < α < 2θ. The analysis would be very similar to
that of the case 0 < 2θ < α. However, we would like to offer an alternate approach.

Theorem 7. Suppose that the parameters satisfy 0 < θ < α. Let u = u(x, t) be a solution
of the integral equation

u(x, t) = α

∫ t

−∞
η(t− s)

[∫

R

K(x− y)H

(
u

(
y, s− 1

c
|x− y|

)
− θ

)
dy + I(x, s)

]
ds(71)
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or

ut + u = α

∫

R

K(x− y)H

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dy + I(x, t),(72)

respectively, where

∫ ∞

0
η(t)dt = 1 and

∫

R

K(x)dx = 1.(73)

See [7], [8], and [29], [30]. Define ũ = ũ(x, t) by

ũ(x, t) − θ =
θ

α− θ
[θ − u(x, t)].(74)

Then ũ is a solution of

(75)

ũ(x, t) =
αθ

α− θ

∫ t

−∞
η(t− s)

[∫

R

K(x− y)H

(
ũ

(
y, s− 1

c
|x− y|

)
− θ

)
dy − θ

α− θ
I(x, s)

]
ds

or

ũt + ũ =
αθ

α− θ

∫

R

K(x− y)H

(
ũ

(
y, t− 1

c
|x− y|

)
− θ

)
dy − θ

α− θ
I(x, t),(76)

respectively.
Proof. For any real number x, there holds H(x) + H(−x) = 1. Thus

H

(
u

(
y, s− 1

c
|x− y|

)
− θ

)
+ H

(
ũ

(
y, s− 1

c
|x− y|

)
− θ

)
= 1.

Note that
∫ ∞

0
η(t)dt = 1 and

∫

R

K(x)dx = 1.

The rest of the proof is omitted because it is straightforward.
Remark 6. The two solutions u and ũ are complementary in the sense that excited intervals

of u correspond to nonexcited intervals of ũ and vice versa. Furthermore, let α̃ = αθ
α−θ . If

0 < 2θ < α and U is the wave front with speed μ0 found in Theorem 1, then θ < α̃ < 2θ
and Ũ is the wave front of (13) with the same speed μ0. If 2θ = α, then the complementary
solution ũ coincides with the solution u, because 2θ = α = α̃.

5.2. A similar model with a parameter. Consider the scalar integral differential equation
with a parameter W :

ut + u + W = α

∫

R

K(x− y)H

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dy.(77)
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Theorem 8. Suppose that W = α − 2θ > 0. Then there exists a unique stable traveling
wave solution to (77) with the same speed μ0 as the front of (13).

Proof. Suppose that 0 < 2θ < α. If there exists a traveling wave with the speed μ0, then
we must have

μ0U
′ + U + W = α

∫

R

K(z − y)H
(
U

(
y − μ0

c
|z − y|

)
− θ

)
dy,

where z = x + μ0t. We are seeking a monotone (decreasing) traveling wave solution so that
U(c, μ0, 0) = θ, Uz(c, μ0, 0) < 0, U > θ on (−∞, 0), and U < θ on (0,∞). Additionally,

lim
z→−∞U(c, μ0, z) = α, lim

z→∞U(c, μ0, z) = 0, lim
z→±∞Uz(c, μ0, z) = 0.

As before, by making the change of variables η = y − μ0

c |z − y|, the traveling wave equation
becomes

μ0U
′ + U + W = α

∫ ∞

cz/(c+s(z)μ0)
K(x)dx.

Now using the integrating factor idea to solve this above equation, we find the solution

U(c, μ0, z) = α

∫ ∞

cz/(c+s(z)μ0)
K(x)dx

+α

∫ z

−∞
exp

(
x− z

μ0

)
c

c + s(x)μ0
K

(
cx

c + s(x)μ0

)
dx−W.

Setting z = 0 yields

U(c, μ0, 0) = α

∫ ∞

0
K(x)dx + α

∫ 0

−∞
exp

(
x

μ0

)
c

c + s(x)μ0
K

(
cx

c + s(x)μ0

)
dx−W

=
α

2
+ α

∫ 0

−∞
exp

(
c− μ0

cμ0
ξ

)
K(ξ)dξ −W.(78)

By comparing this with α
∫ 0
−∞ exp( c−μ0

cμ0
ξ)K(ξ)dξ = α

2 −θ, we find that only when W = α−2θ
does there hold U(c, μ0, 0) = θ. The stability analysis is very similar to that of the front and
is omitted. This result on the traveling wave back regarding the speed and crossing is the
same as that in Zhang [40].

5.3. Singularly perturbed system of integral differential equations. Consider the singu-
larly perturbed system of integral differential equations

ut + f(u) + w = α

∫

R

K(x− y)H

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dy,(79)

wt = ε(g(u) − γw),(80)

where f and g are smooth functions of u and w. Typical examples are (f(u), g(u)) = (u, u)
and (f(u), g(u)) = (u(u− 1)(Au− 1), tanhu). For the linear choice, a perturbation argument
is not absolutely needed to find traveling pulses.
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Figure 5. A singular homoclinic orbit of system (69)–(70).

By the construction of a singular homoclinic orbit S1 (see Figure 5), under the assumption
that 0 < 2θ < α, 0 < αγ < (1 + γ)θ, and 0 < ε 
 1, we can prove the existence, uniqueness,
and stability of a fast homoclinic orbit, whose speed is very close to that of the front. Due to
the existence and uniqueness of a steady-state solution, we can also prove the existence and
uniqueness of a slow homoclinic orbit, which is unstable.

By the construction of a singular heteroclinic orbit S2 (see Figure 6), under the assumption
that 0 < 2θ < α, 0 < (1 + γ)θ < αγ, and 0 < ε 
 1, we can demonstrate the existence,
uniqueness, and stability of a unique heteroclinic orbit, whose speed is also very close to that
of the front.

The speed index function and the stability index function play a very important role in
the mathematical analysis of these results. The details of the proof of these results are too
long and are omitted. See Coombes and Owen [8] and Coombes [10].

5.4. Sigmoid firing rate functions. Additional to the Heaviside step gain function, a
typically reasonable gain function corresponding to experimental data is given by

H(β, θ, u) =
exp

[
β(u− θ)

]

1 + exp
[
β(u− θ)

] ,(81)

where θ represents a threshold and β stands for a gain or steepness parameter. However, H is
not derived from a biophysical model. The firing rate function H is monotonically increasing
and nonlinear, saturating to a constant for sufficiently large u. Note that H is a solution of
the nonlinear differential equation H′ = βH(1−H) subject to the initial condition H(θ) = 1

2 .
The existence and uniqueness of a traveling wave front together with a positive speed of (2),
where H is replaced with H and I = 0, have been proved by using the homotopy ideas offered
by Ermentrout and McLeod [13]. The speed index function and the stability index function
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Figure 6. A singular heteroclinic orbit of system (69)–(70).

have not been found. However, by using the speed index function defined in (23), we may
provide nice estimates on the speed. Note also that

lim
β→∞

H(β, u) = H(u− θ),(82)

where H is the well-known Heaviside step function, whose derivative is the famous Dirac delta
impulse function. This may be a useful hint on how to construct the speed index function
with large β > 0.

5.5. Stimulus-locked traveling wave front. Consider the inhomogeneous scalar equation

ut + u = α

∫

R

K(x− y)H

(
u

(
x, t− 1

c
|x− y|

)
− θ

)
dy + I(x, t),(83)

where I(x, t) = I(x+ ζt) is a given function of the new variable z = x+ ζt, for some constant
ζ. By using the ideas presented in this work, it is not too difficult to show that there exists
a solution of the form u(x, t) = U(x + ζt), provided that K ≥ 0 and I ′ ≥ 0 on R, and
θ < α

2 + I(Z), for some real number Z. This result might also be correct under weaker
conditions on K and I. We are not going to discuss the details. This part is motivated by
the interesting work of Folias and Bressloff [19, section 2].

5.6. Steady state solutions. Consider the following scalar inhomogeneous integral differ-
ential equation:

ut + u = α

∫

R

K(x− y)H

(
u

(
y, t− 1

c
|x− y|

)
− θ

)
dy + I(x).(84)
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Steady-state solutions are independent of time. Thus, they should satisfy

U(x) = α

∫

R

K(x− y)H(U(y) − θ)dy + I(x).

If α = 2θ and I = 0, then there are two trivial steady states,

U+(z) = α

∫ z

−∞
K(x)dx and U−(z) = α

∫ ∞

z
K(x)dx,

such that

U+(0) = θ, lim
z→−∞U+(z) = 0, lim

z→∞U+(z) = α, lim
z→±∞U+

′(z) = 0,

for the first steady state, and

U−(0) = θ, lim
z→−∞U−(z) = α, lim

z→∞U−(z) = 0, lim
z→±∞U−′(z) = 0,

for the second steady state.
Now let us consider the case I �= 0. It is straightforward to show that (I) the solution

U(x) = α

∫ x−Z

−∞
K(ξ)dξ + I(x)

if (i) α
2 + I(Z) = θ for some real number Z, (ii) the kernel function K ≥ 0, and (iii) the

derivative of the inhomogeneity I ′ ≥ 0 on R; and (II) the solution

U(x) = α

∫ ∞

x−Z
K(ξ)dξ + I(x)

if (i) α
2 + I(Z) = θ for some real Z, (ii) K ≥ 0, and (iii) I ′ ≤ 0 on R, are stable, monotone

steady states of (84). For solution (I), which is increasing on the entire real line, the nonexcited
interval is (−∞,Z) and the excited interval is (Z,∞); for solution (II), which is decreasing
on the entire real line, the excited interval is (−∞,Z) and the nonexcited interval is (Z,∞).
Additionally, we can prove that (III) the solution

U(x) = α

∫ x−Γ

x−Λ
K(ξ)dξ + I(x)

if (i) K ≥ 0 on R and K ′ ≤ 0 on R
+, (ii)

α

∫ Λ−Γ

0
K(x)dx + I(Γ) = α

∫ Λ−Γ

0
K(x)dx + I(Λ) = θ,

and (iii) I ′(x) ≥ 0 on (−∞, 1
2(Γ + Λ)) and I ′(x) ≤ 0 on (1

2(Γ + Λ),∞), for two real constants
Γ and Λ, with −∞ < Γ < Λ < ∞; and (IV) the solution

U(x) = α− α

∫ x−Γ

x−Λ
K(ξ)dξ + I(x)
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if (i) K ≥ 0 on R and K ′ ≤ 0 on R
+, (ii)

α− α

∫ Λ−Γ

0
K(x)dx + I(Γ) = α− α

∫ Λ−Γ

0
K(x)dx + I(Λ) = θ,

and (iii) I ′(x) ≤ 0 on (−∞, 1
2(Γ + Λ)) and I ′(x) ≥ 0 on (1

2(Γ + Λ),∞), for two constants
Γ and Λ, with −∞ < Γ < Λ < ∞, are unstable steady states with a global maximum or a
global minimum of (84). For solution (III), the nonexcited interval is (−∞,Γ) ∪ (Λ,∞) and
the excited interval is (Γ,Λ); for solution (IV), the excited interval is (−∞,Γ)∪(Λ,∞) and the
nonexcited interval is (Γ,Λ). The solutions in (I) and (II) are complementary to each other,
and the solutions in (III) and (IV) are also complementary to each other. These steady states
are bounded on R if and only if the inhomogeneous functions I are bounded on R. Examples
for each of the above four cases are

(I) I(x) = λ
(
1 + α sinhx + β tanhx + γex

)
,

(II) I(x) = μ− λ
(
1 + α sinhx + β tanhx + γex

)
,

(III) I(x) = λ tanh
(
α + β(x− Γ)(Λ − x)

)
,

(IV) I(x) = λ tanh
(
α + β(x− Γ)(x− Λ)

)
,

respectively, where α ≥ 0, β ≥ 0, γ ≥ 0, λ ≥ 0, μ ≥ 0, and −∞ < Γ < Λ < ∞ are real
constants.

In this paper we treated the synaptic rate α, the threshold θ, and the speed of action
potentials to be constants. In the real neuronal network, however, they may be functions of
position x, thus leading to inhomogeneous equations. It turns out that the inhomogeneity may
block, reflect, or transmit waves, depending on the intrinsic properties of the neuronal medium.
It has been confirmed experimentally in [32] that modulation of the intrinsic properties of the
network may speed up, slow down, block, or reflect traveling waves. This will be our next
research goal.

6. Appendices. The main goal of this section is to prove the existence and uniqueness of
the front and the speed to make this paper complete and self-contained. The second goal is
to provide a summary of influences on wave, speed, and stability, based on the proofs.

6.1. Appendix 1—The proof of Theorem 1. In this subsection we will first solve an
ODE subject to certain boundary conditions at negative infinity to obtain the representation
of the front. Then, we present some preliminary analysis on the wave solution and the speed.

Proof. Due to the presence of the Heaviside step function in the IDE (13), it is very
possible to derive the exact solution in terms of the kernel function as well as the parameters
α, θ, and c. To do this, let us simplify the nonlocal term. Because of the translation invariance
of the traveling wave, we may assume without loss of generality that U(0) = θ and U ′(0) > 0,
and U < θ on (−∞, 0), and U > θ on (0,∞).

Let us first solve the existence of the front for the special case μ = c. The traveling wave
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equation is

cU ′ + U = α

∫

R

K(z − y)H
(
U(y − |z − y|) − θ

)
dy

=
α

2

∫ z

−∞
K

(
z − y

2

)
H(U(y) − θ)dy +

α

2
H(U(z) − θ).

In other words,

cU ′ + U = 0 on (−∞, 0),

cU ′ + U = α

∫ z/2

0
K(x)dx +

α

2
on (0,∞).

Solving this equation, we find the following solution:

U(z) = 0 for z < 0,

U(z) =
α

2
+ α

∫ z/2

0
K(x)dx− α

2

∫ z

0
exp

(
x− z

c

)
K

(x
2

)
dx for z > 0,

U ′(z) =
α

2c

∫ z

0
exp

(
x− z

c

)
K

(x
2

)
dx for z > 0,

lim
z→∞U(z) = α.

This solution is discontinuous at z = 0 but is continuous everywhere else.
Now let us consider the case 0 < μ < c. Let s(x) = H(x) − H(−x) be the usual sign

function, that is, s(x) = −1 for all x < 0, s(0) = 0, and s(x) = 1 for all x > 0. To simplify
the nonlocal integral, we make the following change of variables:

η = y − μ

c
|z − y|.

Then for each fixed number z, η is a strictly increasing function of y, and s(z− y) = s(z− η).
Clearly, z > η if z > y, and z < η if z < y. Moreover, we have the important relationships

z − y =
c

c + s(z − η)μ
(z − η)

and

dy =
c

c + s(z − η)μ
dη − cμ(z − η)

[c + s(z − η)μ]2
s′(z − η)dη.

Now the traveling wave equation reduces to the simple ODE

μU ′ + U = α

∫

R

c

c + s(z − η)μ
K

(
c

c + s(z − η)μ
(z − η)

)
H(U(η) − θ)dη

= α

∫ ∞

0

c

c + s(z − η)μ
K

(
c

c + s(z − η)μ
(z − η)

)
dη

= α

∫ cz/(c+s(z)μ)

−∞
K(x)dx,
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where

x =
c

c + s(z − η)μ
(z − η), dx = − c

c + s(z − η)μ
dη +

cμ(z − η)

[c + s(z − η)μ]2
s′(z − η)dη.

If we apply fundamental ideas in differential equations, then we obtain the wave solution
representation

U(c, μ, z) = α

∫ cz/(c+s(z)μ)

−∞
K(x)dx

− α

∫ z

−∞
exp

(
x− z

μ

) {
c

c + s(x)μ
K

(
c

c + s(x)μ
x

)}
dx.(85)

Moreover, we have

Uz(c, μ, z) =
α

μ

∫ z

−∞
exp

(
x− z

μ

) {
c

c + s(x)μ
K

(
c

c + s(x)μ
x

)}
dx.(86)

Clearly there hold the following limits:

lim
z→−∞U(c, μ, z) = 0, lim

z→∞U(c, μ, z) = α, lim
z→±∞Uz(c, μ, z) = 0.(87)

Below we will investigate whether the solution really crosses the threshold as expected. To do
that, we have to study on which interval the solution is increasing or decreasing, and where
it attains a maximum or a minimum.

We have prescribed the phase condition by U(c, μ, 0) = θ at the beginning. That is,

α

2
− α

∫ 0

−∞
exp

(
x

μ

)
c

c− μ
K

(
c

c− μ
x

)
dx = θ,(88)

for some number μ satisfying 0 < μ < c. If we can find the unique speed μ0 and demonstrate
that the solution U(c, μ0, z) really crosses the threshold θ at z = 0, and it really lies below
and above the threshold on (−∞, 0) and (0,∞), respectively, then we can finish the proof
immediately. The existence and uniqueness of the positive speed μ0 will be proved in Lemma
1. The crossing can be guaranteed by the assumptions on K.

First, if U(c, μ0, 0) = θ, then Uz(c, μ0, 0) = 1
μ0

(α2 − θ) > 0. Clearly, if K ≥ 0, then Uz ≥ 0
(i.e., if the synaptic coupling is of pure excitation, then the front U is increasing). In particular,
if K is positive almost everywhere, then U is strictly increasing. Therefore, kernel functions
corresponding to pure excitation give rise to monotone solutions, thus crossing the threshold
as desired. Let us look at solutions of (13) with Mexican hat or upside down Mexican hat
kernel functions. For all z ≤ 0 we have

Uz(c, μ, z) =
α

μ

∫ z

−∞
exp

(
x− z

μ

)
c

c− μ
K

(
c

c− μ
x

)
dx

=
α

μ
exp

(
− z

μ

) ∫ cz/(c−μ)

−∞
exp

(
c− μ

cμ
ξ

)
K(ξ)dξ,



634 LINGHAI ZHANG

and for all z > 0 we have

Uz(c, μ, z)

=
α

μ

∫ 0

−∞
exp

(
x− z

μ

)
c

c− μ
K

(
c

c− μ
x

)
dx +

α

μ

∫ z

0
exp

(
x− z

μ

)
c

c + μ
K

(
c

c + μ
x

)
dx

=
α

μ
exp

(
− z

μ

) ∫ 0

−∞
exp

(
c− μ

cμ
ξ

)
K(ξ)dξ +

α

μ
exp

(
− z

μ

) ∫ cz/(c+μ)

0
exp

(
c + μ

cμ
ξ

)
K(ξ)dξ

=
α

μ
exp

(
− z

μ

) {∫ 0

−∞
exp

(
c− μ

cμ
ξ

)
K(ξ)dξ +

∫ cz/(c+μ)

0
exp

(
c + μ

cμ
ξ

)
K(ξ)dξ

}

.

Moreover,

Uz(c, μ0, z) =
α

μ0
exp

(
− z

μ0

) ∫ cz/(c−μ0)

−∞
exp

(
c− μ0

cμ0
ξ

)
K(ξ)dξ, z ≤ 0,

and

Uz(c, μ0, z) =
1

μ0
exp

(
− z

μ0

) {
α

2
− θ + α

∫ cz/(c+μ0)

0
exp

(
c + μ0

cμ0
ξ

)
K(ξ)dξ

}

, z ≥ 0.

Let the synaptic coupling be of lateral inhibition type. Recall that K ≥ 0 on (−M,N),
and K ≤ 0 on (−∞,−M) ∪ (N,∞). Obviously Uz ≤ 0 on (−∞,−M); in particular,
Uz(c, μ0,−M) < 0 and Uz(c, μ0, 0) > 0. Therefore, there exists a unique negative number
z0 ∈ (−M, 0) such that Uz(c, μ0, z0) = 0, Uz ≤ 0 on (−∞, z0), and Uz ≥ 0 on (z0,∞); i.e., the
front is decreasing on (−∞, z0) and it is increasing on (z0, N). Therefore the front U attains
a local minimum at some z0 ∈ (−∞, 0). Let us investigate the behavior of U on the right half
line (N,∞). Differentiating the traveling wave equation with respect to z, we get

μ0Uzz + Uz =
cα

c + s(z)μ0
K

(
c

c + s(z)μ0
z

)
≤ 0.

If we multiply this inequality by the integrating factor exp(z/μ0), we get

[
μ0 exp

(
z

μ0

)
Uz(c, μ0, z)

]

z

= exp

(
z

μ0

)
(μ0Uzz + Uz) ≤ 0.

Now, if we integrate this inequality with respect to z over (z,∞), we obtain the estimate

0 < lim
z→∞

[
exp

(
z

μ0

)
Uz(c, μ0, z)

]
≤ exp

(
z

μ0

)
Uz(c, μ0, z).

Therefore

Uz(c, μ0, z) > 0

for all z > N . Overall, U(c, μ0, z) is decreasing on (−∞, z0), and it is increasing on (z0,∞),
and U(c, μ0, z0) is a global minimum.
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Let the synaptic coupling be of lateral excitation. Note that K ≥ 0 on (−∞,−M)∪(N,∞)
and K ≤ 0 on (−M,N). Clearly Uz ≥ 0 on (−∞,−M). The fact Uz(c, μ0, 0) > 0 implies that
Uz ≥ 0 on (−∞, 0). For each upside down Mexican hat kernel function, it is easy to show that

∫ cz/(c+μ0)

0
exp

(
c + μ0

cμ0
ξ

)
K(ξ)dξ > 0

for all sufficiently large z > 0.
Let us find the point zN where the synaptic coupling makes the most negative contribution,

starting from z = −M . To this end, we set the upper limit czN
c+μ0

= N ; thus zN = c+μ0

c N .

Additionally, if Uz

(
c, μ0,

c+μ0

c N
) ≥ 0, then Uz ≥ 0 on R. In this case the front is a monotone

increasing curve and crosses the threshold exactly once, at z = 0, as expected. If, however,
Uz

(
c, μ0,

c+μ0

c N
)
< 0, then based on the profile of the upside down Mexican hat kernel

function, Uz must change sign from positive to negative and then to positive; hence there
exists a unique pair of positive numbers z1 and z2, z1 ∈ (0, c+μ0

c N) and z2 ∈ ( c+μ0

c N,∞),
such that Uz(c, μ0, z1) = 0 and Uz(c, μ0, z2) = 0, Uz ≥ 0 on (−∞, z1) ∪ (z2,∞) and Uz ≤ 0 on
(z1, z2). The front attains a local maximum at z = z1 and a local minimum at z = z2. We
have to investigate whether the solution crosses the threshold on the right half line. It is easy
to see that

U(c, μ0, z1) = α

∫ cz1/(c+s(z1)μ0)

−∞
K(x)dx

= α

∫ 0

−∞
K(x)dx + α

∫ cz1/(c+s(z1)μ0)

0
K(x)dx

=
α

2
+ α

∫ cz1/(c+μ0)

0
K(x)dx

< α, by the assumption K ≤ 0 on (−M,N),

U(c, μ0, z2) =
α

2
+ α

∫ N

0
K(x)dx + α

∫ cz2/(c+s(z2)μ0)

N
K(x)dx

>
α

2
+ α

∫ N

0
K(x)dx ≥ θ, by assumption (11).

Thus the local maximum U(c, μ0, z1) is smaller than α, and the local minimum U(c, μ0, z2) is
larger than the threshold. Therefore U crosses the threshold θ only once.

Overall, for each of the three classes of synaptic couplings, the front crosses the threshold
only once. See Figures 7 and 8. For the extreme case μ = c, although the solution is not
continuous, the mathematical analysis of the existence and uniqueness of the front is very
similar to the case 0 < μ < c, and we can demonstrate that the wave crosses the threshold
exactly once. The limits of the speed μ0 as c → 0, c → ∞, θ

α → 0, and θ
α → 1

2 have been

proved in Theorems 3 and 4. The limits of the front U as c → 0, c → ∞, θ
α → 0, and θ

α → 1
2

can be computed straightforwardly. The details are omitted.
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Figure 7. Comparison of traveling wave fronts (between a positive kernel and a Mexican hat kernel).
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Figure 8. Comparison of traveling wave fronts (between a positive kernel and an upside down Mexican hat
kernel).

6.2. Appendix 2—The proof of Lemma 1. We have defined the speed index function ϕ
earlier by

ϕ(μ) = α

∫ 0

−∞
exp

(
c− μ

cμ
ξ

)
K(ξ)dξ
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on (0, c). The speed μ0 of the front will be proved to be the unique solution of the equation

ϕ(μ) =
α

2
− θ.

Clearly we have

lim
μ→0

ϕ(μ) = 0 <
α

2
− θ <

α

2
= lim

μ→c
ϕ(μ).

The existence of a positive number μ0 satisfying 0 < μ0 < c is obvious. It suffices to establish
the uniqueness. We will show that ϕ′ > 0 for all kernel functions in classes (A) and (B). Also
we will demonstrate that ϕ′ < 0 on (0, μ#), ϕ′(μ#) = 0, and ϕ′ > 0 on (μ#, c), where the
positive number μ# depends on the kernel K, for all kernels in class (C). Overall, the graph
of ϕ crosses the line ϕ = α

2 − θ only once if α > 2θ > 0.
See Figures 9 and 10.
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Figure 9. Comparison of speed index functions (between a positive kernel and a Mexican hat kernel).

(A) For all nonnegative kernels (either symmetric or asymmetric, either on-center or off-
center, either with or without compact support), clearly

∫ 0
−∞K(x)dx = 1

2 , so we must have
ϕ′(μ) > 0 on (0, c).

(B) For each Mexican hat kernel function, recall that K ≥ 0 on (−M, 0) and K ≤ 0 on
(−∞,−M). Therefore, there hold the estimates

|ξ| exp

(
c− μ

cμ
ξ

)
K(ξ) ≥ exp

(
−c− μ

cμ
M

)
|ξ|K(ξ) ≥ 0

on (−M, 0), and

0 ≥ |ξ| exp

(
c− μ

cμ
ξ

)
K(ξ) ≥ exp

(
−c− μ

cμ
M

)
|ξ|K(ξ)
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Figure 10. Comparison of speed index functions (between a positive kernel and an upside down Mexican
hat kernel).

on (−∞,−M). On some nonempty open interval (τ1, τ2) ⊂ (−∞, 0), there must hold the
inequality “>,” because

∫ 0
−∞K(x)dx = 1

2 . Hence for all μ with 0 < μ < c we have ϕ′(μ) > 0,
because

ϕ′(μ) >
α

μ2
exp

(
−c− μ

cμ
M

) ∫ 0

−∞
|ξ|K(ξ)dξ ≥ 0.

(C) This is the most challenging and interesting case. Define a sequence of nonlinear
smooth functions {ϕn(μ)} on (0, c), where

ϕn(μ) = α

∫ 0

−∞
|ξ|n exp

(
c− μ

cμ
ξ

)
K(ξ)dξ,

for all integers n ≥ 1. Then

ϕn
′(μ) =

α

μ2

∫ 0

−∞
|ξ|n+1 exp

(
c− μ

cμ
ξ

)
K(ξ)dξ =

ϕn+1(μ)

μ2
,

lim
μ→0

ϕn(μ) = 0, lim
μ→c

ϕn(μ) = α

∫ 0

−∞
|ξ|nK(ξ)dξ > 0.

For each upside down Mexican hat kernel function, recall that K ≤ 0 on (−M, 0), K ≥ 0 on
(−∞,−M), and that

∫ 0
−∞K(x)dx = 1

2 . Therefore, we can pick up two positive numbers δ
and Δ, with Δ > δ (note that the δ is not the delta function), such that

∫ 0

−M
K(ξ)dξ +

∫ −M(1+δ)

−M(1+Δ)
K(ξ)dξ > 0.
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Fix μ such that 0 < μ < c. Now we have (note that below ξ = Mx)

1

α
ϕn+1(μ) =

∫ 0

−∞
|ξ|n+1 exp

(
c− μ

cμ
ξ

)
K(ξ)dξ

= Mn+2

∫ 0

−∞
|x|n+1 exp

(
c− μ

cμ
Mx

)
K(Mx)dx

= Mn+2

∫ 0

−1
|x|n+1 exp

(
c− μ

cμ
Mx

)
K(Mx)dx

+Mn+2

∫ −1

−∞
|x|n+1 exp

(
c− μ

cμ
Mx

)
K(Mx)dx

≥ Mn+2

∫ 0

−1
|x|n+1 exp

(
c− μ

cμ
Mx

)
K(Mx)dx

+Mn+2

∫ −1−δ

−1−Δ
|x|n+1 exp

(
c− μ

cμ
Mx

)
K(Mx)dx

≥ Mn+2

∫ 0

−1
K(Mx)dx + Mn+2

∫ −1−δ

−1−Δ
K(Mx)dx

= Mn+1

∫ 0

−M
K(ξ)dξ + Mn+1

∫ −M(1+δ)

−M(1+Δ)
K(ξ)dξ > 0,

where we have applied the following simple estimates:

|x|n+1 exp

(
c− μ

cμ
Mx

)
≤ 1 and K(Mx) ≤ 0 on (−1, 0) for all n ≥ 0,

|x|n+1 exp

(
c− μ

cμ
Mx

)
≥ 1 and K(Mx) ≥ 0 on (−1 − Δ,−1 − δ),

provided that the integer n is sufficiently large, say n ≥ N , where

N = 1 +

[[
c− μ

cμ

M(1 + Δ)

ln(1 + δ)

]]
.

Of course, here [[x]] represents the greatest integer function of x. Therefore we obtain the
result

ϕn
′(μ) =

1

μ2
ϕn+1(μ) >

Mn+1α

μ2

[∫ 0

−M
K(ξ)dξ +

∫ −M(1+δ)

−M(1+Δ)
K(ξ)dξ

]

> 0.

Indeed, this result is also true on the open interval (ν, c). For the same reason as above, we
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have

∫ 0

−∞
|ξ|nK(ξ)dξ = Mn+1

∫ 0

−∞
|x|nK(Mx)dx

= Mn+1

∫ 0

−1
|x|nK(Mx)dx + Mn+1

∫ −1

−∞
|x|nK(Mx)dx

≥ Mn+1

∫ 0

−1
|x|nK(Mx)dx + Mn+1

∫ −1−δ

−1−Δ
|x|nK(Mx)dx

≥ Mn+1

∫ 0

−1
K(Mx)dx + Mn+1

∫ −1−δ

−1−Δ
K(Mx)dx

= Mn

∫ 0

−M
K(ξ)dξ + Mn

∫ −M(1+δ)

−M(1+Δ)
K(ξ)dξ > 0

for all integers n ≥ 1. From the above analysis we may also conclude that if ϕn(μ) = 0 at
some 0 < μ < c, then for the same μ, we have ϕn+k(μ) > 0, because

ϕn+k(μ) = α

∫ 0

−∞
|ξ|n+k exp

(
c− μ

cμ
ξ

)
K(ξ)dξ

= αMn+k+1

∫ 0

−∞
|x|n+k exp

(
c− μ

cμ
Mx

)
K(Mx)dx

= αMn+k+1

∫ 0

−1
|x|n+k exp

(
c− μ

cμ
Mx

)
K(Mx)dx

+αMn+k+1

∫ −1

−∞
|x|n+k exp

(
c− μ

cμ
Mx

)
K(Mx)dx

> αMn+k+1

∫ 0

−1
|x|n exp

(
c− μ

cμ
Mx

)
K(Mx)dx

+αMn+k+1

∫ −1

−∞
|x|n exp

(
c− μ

cμ
Mx

)
K(Mx)dx

= αMn+k+1

∫ 0

−∞
|x|n exp

(
c− μ

cμ
Mx

)
K(Mx)dx

= αMk

∫ 0

−∞
|ξ|n exp

(
c− μ

cμ
ξ

)
K(ξ)dξ

= 0,

at the same μ, for all integers k ≥ 1.
On the other hand, by fixing the integer n = N and making the change of variable ξ = μx

with 0 < μ < c, we have

∫ 0

−∞
|ξ|n+1 exp

(
c− μ

cμ
ξ

)
K(ξ)dξ = μn+2

∫ 0

−∞
|x|n+1 exp

(
c− μ

c
x

)
K(μx)dx,
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where

lim
μ→0

∫ 0

−∞
|x|n+1 exp

(
c− μ

c
x

)
K(μx)dx

= K(0)

∫ 0

−∞
|x|n+1 exp(x)dx = (n + 1)!K(0) < 0

if K(0) < 0. Therefore, there exists a small number μ = μn+1 > 0 such that

ϕn+1(μ) = α

∫ 0

−∞
|ξ|n+1 exp

(
c− μ

cμ
ξ

)
K(ξ)dξ

= αμn+2

∫ 0

−∞
|x|n+1 exp

(
c− μ

c
x

)
K(μx)dx < 0,

for all μ with 0 < μ < μn+1. This result is also true if K(0) = 0, K ≥ 0 on (−∞,−M), and
K ≤ 0 on (−M, 0), for some positive number M > 0. Set A∗ = inf{μ ≤ c : ϕn+1(μ) > 0} and
A∗ = sup{μ ≥ 0 : ϕn+1(μ) < 0}. If ϕn+1(μ#) = 0 for some μ# ∈ (0, c), then using analysis
similar to the above, we see ϕn+2(μ#) = μ#

2ϕn+1
′(μ#) > 0. Thus the graph of the smooth

function ϕn+1(μ) crosses the μ-axis exactly once. Without any difficulty, we may conclude
that A∗ = A∗. Now ϕn+1(A∗) = 0. Below we will use the induction idea. Note that

lim
μ→0

ϕn(μ) = 0.

Now it is easy to derive ϕn(μ) < 0 on (0, μn) and ϕn(μ) > 0 on (μn, c) for some μn. Recall
that we have

ϕn−1
′(μ) =

ϕn(μ)

μ2
and lim

μ→0
ϕn−1(μ) = 0.

Therefore, it is easy to conclude that ϕn−1(μ) < 0 on (0, μn−1) and ϕn−1(μ) > 0 on (μn−1, c),
for some μn−1, and so on. Eventually, we get limμ→0 ϕ1(μ) = 0, ϕ1(μ) < 0 on (0, μ1), and
ϕ1(μ) > 0 on (μ1, c), for some μ1. By the induction method, we find that there exists some
constant μm = μ(m) such that ϕm(μ) < 0 if 0 < μ < μm, ϕm(μ) = 0 if μ = μm, and
ϕm(μ) > 0 if μm < μ < c. Note that 0 < μm+1 < μm < c.

Therefore, for all kernel functions in classes (A), (B), and (C), there exists a unique speed
μ0 = μ0(c, α, θ,K) > 0 such that 0 < μ0 < c, ϕ(μ0) = α

2 − θ and U(c, μ0, 0) = θ.

Note that the speed is a smooth function of β, where β = 1
2 − θ

α . To see if the speed is
increasing with respect to β, differentiating the following equation with respect to β,

∫ 0

−∞
exp

(
c− μ0

cμ0
ξ

)
K(ξ)dξ = β =

1

2
− θ

α
,

we have
[

1

μ0
2

∫ 0

−∞
|ξ| exp

(
c− μ0

cμ0
ξ

)
K(ξ)dξ

]
∂μ0

∂β
= 1.
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Therefore, ∂μ0

∂β = α
ϕ′(μ0) > 0, based on the above analysis. So μ0 is an increasing function of

β. Moreover, it is not difficult to show that

lim
β→0

μ0(β) = 0, lim
β→ 1

2

μ0(β) = c.

Similarly

∂μ0

∂(θ/α)
= −μ0

2/

∫ 0

−∞
|ξ| exp

(
c− μ0

cμ0
ξ

)
K(ξ)dξ = − α

ϕ′(μ0)
< 0,

{
1

c2
− 1

μ0
2

∂μ0

∂c

} ∫ 0

−∞
|ξ| exp

(
c− μ0

cμ0
ξ

)
K(ξ)dξ =

(
μ0

2

c2
− ∂μ0

∂c

)
ϕ′(μ0)

α
= 0.

The proofs of both Lemma 1 and Theorem 1 are now finished.

6.3. Summary of influences on traveling wave fronts. Combining all of the proofs of
the theorems and Lemma 1, we may give the following summary.

Summary of influence on speed. The speeds of the fronts of the nonlocal model equation
(13) with different kinds of synaptic couplings satisfy the estimates

0 < μ0(c, α, θ) < c and 0 < μ0(c, α, θ) < ν0(α, θ).

Summary of influence on wave profiles. Define the steepness of the front by S = Uz(c, μ0, 0).
Note that

Uz(c, μ0, 0) =
α

μ0

∫ 0

−∞
exp

(
c− μ0

cμ0
ξ

)
K(ξ)dξ =

α− 2θ

2μ0
.

The speed μ0 is an increasing function of c and α
θ on (0,∞), and hence S is a decreasing

function of c and α
θ . Therefore, compared with the case where there is no delay, the spatial

temporal delay makes the front steep. By the results of Theorem 4, we conclude that

lim
c→0

S = ∞, lim
c→∞S =

α− 2θ

2ν0(α, θ)
,

lim
θ
α
→0

S =
α− 2θ

2c
, lim

θ
α
→ 1

2

S = ∞,

lim
ρ→0

S =
α− 2θ

2c
, lim

ρ→∞S = ∞,

where, in the first four limits, the kernel function K is fixed, while in the last two limits, the
kernel function K(x) is replaced with ρK(ρx).

In general, if we keep all of the parameters c, α, and θ fixed, then a positive kernel makes
the front increasing, and a negative kernel makes the front decreasing. More precisely, a
nonnegative kernel produces a nondecreasing front, a Mexican hat kernel forces the left half of
the front to be decreasing while the right half is still increasing, and an upside down Mexican
hat kernel forces the middle part of the front to be decreasing while the other parts are still
increasing.

Summary of influence on stability. For each kernel function in the three classes, the front
is exponentially stable. There is no essential difference in the influence on stability of these
fronts.
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Critical Point Analysis of Transonic Flow Profiles with Heat Conduction∗

H. De Sterck†

Abstract. Critical points arising in transonic flow profiles of the steady compressible Euler equations with
heat conduction are investigated. Two examples of transonic flow profiles are studied, namely,
radial outflow in a gravitational field, and flow in a quasi-one-dimensional nozzle. The stationary
flow equations are reformulated in terms of a dynamical system that parametrizes the flow profiles.
Adding the heat conduction term introduces a critical point that is of a type different from the
well-known sonic critical point that occurs at the transition from subsonic to supersonic flow when
there is no heat conduction. This thermal critical point takes over the saddle-point role of the sonic
critical point in the flow profile. Both the sonic and the thermal critical points are present in radial
outflow profiles, and the type of the sonic critical point is changed from a saddle point to a simple
node by the addition of the heat conduction term. In the nozzle case, the sonic point is no longer
a critical point of the dynamical system when heat conduction is added. It is illustrated how the
results of this analysis can be used for efficient and accurate numerical calculation of transonic flow
trajectories and boundary value problems with heat conduction that are of interest in applications
like supersonic planetary escape and solar wind models, and in aerospace applications. The analysis
also elucidates how many boundary conditions are required for a well-posed transonic boundary value
problem with heat conduction and clarifies the mathematical structure of transonic flow profiles with
heat conduction that have been calculated numerically in the literature for various applications.

Key words. compressible gas dynamics, transonic flow, heat conduction, critical point
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1. Introduction. It is well known that stationary solutions of the compressible Euler
equations of gas dynamics may exhibit critical points where the gas makes a transition from
the subsonic to the supersonic flow regime [1, 2]. In this paper we investigate the critical points
that arise in one-dimensional (1D) transonic flow profiles when heat conduction is added to
the Euler equations.

The purpose of this analysis is two-fold.

First, the critical point analysis leads to a better understanding of the mathematical
structure of transonic flow profiles with heat conduction that have been calculated numerically
in the literature for various applications—for example, supersonic gas escape from planets like
Venus, Pluto, and the early Earth [3, 4, 5, 6], and extrasolar planets [7]. It also elucidates how
many boundary conditions are required for a well-posed transonic boundary value problem
(BVP) with heat conduction.

Second, the results of this critical point analysis can be used for efficient and accurate
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numerical calculation of transonic flow trajectories and BVPs with heat conduction that are
of interest in applications like supersonic planetary escape and solar wind models, and in
aerospace applications.

In the context of 1D flow profiles, critical points are points at which the ordinary differen-
tial equation (ODE) system that governs the stationary flow is singular; i.e., the derivatives
of some of the flow variables cannot be determined from the ODE system at the critical
points. The stationary flow equations can be reformulated in terms of a dynamical system
that parametrizes the flow profiles. Critical (i.e., singular) points of the flow profiles are also
critical points of this associated dynamical system in accordance with the standard definition
of a critical point in a dynamical system; i.e., they are equilibrium solutions of the dynamical
system.

In this paper, two examples of 1D transonic flow profiles are studied, namely, radial outflow
in a gravitational field [8], and flow in a quasi-1D nozzle [9]. The properties of the critical
points that arise in these kinds of flows are well known for the Euler model without heat
conduction. Here, we investigate the critical points that arise when heat conduction is added
to the Euler equations.

In the first part of the paper we study such transonic flow solutions for the case of radial
spherically symmetric outflow from spherical objects with a gravitational field. The nozzle
application is discussed subsequently.

Figure 1 shows a stationary transonic radial flow solution of the spherically symmetrical
Euler equations with radial velocity and heat conduction in a gravitational field, which are
given by

∂

∂t

⎡

⎢
⎣

ρ r2

ρ u r2
(

p
γ−1 + ρ u2

2

)
r2

⎤

⎥
⎦ +

∂

∂r

⎡

⎢
⎣

ρ u r2

ρ u2 r2 + p r2
(

γ p
γ−1 + ρ u2

2

)
u r2

⎤

⎥
⎦(1.1)

=

⎡

⎣
0

−ρGM + 2 p r

−ρGM u + qheat r
2 + ∂

∂r

(
κ r2 ∂T

∂r

)

⎤

⎦ .

Here, ρ is the fluid mass density, p is the pressure, u is the radial velocity, r is the radial
coordinate, t is time, −ρGM/r2 is the gravitational force density, and γ > 1 is the adiabatic
constant. With G being the universal gravity constant and M the mass of the outflow object,
we take GM = 15 in normalized units for all the test problems in this paper. The right-
hand side of the equation contains a heat source term qheat and a heat conduction term with
conductivity κ. This set of equations is used as a model for supersonic gas escape from Venus,
Pluto, the early Earth, and extrasolar planets [3, 4, 5, 6, 7], and is related to models for the
solar wind [8, 10, 11].

The temperature T , sound speed c, entropy S, and radial mass flux F are defined by

T =
p

ρ
,(1.2)

c2 =
γ p

ρ
= γ T,(1.3)
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Figure 1. Radial transonic flow solution for GM = 15, qheat(r) ≡ 0, and κ(T ) = (T/5)0.72, and with
boundary conditions ρ = 3, T = 4.4, and dT/dr = −4 at the inflow boundary ra = 1. The sonic critical point
is indicated.

S =
p

ργ
,(1.4)

F = ρ u r2(1.5)

in our choice of nondimensional units. In general, the heat source qheat and heat conductivity
κ can be functions of the radius r and/or the gas state variables ρ, p, and u. In particular, we
consider radial dependence of the heat source qheat(r) and temperature dependence of the heat
conductivity κ(T ), which are assumptions that are physically relevant for the applications we
target [3, 4, 5, 6, 7]. Figure 1 shows a stationary transonic solution to (1.2) with the radial
outflow velocity from the planet starting out subsonically near the left boundary. The critical
point at the transition to supersonic flow is indicated.

Stationary transonic solutions to the Euler equations are notoriously hard to compute
numerically. One of the goals of our critical point analysis is to provide results that allow us
to numerically calculate radial transonic flows with heat conduction efficiently and accurately.
Traditional techniques employ time-marching strategies of the time-dependent equations [12,
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13]. However, explicit time-marching approaches tend to converge very slowly, while implicit
techniques are expensive per iteration and may suffer from robustness problems. On the
other hand, solving the stationary equations directly has proved difficult due to the presence
of critical points of saddle-point type and the associated difficulties with the changing nature
of the solution at the critical points, and with the number of boundary conditions to be
imposed. In [14] we have proposed a new numerical algorithm for efficiently and accurately
calculating radial transonic flows for the Euler equations, which is based on a dynamical
systems approach. The results from the present paper allow us to apply these methods to the
case where heat conduction is added to the Euler equations.

This paper is structured as follows. In the next section we recall results on critical points
for radial Euler flows in a gravitational field without heat conduction, followed by a critical
point analysis for the case when heat conduction is added to the Euler model. In section 3
it is shown how the analysis can be extended to the case of a quasi-1D converging-diverging
nozzle. Section 4 illustrates how the results on critical points can be utilized for efficient
direct calculation of transonic flow trajectories and BVPs for the case of radial outflow in a
gravitational field. Conclusions are formulated in section 5.

2. Critical point analysis of radial outflow in a gravitational field. The derivations to
be presented in this section start from rewriting the stationary Euler equations in spherical
symmetry,

(2.1)
d

dr

⎡

⎢
⎣

ρ u r2

ρ u2 r2 + p r2
(

γ p
γ−1 + ρ u2

2

)
u r2

⎤

⎥
⎦ =

⎡

⎣
0

−ρGM + 2 p r

−ρGM u + qheat r
2 + ∂

∂r

(
κ r2 ∂T

∂r

)

⎤

⎦ ,

as an ODE system with unknowns F (r), u(r), and T (r) and with decoupled first derivatives
as follows:

dF

dr
= 0,

du

dr
=

1

r2(u2 − c2)

(
2uc2

(
r − GM

2c2

)
− (γ − 1)

qheatr
4u

F

−(γ − 1)
r2u

F

d

dr

(
κ r2 dT

dr

))
,(2.2)

dT

dr
=

γ − 1

r2(u2 − c2)

(
T (GM − 2ur2) − qheatr

4(T − u2)

F

−r2(T − u2)

F

d

dr

(
κ r2 dT

dr

))
.

It should be noted that the derivations to be presented can also be performed using other state
variables—for instance, the density ρ or the entropy S. The choice of variables somewhat
influences the effort required to obtain the results and the simplicity of some of the resulting
expressions, but in the end the results and conclusions are the same regardless of the choice
of variables. The variables in system (2.2) were chosen because they are of direct interest in
the applications targeted.
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2.1. Euler equations without heat conduction. We first recall results on critical points
and their types for the case of vanishing heat conduction κ(T ) ≡ 0. In this case, system (2.2)
reduces to a decoupled first-order ODE system, which can be rewritten as an autonomous
system by introducing the independent variable s that parametrizes the solution trajectories.
This leads to the dynamical system

dr

ds
= r2 (u2 − c2),

dF

ds
= 0,

(2.3)

du

ds
= 2u c2

(
r − GM

2c2

)
− (γ − 1) qheat

r4 u

F
,

dT

ds
= (γ − 1)T (GM − 2u2 r) − (γ − 1) qheat

r4

F
(T − u2).

In general terms, the autonomous system is denoted by

(2.4)
dV

ds
= G(V),

with state vector V = [F (s) u(s) r(s) T (s)]T . The critical points (or equilibrium points) of
dynamical system (2.3) satisfy the two conditions

ucrit =
√
γ Tcrit = ccrit,(2.5)

Tcrit =
GM

2 γ rcrit
+ (γ − 1)

qheat r
3
crit

2 γ Fcrit
.

Condition (2.5) identifies the critical point as the well-known sonic critical point. Note that
the dynamical system as formulated here is degenerate, in that the four-dimensional (4D)
system allows for a two-dimensional (2D) manifold of critical points, as there are only two
conditions to be fulfilled instead of four.

The type of the critical point can be derived by investigating the eigenvalues of the Jaco-
bian matrix

(2.6)
∂G

∂V

∣∣∣∣
Vcrit

.

For the case of vanishing heating source term qheat(r) ≡ 0, we obtain

λ1 = 0,

λ2 = 0,(2.7)

λ3 = GM
√

(−3γ + 5)/2,

λ4 = −GM
√

(−3γ + 5)/2.
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When γ < 5/3, this leads to a (degenerate) saddle point. For example, for the outflow problem
of hydrogen gas from planetary atmosphere that we target [3, 4, 5, 6, 7], the value γ = 7/5
for di-atomic gases applies. All the example flow solutions presented in this paper use the
value γ = 7/5. For general heat source functions qheat(r), the expressions for Jacobian (2.6)
and its eigenvalues are complicated and the detailed expressions are lengthy and uninsightful.
However, using symbolical manipulation software, it can easily be verified that the eigenvalues
satisfy

λ1 = 0,

λ2 = 0,(2.8)

λ3 = a +
√
b,

λ4 = a−
√
b.

Here, a and b are generic placeholders for nonlinear functions that involve the state variables,
parameters like γ and GM , and the heat source function qheat(r) and its radial derivative
dqheat(r)/dr. Depending on the values of these, the type of the critical point changes. Again,
the general conditions that determine the type of the critical point are lengthy and do not
provide specific insight. It suffices to say that in many parameter regimes of interest for the
applications we target, the critical point turns out to be of (degenerate) saddle-point type.

Figure 2 shows an example of a stationary transonic solution to (1.2) with κ(T ) ≡ 0 and
qheat ≡ 0. The critical point at the transition to supersonic flow is indicated. In accordance
with the discussion above, the critical point turns out to be of saddle-point type.

2.2. Euler equations with heat conduction. We now proceed with the main topic of this
paper, namely, the critical point analysis of radial transonic Euler flow with heat conduction,
i.e., the case where κ(T ) �= 0. We start from the ODE system (2.2) and define the additional
variable

(2.9) φ = κ r2dT

dr
,

which is related to the temperature gradient. With the use of this gradient variable φ we can
rewrite ODE system (2.2) as the fully decoupled first-order system

dF

dr
= 0,

du

dr
=

1

r2(u2 − c2)

(
2uc2

(
r − GM

2c2

)
+

uφ(u2 − c2)

κ(T − u2)

−(γ − 1)uT (GM − 2u2r)

T − u2

)
,(2.10)

dT

dr
=

φ

κr2
,

dφ

dr
=

−φF (u2 − c2)

(γ − 1)κr2(T − u2)
+

FT (GM − 2u2r)

r2(T − u2)
− qheatr

2.
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Figure 2. Radial transonic flow solution for qheat(r) ≡ 0 and κ(T ) ≡ 0. The critical radius rcrit = 5, and
the flux F = 2. The sonic critical point is indicated.

This system can be written as an autonomous system by introducing the independent variable
s that parametrizes the solution trajectories, resulting in the dynamical system

dr

ds
= −r2(u2 − c2)(u2 − T ),

dF

ds
= 0,

du

ds
= −2uc2

(
r − GM

2c2

)
(u2 − T ) +

φu(u2 − c2)

κ
(2.11)

−(γ − 1)uT (GM − 2u2r),

dT

ds
=

−φ(u2 − c2)(u2 − T )

κ
,

dφ

ds
=

−φF (u2 − c2)2

(γ − 1)κ
+ FT (GM − 2u2r)(u2 − c2)

+qheatr
4(u2 − c2)(u2 − T ).
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Interestingly, the dynamical system now turns out to have two types of critical points.
The first type of critical point is the well-known sonic critical point. This critical point is

four-fold degenerate, as there is now only one condition at this critical point:

(2.12) ucrit =
√
γ Tcrit = ccrit.

The eigenvalues of the Jacobian are given by

λ1 = 0,

λ2 = 0,

λ3 = 0,(2.13)

λ4 = 0,

λ5 = u2
crit

(
(γ + 1)φcrit

κ(Tcrit)
+ 2GM − 4u2

critrcrit
γ

)
,

indicating a critical point of (degenerate) simple node type.
The second type of critical point is characterized by the conditions

ucrit =
√
Tcrit = ccrit/

√
γ,(2.14)

φcrit

κ
+ GM − 2u2

critrcrit = 0.

We call this type of critical point a thermal critical point (u2
crit = Tcrit), in order to distinguish

it from the sonic critical point type, where u2
crit = γ Tcrit. Note that the dynamical system

is again degenerate, in that the five-dimensional (5D) system allows for a three-dimensional
(3D) manifold of critical points, as there are only two conditions to be fulfilled instead of five.

For this critical point, the eigenvalues of the Jacobian are given by

λ1 = 0,

λ2 = 0,

λ3 = 0,(2.15)

λ4 = a +
√
b,

λ5 = a−
√
b,

where a and b are generic placeholders for nonlinear functions that involve the state vari-
ables, parameters like γ and GM , the heat source function qheat(r) and its radial derivative
dqheat(r)/dr, and the heat conduction function κ(T ) and its temperature derivative dκ(T )/dT .
Full expressions for a and b can be derived using symbolical manipulation software, but they
are cumbersome and do not lead to further insight. Again, depending on the values of the
parameters, the type of the critical point changes. As before, the general conditions that
determine the type of the critical point are lengthy and do not provide specific insight, and it
suffices to say that in many parameter regimes of interest for the applications we target, the
critical point turns out to be of (degenerate) saddle-point type.

We can thus conclude that, interestingly, adding the heat conduction term to the Euler
model changes the type of the sonic critical point from a saddle point to a simple node and



TRANSONIC FLOW PROFILES WITH HEAT CONDUCTION 653

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.5

1

1.5

2

2.5

3

r

 

 
velocity
sound speed
density
temperature

velocity2

sonic critical point

thermal critical point

Figure 3. Radial transonic flow solution for qheat(r) ≡ 0 and κ(T ) ≡ (T/5)0.72. The two critical points are
indicated. The rightmost critical point is the well-known sonic critical point, while the leftmost critical point is
the thermal critical point that is introduced by including the heat conduction term. The location of the thermal
critical point rcrit ≈ 3.87, its temperature T ≈ 1.34, and its velocity u ≈ 1.16.

introduces an additional, thermal, critical point into the system, which is of saddle-point type.
It turns out that transonic solutions pass through the two types of critical points, as illustrated
by the following example flow solution.

Figure 3 shows an example of a stationary transonic solution to (1.2) with κ(T ) =
(T/5)0.72, and qheat = 0. The exponent 0.72 for the heat conduction function is chosen for this
example flow solution due to its relevance for planetary atmosphere calculations [3, 4, 5, 6, 7].
The two critical points are indicated on the figure. The leftmost, thermal, critical point occurs
where u =

√
T and is of saddle-point type. The rightmost critical point is the sonic critical

point, where u =
√
γT .

The flow profile of Figure 3 thus has two critical points, but they are of different type (one
is thermal, and the other is sonic). Note that this situation is different from the multitransonic
accretion profiles studied in [15], in which multiple critical points occur that are all of sonic
type for flow equations without heat conduction.
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3. Critical point analysis of quasi-1D nozzle flow. In this section we repeat the analysis
presented above for the case of a quasi-1D converging-diverging nozzle [9], leading to similar
results. Figure 4 shows a de Laval nozzle, in which subsonic flow can be accelerated to
supersonic flow in a continuous fashion. If the cross-sectional flow area A(x) varies slowly,
the nozzle is long and slender, and cross-flow velocities are small, the flow can be modeled as
quasi-1D (see, e.g., [9]), leading to the following equation system:

∂

∂t

⎡

⎢
⎣

ρA
ρuA(

p
γ−1 + ρ u2

2

)
A

⎤

⎥
⎦ +

∂

∂x

⎡

⎢
⎣

ρ uA
ρu2 A + pA(
γ p
γ−1 + ρ u2

2

)
uA

⎤

⎥
⎦(3.1)

=

⎡

⎣
0

p dA
dx

∂
∂x

(
κA ∂T

∂x

)

⎤

⎦ .

subsonic supersonic

Figure 4. Transonic flow in a converging-diverging nozzle.

3.1. Nozzle flow without heat conduction. First, consider the case that the heat con-
duction coefficient, κ(T ), vanishes. Then the dynamical system associated with the stationary
part of (3.2) can be derived as above, leading to

dx

ds
= u2 − c2,

dF

ds
= 0,

(3.2)

du

ds
=

γ uT

A

dA

dx
,

dT

ds
= −(γ − 1)u2 T

A

dA

dx
.

The critical points of dynamical system (3.2) satisfy the two conditions

ucrit =
√
γ Tcrit = ccrit,(3.3)

dA

dx
(xcrit) = 0.
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This dynamical system has, thus, a sonic critical point, which can occur only at the throat
of the nozzle, where dA(x)/dx = 0. The type of the critical point can be determined by
investigating the eigenvalues of the Jacobian matrix, which are given by

λ1 = 0,

λ2 = 0,(3.4)

λ3 =

√
γ + 1

A

d2A

dx2
u2,

λ4 = −
√

γ + 1

A

d2A

dx2
u2.

This shows that the sonic critical point is a saddle point at the throat of the nozzle (where
d2A(x)/dx2 ≥ 0).

3.2. Nozzle flow with heat conduction. When heat conduction is added to the Euler
model (κ(T ) �= 0), we can define the additional variable

(3.5) φ = κ
dT

dx
.

With the use of this gradient variable φ, we can, as before, derive the dynamical system

dx

ds
= u2 − T,

dF

ds
= 0,

du

ds
=

uT

A

dA

dx
− uφ

κ
,(3.6)

dT

ds
=

φ

κ
(u2 − T ),

dφ

ds
=

(
F u2 T

A2
− φ

A
(u2 − T )

)
dA

dx
+

F φ

Aκ

u2 − γ T

γ − 1
.

Contrary to the radial outflow case with heat conduction, this dynamical system has only one
type of critical point. The critical point is characterized by the conditions

ucrit =
√
Tcrit,(3.7)

1

A(xcrit)

dA

dx
(xcrit) =

φcrit

κTcrit
=

1

Tcrit

dT

dx
(xcrit).

This critical point is a thermal critical point (u2
crit = Tcrit). It is interesting to note that the

thermal critical point does not occur at the throat of the nozzle. For this critical point, the
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eigenvalues of the Jacobian are given by

λ1 = 0,

λ2 = 0,

λ3 = 0,(3.8)

λ4 = a +
√
b,

λ5 = a−
√
b,

where a and b are generic placeholders for nonlinear functions that involve the state variables,
the parameter γ, the area function A(x) and its first and second spatial derivatives, and
the heat conduction function κ(T ) and its temperature derivative dκ(T )/dT . Again, full
expressions for a and b can be derived using symbolical manipulation software, but they
are cumbersome and do not lead to further insight. Also, depending on the values of the
parameters, the type of the critical point changes. As before, the general conditions that
determine the type of the critical point are lengthy and do not provide specific insight, and it
suffices again to say that in many parameter regimes of interest, the critical point turns out
to be of (degenerate) saddle-point type.

We can thus conclude that adding the heat conduction term to the Euler model here
removes the sonic critical point as a critical point altogether and introduces a new thermal
critical point of saddle-point type.

The result is thus similar to the radial outflow case: adding heat conduction to the Euler
equations results in the appearance of a thermal critical point. The thermal critical point
takes over the role of the sonic critical point as a saddle point in the flow profile.

4. Numerically calculated example flow solutions for radial outflow in a gravitational
field. In this section, we illustrate how the critical point properties derived above can be used
for efficiently calculating stationary transonic Euler flows numerically for the case of radial
outflow in a gravitational field. Note that example flow solutions for the quasi-1D nozzle
application can be calculated in a similar manner.

We consider two typical situations. In the first, most simple, case, the state variables at
the critical point are known, and a numerical approximation to the critical trajectory through
the critical point is sought. In the second case, some state variables are known at the left
inflow boundary, and a numerical approximation to the transonic solution that matches the
boundary conditions is sought. Such a critical BVP is significantly more complicated to solve,
but here too the knowledge about the critical points that was developed aids in efficiently
obtaining a numerical approximation. This section also serves to illustrate how the addition
of heat conduction influences transonic Euler solutions.

4.1. Example trajectories. We first recall why trajectories that pass through critical
points of saddle-point type are difficult to approximate numerically. This can be explained
most easily for the simplified case of isothermal Euler flow [8, 11, 14]. In this case the sound
speed c is a constant, and a decoupled ODE for u(r) can be derived as

(4.1)
du

dr
=

2u c2
(
r − GM

2c2

)

r2 (u2 − c2)
,
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Figure 5. Solution curves u(r) for the spherically symmetric isothermal Euler equations with GM = 2
and c = 1. Numerical integration from the left boundary (dash-dotted curve) does not allow approximation
of the transonic solution, but integration in two directions outward from the critical point allows numerical
approximation of the transonic solution. The arrows indicate the direction of numerical integration.

which leads to the simplified dynamical system

du(s)

ds
= −2u c2

(
r − GM

2c2

)
,

(4.2)

dr(s)

ds
= −r2 (u2 − c2).

This system features a critical point of saddle-point type that is specified by the conditions

rcrit =
GM

2c2
,

ucrit = c,(4.3)

or the point (1, 1) in the (r, u) phase plane for the choice of parameters GM = 2 and c = 1.
Figure 5 shows solution trajectories in the (r, u) phase plane.



658 H. DE STERCK

Assume that one wants to find a numerical approximation for the transonic solution that
passes through the critical point. It is easy to see that numerical integration from the left
does not lead to a desirable result, as numerical errors cause the approximation to deviate
from the transonic curve. However, integration in two directions outward from the critical
point (dashed curves) leads to an accurate numerical approximation of the transonic curve.
The initial points for the outward integrations should be taken in the direction of the tangent
to the transonic solution, which is an eigenvector of the Jacobian matrix ∂G(V )/∂V at the
critical point. This approach for calculating the stable or unstable manifold of a saddle point
is a standard dynamical systems technique [16] and can be applied to transonic Euler flow
calculation once the critical point location and state are known.

Figure 6 illustrates how this approach can be used for numerical approximation of transonic
Euler flow with and without heat conduction. The top panel shows Euler flow without heat
conduction, with critical radius rcrit = 5 and flux F = 2. This is the same solution as shown
in Figure 2, but now we have added the numerical integration points that were used by our
ODE integrator. Numerical integration is outward from the sonic critical point, which is of
saddle-point type. We have used an adaptive fourth-fifth-order accurate Runge–Kutta ODE
integrator for the result shown, namely, the RK45 Fehlberg method as described, for example,
in [17]. This solution has u2 = T ≈ 1.34 at r ≈ 3.87.

The top flow profile has to be compared with the solution presented in the bottom panel,
which features heat conduction, and has the same values for temperature and velocity as the
top solution at r ≈ 3.87. This is the same solution as shown in Figure 3 but is repeated
here for the purpose of comparison with the top panel. Numerical integration is now outward
from the thermal critical point, and it can be seen that the numerical integration does not
experience any problem at the sonic critical point, which is now a simple node due to the
presence of heat conduction. The top and bottom solutions both feature u2 = T ≈ 1.34 at
r ≈ 3.87 but differ otherwise due to the presence of heat conduction in the bottom solution.

4.2. Example BVPs. In Figure 7 we compare two BVPs without and with heat con-
duction. The top solution has qheat(r) ≡ 0 and κ(T ) ≡ 0, while the bottom solution has
qheat(r) ≡ 0 and κ(T ) ≡ (T/5)0.72. Both flow solutions have ρ = 3 and T = 4.4 at the inflow
boundary. In addition, the bottom solution, with heat conduction, requires one more bound-
ary condition at the inflow boundary in order for the BVP to be well-posed; dT/dr = −4
is imposed additionally at the lower boundary. Note the difference in scale of the two plots:
the heat conduction brings the location of the sonic critical point much closer to the inflow
boundary. The values of the resulting flux variable F , which is the main quantity of interest
for this kind of BVP solution in the case of planetary outflow calculations [3, 4, 5, 6, 7], is
also influenced significantly by the heat conduction: F ≈ 0.78 for the BVP without heat
conduction, but F ≈ 1.92 with heat conduction.

Determining the number of boundary conditions necessary for transonic BVPs is not a
trivial matter, and numerical calculation of transonic BVPs is difficult due to the a priori
unknown location of the critical points. Recently we have proposed a new algorithm for
numerical approximation of transonic BVP solutions to the Euler equations. It suffices here
to give a brief explanation of how the BVP solutions of Figure 7 were obtained, and full details
about the algorithmic approach can be found in [14].
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Figure 6. Radial outflow trajectories without and with heat conduction. Top: Radial transonic flow solution
for qheat(r) ≡ 0 and κ(T ) ≡ 0. The sonic critical radius rcrit = 5, and the flux F = 2. Bottom: Radial transonic
flow solution for qheat(r) ≡ 0 and κ(T ) ≡ (T/5)0.72. The thermal critical point has critical radius rcrit ≈ 3.87,
temperature T ≈ 1.34, and velocity u ≈ 1.16.



660 H. DE STERCK

2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

r

 

 
velocity
sound speed
density
temperature

velocity2

sonic critical point

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.5

1

1.5

2

2.5

3

r

 

 
velocity
sound speed
density
temperature

velocity2

sonic critical point

thermal critical point

Figure 7. BVP flow trajectories without (top) and with (bottom) heat conduction. Both flow solutions have
ρ = 3 and T = 4.4 at the inflow boundary. In addition, dT/dr = −4 is imposed at the inflow boundary for the
bottom solution. The NCP method from [14] was used to solve these BVPs numerically.
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Regarding the issue of the number of boundary conditions, the isothermal Euler case is
again illustrative. The solution trajectories of (4.1) and (4.2) shown in Figure 5 are uniquely
identified by one boundary condition at the left inflow boundary, except for the transonic
curve, whose specification does not require any numeric boundary condition value for the
velocity u at the left boundary, in the following sense: just the requirement that the solution
is transonic, i.e., that the flow is subsonic at the left boundary and supersonic at the right
boundary, uniquely determines the solution, and the value of the velocity u at the inflow
boundary follows from the transonic flow requirement. In the same way, transonic Euler solu-
tions without heat conduction require only two boundary conditions for 3D system (2.2) (with
κ(T ) ≡ 0), in addition to the requirement that the flow solution is transonic, and, similarly,
transonic Euler solutions with heat conduction require only three boundary conditions for 4D
system (2.10), again in addition to the requirement that the flow solution is transonic.

The BVP solution can then be approximated numerically in the above-described itera-
tive procedure that uses the numerical integration method outward from the critical points,
combined with a Newton method that allows the critical point to vary within the manifold of
possible critical points, thus driving the iterative approximation toward the particular tran-
sonic solution and critical point that match the inflow boundary conditions. See [14] for
details about this Newton critical point algorithm. Indeed, in the case of the Euler equations
without heat conduction, the two-fold degeneracy of the sonic critical point of saddle-point
type (2.5) conveniently matches the number of inflow boundary conditions for the BVP. In a
similar way, the results of this paper show that, in the case of the Euler equations with heat
conduction, the three-fold degeneracy of the nonsonic critical point of saddle-point type (2.14)
matches the number of inflow boundary conditions that specify the transonic BVP solution
uniquely.

5. Conclusions. In this paper, we have presented a critical point analysis for transonic
flow solutions of the steady compressible Euler equations with heat conduction. By means
of reformulating the stationary ODE system as a first-order system that can be rewritten as
a dynamical system, it was shown that the addition of the heat conduction term introduces
a new critical point that is different from the well-known sonic critical point. This so-called
thermal critical point is of saddle-point type in parameter regimes of interest. For radial
outflows, the sonic point remains a critical point, and the flow profile thus has two critical
points of different type, but the sonic critical point is changed from a saddle point to a simple
node by the addition of the heat conduction term. In the quasi-1D nozzle case, the sonic point
is not a critical point of the dynamical system anymore when heat conduction is added. Heat
conduction adds a term with a second spatial derivative of the temperature, and it can be
concluded that adding this heat conduction term changes the critical point properties of the
ODE system and the transonic flow solutions significantly.

It was illustrated how the results of this analysis can be used for efficient and accurate
numerical calculation of transonic radial outflow trajectories and BVPs using the Newton
critical point method that was introduced in [14]. The analysis also elucidates how many
boundary conditions are required for a well-posed transonic BVP with heat conduction. The
results presented in this paper thus reveal the mathematical structure of stationary transonic
solutions of the compressible Euler equations with heat conduction, which are of interest in
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applications like supersonic gas escape from Venus, Pluto, and the early Earth [3, 4, 5, 6].
In future work, we will study how the phenomena described in this paper play a role in 2D

and 3D flows with heat conduction, where symmetry is relaxed. We expect that the analysis
given here can be extended to these higher-dimensional cases, and we speculate that multiple
types of critical points may arise there as well. We also intend to investigate whether numerical
methods for stationary transonic flow simulation that are based on dynamical systems analysis
may be developed for flow problems in multiple spatial dimensions. This will be addressed in
future research.
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Abstract. This paper considers a hierarchy of mathematical models of excitable media in one spatial dimension,
specifically the FitzHugh–Nagumo equation and several models of the dynamics of intracellular cal-
cium. A common feature of the models is that they support solitary traveling pulse solutions which
lie on a characteristic C-shaped curve of wave speed versus parameter. This C lies to the left of a U-
shaped locus of Hopf bifurcations that corresponds to the onset of small-amplitude linear waves. The
central question addressed is how the Hopf and solitary wave (homoclinic orbit in a moving frame)
bifurcation curves interact in these “CU systems.” A variety of possible codimension-two mecha-
nisms is reviewed through which such Hopf and homoclinic bifurcation curves can interact. These
include Shil’nikov–Hopf bifurcations and the local birth of homoclinic chaos from a saddle-node/Hopf
(Gavrilov–Guckenheimer) point. Alternatively, there may be barriers in phase space that prevent the
homoclinic curve from reaching the Hopf bifurcation. For example, the homoclinic orbit may bump
into another equilibrium at a so-called T-point, or it may terminate by forming a heteroclinic cycle
with a periodic orbit. This paper presents the results of detailed numerical continuation results on
different CU systems, thereby illustrating various mechanisms by which Hopf and homoclinic curves
interact in CU systems. Owing to a separation of time scales in these systems, considerable care has
to be taken with the numerics in order to reveal the true nature of the bifurcation curves observed.
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1. Introduction. So-called excitable systems of reaction-diffusion equations are used to
model a variety of biophysical processes, including neuronal information processing, heart
electro-physiology, and the processes by which cells signal to one another; see, e.g., [17, 28].
One of the early successes in mathematical biology was Hodgkin and Huxley’s work on mod-
eling a squid giant nerve axon [27], leading to the equations that bear their name. Later in
the 1960’s FitzHugh [18] and Nagumo [32] came up with a simplified version, which has since
come to be considered the canonical excitable system.

The FitzHugh–Nagumo model is called excitable because, in the absence of diffusion,
a small perturbation from the stable equilibrium causes straightforward relaxation back to
the equilibrium, whereas a large enough perturbation causes a sudden, large-amplitude burst
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followed by slow relaxation. The power of the FitzHugh–Nagumo model arises from the
fact that a vast array of physical and biological systems displays phenomenologically similar
behavior. On the face of it, the propagation of a wave of electric potential down a nerve axon
and the spread of a forest fire share little in common. Mathematical models are powerful
because they can abstract the essential behaviors from each of these situations and show how
similar they really are.

One recent application of excitable system theory has been to the study of the propagation
of waves of increased calcium concentration both within and between cells [42, 4]. In the
last 20 years it has become clear that the dynamics of calcium inside cells is responsible
for the control of a wide array of cellular processes, and for this reason calcium waves and
oscillations have been studied intensively by both experimentalists and theoreticians. Right
from the earliest models it has been recognized that calcium waves propagate by an excitable
mechanism essentially the same as that in the FitzHugh–Nagumo model and thus can be
partially understood by the analysis of such simpler excitable systems.

Here, we write the FitzHugh–Nagumo equations in the form

vt = Δvxx + fα(v) − w + p,

wt = ε(v − γw),(1.1)

where x is a real spatial variable, t represents time, and fα ≡ v(v − 1)(α− v). In the original
FitzHugh–Nagumo model the variable v represents the plasma membrane electric potential,
with diffusion constant Δ, and w is a phenomenological variable representing the combined
inactivation effects of potassium and sodium ion channels. The small parameter ε represents
the ratio of the time scale of the membrane potential (which is a fast process) to that of the
channels (which act on a much longer time scale). The form of fα is chosen so that, depending
on the values of the threshold, α, or applied current, p, there is the possibility of either
bistability between different spatially homogeneous states or excitability of the background
state. (We use p to denote the applied current, rather than the more usual I, so as to maintain
consistency with the later models discussed here.)

For Δ sufficiently large the background equilibrium state becomes destabilized and the
dynamics supports pulse-type traveling waves which are solitary structures that move with a
constant wave speed s. Equations (1.1) in the moving frame take the form

v̇ = d,

ḋ =
1

Δ
(sd− v(v − 1)(α− v) + w − p),(1.2)

ẇ =
ε

s
(v − γw),

where the dot denotes differentiation with respect to the new variable z ≡ x + st. In these
equations the background equilibrium is of saddle type, and the traveling pulse in the system
(1.1) corresponds to a homoclinic orbit of this saddle in the moving frame.

In what follows we consider (1.2) for the parameter values

(1.3) Δ = 5.0, α = 0.1, γ = 1.0, ε = 0.01
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Figure 1. (a) Partial bifurcation set for the traveling wave FitzHugh–Nagumo equations (1.2) for the
parameter values given in (1.3), illustrating the U-shaped curve of Hopf bifurcations and C-shaped curve on
which homoclinic orbits occur. The large dots mark the (p, s) values corresponding to the time series given in
panels (b) and (c). Panel (b) shows a time series for a homoclinic orbit near the top of the C branch, at (p, s) =
(0.0575862, 1.37). Panel (c) shows a time series for a nearby periodic orbit, at (p, s) = (0.0703753, 1.37); this
periodic orbit is created in a Hopf bifurcation on the U branch.

with the wave speed, s, and applied current, p, allowed to vary. For these fixed values there is
a unique equilibrium point, which is of saddle type with a one-dimensional unstable manifold
and a two-dimensional stable manifold provided that s is outside the red curve, s = sH(p),
labeled Hopf in Figure 1. On the red curve, a Hopf bifurcation occurs and for s > sH(p) the
equilibrium is completely unstable. Since the equilibrium no longer has a stable manifold, it
is impossible for a homoclinic orbit to occur inside the red curve; hence the corresponding
solitary pulses in the PDE cannot exist for parameter values inside the U-shaped curve. In
fact, careful path-following techniques for homoclinic orbits [12] reveal that solitary pulse
solutions lie on a C-shaped curve to the left of the U in the (p, s) parameter plane, which
is also depicted in Figure 1. For more on computations of such traveling wave solutions in
various different forms of the FitzHugh–Nagumo model, see [11, 36] and references therein.
The C-shape of the pulse curve implies that more than one solitary pulse exists for a range of
values of p, with two different wave speeds. In general though, it is known that only pulses
on the upper, faster branch of the C can be stable.

Although it might seem that this structure, of a C-shaped curve of homoclinic orbits and
a U-shaped curve of Hopf bifurcations, would be peculiar to the FitzHugh–Nagumo model, it
turns out that a much wider array of excitable models share this same basic feature. Indeed, in
every excitable model we have examined so far, including the FitzHugh–Nagumo model, many
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w

travelling pulses Hopf bifurcation Hopf bifurcation
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Figure 2. Nullclines of a generic excitable system for increasing values (left to right) of the bifurcation
parameter, p. When the red nullcline intersects the N-shaped nullcline just to the left of the minimum, a
traveling pulse can exist. Hopf bifurcations occur as the red nullcline passes through the turning points of
the N-shaped nullcline. This generic behavior, as p increases, leads to a generic CU structure in the (p, s)
two-parameter bifurcation set.

excitable models of calcium waves, and the Hodgkin–Huxley equations, this same fundamental
structure appears. In the following we refer to such systems as CU systems.

The reason for this CU structure in excitable systems can be understood intuitively
from consideration of nullclines (Figure 2). First consider an excitable system (such as the
FitzHugh–Nagumo equations) with two important nullclines: an N-shaped nullcline and an-
other roughly linear nullcline such as that shown by the red nullcline in Figure 2. As the
bifurcation parameter, p, increases, the two nullclines move relative to one another, so that,
effectively, the red nullcline moves across and intersects the N-shaped nullcline, first at the
local minimum and then at the local maximum, generating a Hopf bifurcation at each of
these distinguished intersections. The two Hopf bifurcations will exist for all wave speeds,
s, above a minimum value, and thus the curve of Hopf bifurcations in the (p, s) plane will
have a generic U-shape. (Depending on the exact shape of the nullclines, this U can have
additional loops.) Furthermore, in a system of this kind, traveling pulses typically occur for
some interval of the bifurcation parameter where the two nullclines intersect to the left of
the local minimum, and appear in a saddle-node bifurcation as p increases, giving rise to a
C-shape in the (p, s) plane. Thus, the traveling pulse and the two Hopf bifurcations occur
sequentially as p increases and the CU structure is observed. Any excitable system that has
nullclines of these general shapes (which includes most models of calcium waves, as well as
the FitzHugh–Nagumo and Hodgkin–Huxley models) will have this CU structure.

In addition to the FitzHugh–Nagumo model, we study here a hierarchy of models of
intracellular calcium waves, originally developed as descriptions of calcium waves in pancreatic
acinar cells [44, 24, 42]. A typical model for intracellular calcium dynamics in one spatial
dimension has the form
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∂c

∂t
= D

∂2c

∂x2
+ JIPR(G, c, p)(c− ce) − Jserca + δ(Jin − Jpm),

dce
dt

= −JIPR(G, c, p)(c− ce) + Jserca,

dG

dt
= k3(p, c)G,

where c denotes the concentration of free calcium in the cell cytoplasm, ce denotes the con-
centration of free calcium in the endoplasmic reticulum (ER), and G denotes a set of gating
variables that describe the time-dependent behavior of the calcium release channel, the so-
called inositol trisphosphate receptor (IPR). The variables G are exactly analogous to the
variables m, n, and h in the Hodgkin–Huxley model, or to the variable w in the FitzHugh–
Nagumo model. The parameter p denotes the concentration of the second messenger inositol
trisphosphate (IP3). IP3 is produced as a result of stimulation by hormones or neurotrans-
mitters, and is the second messenger that controls the release of calcium from the ER, via the
IPR. In all the calcium wave models we study here, p will be treated as a bifurcation param-
eter. In general, it can be manipulated experimentally, by changing the level of stimulation
applied to the cell. In some cell types p is also a dynamic variable, with its rates of production
and degradation controlled by calcium. Although we do not consider any such models here,
preliminary computations show them to have the same CU structure, and thus our results
should be applicable to that class of models also.

The J ’s denote various calcium fluxes into and out of the cytoplasm and ER. For instance,
Jserca denotes the flux of calcium through ATPase calcium pumps on the membrane of the
ER. These pumps move calcium up its concentration gradient from the cytoplasm to the ER,
consuming ATP in the process. Jin is a leak of calcium from the outside of the cell into the
cytoplasm, and Jpm is the flux of calcium through plasma membrane ATPase calcium pumps,
while JIPR is the flux of calcium through the IPR. Note that JIPR depends on G, c, and p, as
these are the three major controllers of the IPR.

Within this overall class of calcium wave models there is huge variety. For a start, there
are many different expressions for each of the various flux terms; the particular one chosen
depends on many factors but is most strongly influenced by the available experimental data
and by the goal of the model. In addition, there may be many gating variables, G, or only
a few. Although complicated Markov models of the IPR, with many different states, are
sometimes used to derive the differential equations for G, these complex models can often be
simplified by assuming fast transitions between various states, leading to simpler models with
fewer gating variables. Here, we study a variety of models, ranging from a model with a single
gating variable to a model with seven gating variables. Readers interested in the process of
model construction and simplification are referred to the original papers. Here we shall merely
state the model equations and their parameters.

An aim of this paper is to identify the ways in which the C-shaped curve of homoclinic
orbits can terminate, either at or before it reaches the U-shaped curve of Hopf bifurcations.
For example, in Figure 1, it may seem that the computation of the curve of homoclinic bifur-
cations shown in the figure has been abnormally terminated, since topological considerations
demand that a bifurcation curve cannot end “in mid air” unless it is at a codimension-two
point. In fact, as we shall see in section 3.1 below, there is a rational explanation of this
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apparent termination, which to our knowledge has not been reported in the literature. More
generally, a detailed understanding of how the C and U curves interact is crucial for an un-
derstanding of wave structure in these excitable models. For lower values of p in Figure 1
the model supports a stable traveling pulse solution, but as p increases, these pulse solutions
become unstable and, inside the U curve, turn into periodic plane waves. Thus, in order to
understand how pulse waves turn into periodic waves, we must first understand the ways in
which the C curve can terminate, either at or before the U curve. Since, in all the models
we consider here, the parameter p is one that can be controlled experimentally, it is plausible
that theoretical predictions about the transition from pulse to periodic waves will be able to
be tested experimentally. However, such considerations are left for future work, as a proper
mathematical understanding is a prerequisite for the development of testable predictions.

For each model, we shall carry out a detailed numerical bifurcation analysis in order to
elucidate the way in which the homoclinic curve terminates. We will show that homoclinic
branches can terminate in quite different ways in different systems. First, the mechanism
involved depends on whether the Hopf bifurcation is subcritical or supercritical at the point
where the homoclinic bifurcation curve approaches, but even with this knowledge there are
several possibilities, and the only way to determine what is going on is to use numerical
techniques. These investigations have helped us identify five different codimension-two mech-
anisms by which a branch of homoclinic bifurcations of an equilibrium may be terminated in
a CU system: a Shil’nikov–Hopf bifurcation; an equilibrium-to-equilibrium heteroclinic cycle
(the so-called T-point); a local saddle-node/Hopf bifurcation; a codimension-two heteroclinic
cycle between an equilibrium and a periodic orbit; and a tangency in a codimension-one
equilibrium-to-periodic heteroclinic cycle. Termination via a heteroclinic cycle between an
equilibrium and a fold of limit cycles is also possible, but this mechanism has not yet been
seen in a CU system.

The rest of the paper is organized as follows. Section 2 gives a brief overview of homoclinic
bifurcation theory and in particular of some codimension-two mechanisms which can terminate
a branch of homoclinic orbits as it approaches a Hopf bifurcation. Relevant references are given
to places in the literature where full unfoldings may be found, or, in the case of at least two of
the mechanisms, to forthcoming analysis by some of the present authors that will provide just
such detail. Section 3 contains the main contribution of this paper, which is the presentation
of careful numerical continuation results that reveal the specifics of the bifurcation diagrams
for each of the six example systems. Finally, section 4 attempts to draw general lessons
from these numerical results. Tentative explanations are also offered for previously reported
“anomalous” Shil’nikov–Hopf bifurcations, where a homoclinic curve appears to pass straight
through the Hopf curve, in defiance of theory, a “ghost” phenomenon that appears to be due
to the slow-fast nature of excitable systems.

2. Homoclinic bifurcations. This section introduces notation and reviews results about
homoclinic bifurcations from the existing literature. See, for instance, [29, 39] and references
therein for full details.

2.1. Codimension-one Shil’nikov homoclinic bifurcation. Consider a continuous-time
dynamical system

u̇ = f(u, p), u ∈ R
n, p ∈ R

m,
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and assume there is a hyperbolic equilibrium point u0(p) which for a codimension-one set of
parameter values has an isolated homoclinic orbit H1 that connects its stable and unstable
manifolds. The dynamical behavior of orbits near the homoclinic orbit depends on, among
other things, the eigenvalues of the flow linearized about the equilibrium. The leading eigen-
values of the equilibrium are defined as the eigenvalues of fu(u0(p), p) that have positive and
negative real parts closest to zero. From now on, we assume that the leading eigenvalues of the
equilibrium involved in the homoclinic bifurcation consist of a real, positive eigenvalue λ > 0
and a pair of complex conjugate eigenvalues −μ± iω, μ > 0. This is precisely the eigenvalue
structure characteristic of the equilibrium to the left (of the left arm) of the U-shaped Hopf
curve in all of the examples that follow.

The saddle quantity σ = λ − μ is defined as the sum of the real parts of the leading
stable and the leading unstable eigenvalues. If σ < 0 then the homoclinic bifurcation upon
varying a parameter is tame and involves finitely many periodic orbits in a neighborhood of
the homoclinic orbit in both phase and parameter spaces. The case of prime interest here is
the so-called Shil’nikov behavior that occurs when σ > 0. This case involves shift dynamics on
infinitely many symbols which implies, in particular, the existence of infinitely many periodic
orbits that have arbitrarily long periods of spiraling behavior close to u0. Moreover, there
are sequences of nearby parameter values at which there exist double-pulse homoclinic orbits
H2 that make two large excursions in a neighborhood of the primary homoclinic orbit. In
addition there are infinitely many N -pulse homoclinic orbits for all positive integers N .

A number of codimension-two mechanisms have been observed by which the dynamics
in a neighborhood of H1 changes qualitatively; see [11] for a partial review. For example,
the saddle quantity can change sign as we vary parameters along a homoclinic bifurcation
curve in the parameter plane. Such a transition is called a Belyakov bifurcation, after the
Russian mathematician who first described this situation [3]. A schematic representation of
what occurs in such a codimension-two bifurcation is depicted in the lower portion of Figure 3.
Another kind of Belyakov bifurcation [2] occurs when the complex pair of leading eigenvalues
associated with the equilibrium undergoing a homoclinic bifurcation becomes real, so that a
saddle-focus becomes a saddle. This latter transition, which is depicted in the upper part of
Figure 3 is the one that we encounter in this paper. Associated with this type of Belyakov
transition is the birth of multipulse homoclinic orbits; these orbits enter and then leave a
neighborhood of the equilibrium one or more times before converging back to the equilibrium.
Codimension-one curves of multipulse homoclinic orbits emanate from the codimension-two
Belyakov point.

Neither of these codimension-two bifurcations produces an end-point on the C-shaped
homoclinic branch. The question we wish to address is just how this termination happens
as the C approaches the U in the systems we investigate. Naively, one might expect that
this would occur via the so-called Shil’nikov–Hopf bifurcation (see Figure 4) that occurs as
the complex eigenvalues of the Shil’nikov equilibrium cross the imaginary axis. However, as
summarized in the next section, there are other possibilities as well.

2.2. Possible codimension-two termination mechanisms. Figure 4 depicts partial un-
foldings of six different codimension-two mechanisms by which a branch of homoclinic orbits
to an equilibrium may terminate as it approaches a Hopf bifurcation curve in a parameter
plane. We describe below the dynamics corresponding to each of the panels in the figure. Note
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Figure 3. Partial unfoldings of two Belyakov transitions in the (p1, p2) parameter plane. Here p1 unfolds
the existence of a primary homoclinic orbit H1, whereas variation of p2 causes the homoclinic bifurcation to
change from the tame case to the Shil’nikov case. In the upper panel, the Belyakov point B1 is caused by
a pair of nonsemisimple eigenvalues coalescing on the real axis and becoming complex. In the lower panel
the saddle quantity σ changes sign. In both cases, infinitely many N-pulse homoclinic orbits are created in
the neighborhood of the B-points, represented here by a few curves of double-pulse orbits H2. There are also
infinitely many curves of period-doublings and folds of periodic orbits that are not depicted.

that this list is not exhaustive but is specific to the case found in the CU systems considered
here where there is an equilibrium that has a one-dimensional unstable manifold to the left of
the U-shaped Hopf curve. In section 3 below we shall find examples of at least four of these
mechanisms in the CU systems we consider.

The six cases are as follows:
(a) A Shil’nikov–Hopf bifurcation. This codimension-two point occurs when the equi-

librium to which the homoclinic orbit is connected undergoes a supercritical Hopf
bifurcation. On the far side of the Hopf bifurcation, the parameter curve of homo-
clinic orbits transforms into a heteroclinic cycle that connects the equilibrium to the
small-amplitude limit cycle born at the Hopf bifurcation. There is also a parabolic
curve on which homoclinic tangencies to the periodic orbit exist. Inside the parabola
there are shift dynamics on infinitely many symbols. This situation was first analyzed
by Belyakov [1], with more complete treatments appearing in the work of Hirschberg
and Knobloch [26] and Deng and Sakamoto [13].

(b) A fold-Hopf (or saddle-node/Hopf) bifurcation occurs when a pure imaginary pair
and a zero eigenvalue occur in the linearization about the equilibrium. See [29] and
references therein for details of the unfolding of this codimension-two local bifurcation.
There are several cases, depending on the signs of certain nonlinear terms in the two-
dimensional normal form. In the so-called (+,−) case, it is inevitable that two small-
amplitude homoclinic orbits originate from this codimension-two bifurcation [5, 19],
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(a) Shil’nikov-Hopf (b) fold-Hopf

(c) T-point (d) EP2 Equilibrium-to-periodic cycle

(e) EP1t Equilibrium-to-periodic tangency

(f) Shil’nikov-fold

homoclinic
tangency

fold
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periodic

homoclinic
orbit

Hopf
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Figure 4. Qualitative unfolding diagrams of six different codimension-two mechanisms that could cause the
termination of the homoclinic branch (blue curve) in a CU system, as it approaches the (red) Hopf curve. The
arrows in the figure denote the direction in which the periodic orbit bifurcates from the Hopf bifurcation or from
other key bifurcation curves. Note that in full unfoldings of each case there are many more bifurcation curves
than those depicted. See text for more details.

doing so with a characteristic entwined wiggling in the parameter space; see [8].
(c) A T-point [25] (or Bykov point [6, 7]). This is an equilibrium-to-equilibrium codimen-

sion-two heteroclinic cycle, and two branches of primary homoclinic orbits bifurcate
from it. If one equilibrium is a saddle-focus with a negative saddle index and the other
has real eigenvalues, then one curve of homoclinic orbits spirals in parameter space,
while the other approaches the T-point monotonically. Such a T-point may or may
not appear close to a Hopf bifurcation in parameter space.

(d) Equilibrium-to-periodic heteroclinic cycle (EP2 point). At such a point there exists
a heteroclinic cycle consisting of a connection from an equilibrium to a periodic orbit
and a connection from the periodic orbit back to the equilibrium. In the case that the
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unstable manifold of the equilibrium is one-dimensional, we require that the periodic
orbit has a three-dimensional unstable manifold and an (n − 2)-dimensional stable
manifold. Then the heteroclinic connection from the equilibrium to the periodic orbit
will itself be of codimension two while the connection back the other way is generic.
Note that, unlike each of the other codimension-two mechanisms we review here which
can occur in R

3, an EP2 point requires four phase space dimensions. The asymptotics
of how the curve of homoclinic orbits approaches such an EP2 point were studied
in [34]. The rate and manner of convergence (i.e., direct or wiggly approach) depend
in part on the size of the Floquet multiplier of the periodic orbit and whether the
Floquet multipliers are real or complex. A complete unfolding of other codimension-
one bifurcation curves nearby is unknown.

(e) Equilibrium-to-periodic heteroclinic tangency (EP1t). In contrast to an EP2 point,
here the periodic orbit has a two-dimensional unstable manifold, and so the heteroclinic
connection from the equilibrium to the periodic orbit is of codimension one, whereas
the connection from the periodic orbit back to the equilibrium remains generic. A
codimension-two point is reached when the generic connection forms a tangency. This
case was partially studied in [34], with more details to appear in [9]. In fact, such
a point does not represent an end-point of a curve of homoclinic orbits; there is an
infinite number of homoclinic curves, each of which undergoes a turning point in the
parameter plane close to the codimension-two point. Each successive curve corresponds
to an orbit with an additional loop near the periodic orbit. Also arising from the
codimension-two point are curves of homoclinic tangencies to the periodic orbit that
have a complex topology.

(f) A blue-sky catastrophe of homoclinic orbits. This occurs when the homoclinic bifur-
cation curve ends at a curve of fold bifurcations of periodic orbits. One natural way
for such a codimension-two point to arise would be if the saddle-node periodic orbit
appears in the stable manifold of the equilibrium to the left of the red Hopf curve
in the case where the Hopf bifurcation is subcritical (the small arrows in Figure 4
indicate the direction of bifurcation). The resulting barrier prevents the existence of
a homoclinic orbit, and the homoclinic branch must terminate via the orbit wrapping
itself infinitely many times around the emerging structurally unstable periodic orbit.
This case is currently being studied [10]. There may be other similar termination
mechanisms involving homoclinic wrapping around nonhyperbolic periodic orbits, for
example, orbits undergoing a period-doubling bifurcation, but we are not aware of any
theoretical analyses.

It is pertinent to point out that homoclinic curves that appear to terminate “in mid air” in
a parameter plane may in fact not imply the existence of a codimension-two bifurcation point
at all. For example, we shall see in several of the examples below cases where the homoclinic
bifurcation curve turns around sharply and doubles back on itself as it approaches (but does
not quite reach) the Hopf bifurcation. The homoclinic orbit typically gains an extra loop as it
does so, so that globally a single-pulse orbit becomes a double-pulse orbit. The sharpness of the
turn in the parameter space means that the bifurcation curve appears to terminate, but there
is in fact no terminating bifurcation. However, as we shall see, such sharp turns occur naturally
as a consequence of some of the other mechanisms listed above, notably the EP1t case.
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3. Numerical continuation results. Throughout we use the continuation routines Hom-
Cont [11, 12] that are embedded in the software AUTO [15] in order to trace curves of ho-
moclinic orbits in two parameters. AUTO is a numerical bifurcation analysis package which
uses pseudo-arclength continuation in combination with the solution of two-point boundary
value problems with Gauss–Legendre collocation. We use the other capabilities of AUTO
[14, 15] to trace curves of local bifurcations of equilibria and periodic orbits and to identify
codimension-two bifurcation points. The periodic and homoclinic orbits under consideration
in this paper are discretized with a total of NTST× NCOL points, where NTST is the number of
mesh intervals and NCOL the number of so-called Gauss collocation points per mesh interval.

The general method that was used to produce the bifurcation diagrams was as follows:
an equilibrium point was determined either analytically or numerically for certain parameter
values. This equilibrium was then continued in one parameter, until a Hopf bifurcation was
detected. AUTO can both continue this Hopf bifurcation in two parameters and continue a
periodic orbit from the Hopf bifurcation in one parameter. The period of the periodic orbit
grows to infinity as the homoclinic orbit is approached. Then the HomCont algorithm can
phase-shift such a periodic orbit so that the beginning and end-points are close to the equi-
librium and then continue the homoclinic orbit in two parameters using projection boundary
conditions.

Note that cases (a) and (e) in Figure 4 involve interaction of the primary homoclinic
curve with homoclinic tangencies to periodic orbits. There are currently no implemented
general boundary value methods for continuation of homoclinic tangencies to periodic orbits
in arbitrary dimensions; although see [45]. Instead, we can use the result that homoclinic
tangencies are accompanied by a sequence of parameter values at which fold bifurcations
occur [21, 20]. Therefore, by following folds of high-period periodic orbits that approach a
homoclinic tangency, we can compute approximations to such global bifurcation curves.

The systems studied in this paper are all highly stiff (with time scales differing by up
to 13 orders of magnitude in some cases). This stiffness complicates the computations. For
instance, the computation of Floquet multipliers of periodic solutions in AUTO is not very
reliable once the system has very small or very large multipliers; see [31]. Of particular
significance for the systems in this paper is the observation that detection of homoclinic
bifurcations can be difficult in stiff systems. For instance, there may exist periodic orbits with
extremely high period that can be misdetected as implying the existence of homoclinic orbits.
In such circumstances it is sometimes necessary to increase the number of mesh intervals
(NTST) to values up to 600 to retain convergence, while a number of about 30 is usually
sufficient for nonstiff systems. Similarly, it was sometimes found to be necessary to increase
the truncated time interval T over which we compute approximations to homoclinic orbits up
to 106 to avoid, but still not completely eliminate, false positive results.

3.1. Model 1: FitzHugh–Nagumo. We begin by considering the bifurcation set of the
traveling wave FitzHugh–Nagumo system (1.2) with the parameter values (1.3), as discussed
in the introduction. Note that equations (1.2) have a symmetry. Specifically, in the case
γ = 1, α = 0.1, the equations are equivariant under the transformation

(3.1) v → 11

15
− v, w → 11

15
− w, d → −d, p → 11

15

[
1 − 38

225

]
− p,
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Figure 5. Another projection of the “homoclinic banana” for the FitzHugh–Nagumo system (1.2) with the
parameters (1.3) (cf. the C curve in Figure 1). Panels (b) and (c) show two different homoclinic orbits at
p ≈ 0.06, s ≈ 0.894386 near the lower end of the banana. Note the gross difference in phase space between these
two orbits. We (loosely) refer to the orbit in (b) as a single-pulse orbit and the orbit in (c) as a double-pulse
orbit.

which means that the bifurcation set in the (p, s) plane is symmetric under reflection through
the line p = 0.3047. Thus there are actually two C-shaped curves of homoclinic bifurcations,
one to the left of the Hopf U as shown, and a mirror image to the right of the U (not shown).
We discuss only the leftmost C here; results are analogous for the other C.

Detailed numerics reveal that the homoclinic locus that appears to be a single C-curve
in Figure 1 is in reality a pair of curves which join together in two fold-like structures in the
parameter plane, forming a closed curve; when the homoclinic branch is followed numerically
in the parameters p and s, the branch turns around at one end of the C and then appears
to retrace its path to the other end of the C, where it turns around again and returns to its
starting point. On the scale of Figure 1, the C appears to be a single curve, and even when
zooming in the separation between the curves is hard to see because the distance between
curves approaches the numerical accuracy of AUTO/HomCont. However, as shown in Fig-
ure 5, the two curves can be distinguished by plotting the numerically computed L2-norm
along the homoclinic locus. We call the thin closed loop of homoclinic orbits in Figure 1 a
homoclinic banana. Thus we see that the homoclinic locus in the FitzHugh–Nagumo system
does not terminate at each end in a codimension-two point, as would seem the case from a
first glance at the bifurcation set. This is an example of the apparent termination mechanism
discussed at the end of section 2.2. We note that the ends of the C curve have different
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Figure 6. Bifurcation diagram and time series for the FitzHugh–Nagumo model with s = 1. Left: Bifur-
cation diagram showing the period T as a function of p. The red curve continues beyond the right arm of the
Hopf U, eventually terminating in a second homoclinic bifurcation at p ≈ 0.61. The purple curve arises from
a Hopf bifurcation on the left arm of the Hopf U (bifurcation point marked HB). Right: Time series for the
periodic orbits with period T = 492.476 and T = 147.184, indicated by the large dots in the bifurcation diagram.

shapes when the L2-norm is plotted against p, with the upper end being blunt and involving a
number of turning points, while the lower end has, within numerical accuracy, just one sharp
turn. Preliminary calculations suggest the existence of canards, that is, rapid growth from
small scale to large scale oscillations in a thin wedge of parameter space, near the upper end
of the C curve, and this may explain the difference in structure at the two ends.

Near both ends of the C curve, the Hopf bifurcation is subcritical, and the periodic orbit
created in the Hopf bifurcation appears on the left side of the U. Numerical continuation of
this periodic orbit for fixed s = 1 produces the purple wiggly curve shown in Figure 6. The
form of this curve indicates that the periodic orbit approaches a set of homoclinic tangencies
to a limit cycle (see, e.g., [20]). There are four accumulation points for the saddle-node
bifurcations of periodic orbits on the purple curve in Figure 6, presumably corresponding to
four separate parameter values at which there are tangencies between the stable and unstable
manifolds of a hyperbolic limit cycle. We note here that the rate of converge in p of each
sequence of folds to a fixed value is extremely rapid. As each group of four consecutive folds is
traversed the orbit undergoing this wiggling acquires an extra loop near the limit cycle (see the
two subpanels to the figure which depict orbits with 1 and 5 oscillations per period near the
limit cycle, respectively). The limit cycle in question (shown as a red curve in Figure 6) can
itself be continued into a Shil’nikov homoclinic orbit. At different parameter values we might
thus expect to see an interaction between homoclinic orbits to an equilibrium and homoclinic
tangencies to a periodic orbit.

Figure 6 suggests there is a lot more structure to the bifurcation set for the FitzHugh–
Nagumo equations than is shown in Figure 1. Figure 7 shows some of the additional bi-
furcations that occur between the C and the U. Note, in particular, the degenerate Hopf
bifurcation marked with a square and the curve of saddle-node bifurcations of a periodic orbit
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Figure 7. A more detailed bifurcation set for the FitzHugh–Nagumo system. (a) The curve labeled Hom (2x )
is the “homoclinic banana” described in the text. The rightmost curve is part of the U-shaped Hopf curve, with
the square marking a degenerate Hopf bifurcation and the large dot marking a cusp bifurcation. All other curves
denote saddle-node bifurcations of limit cycles (SL). The arrows indicate the direction in which periodic orbits
appear on the various sections of the Hopf bifurcation curve. (b) A zoom near the top end of the homoclinic
curve. The blue curve delineates the homoclinic banana. The green curves show saddle-node bifurcations of
limit cycles associated with the unfolding of the codimension-one Shil’nikov bifurcation. The purple curves also
show saddle-node bifurcations of periodic orbits, but these are associated with the folds on branches of periodic
orbits that approach a homoclinic tangency of a periodic orbit (two such saddle-node bifurcations were marked
with large dots in Figure 6).

that emanates from this point. Also, some of the saddle-node bifurcations of periodic orbits
seen in Figure 6 have been continued in two parameters and their loci are shown in Figure 7.
We distinguish between two types of saddle-node bifurcations in the zoom in Figure 7(b). Of
particular interest are the purple curves which correspond to the fold bifurcations in Figure 6
that approach the homoclinic tangencies. Thus the purple curves are approximations to loci of
homoclinic tangencies to periodic orbits. The sharp turning point in the blue homoclinic curve
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Figure 8. Homoclinic bifurcation curves in parameter space for different values of ε in the FitzHugh–
Nagumo system. Belyakov transitions (marked B) are present on the curves corresponding to ε = 0.0025
and ε = 0.005 (the banana-split case), but not the remaining curves (the banana case). On the left side of
the Belyakov points the eigenvalues of the equilibrium are real rather than complex. Right: L2-norm for the
homoclinic orbits occurring along the banana-split curve in the case ε = 0.0025. This panel demonstrates that
each point on the C-shaped curve between the Belyakov points corresponds to a single homoclinic bifurcation
curve, while to the right of each Belyakov point there are two curves of homoclinic bifurcations.

occurs very close to the parameter value at which the homoclinic orbit and homoclinic tan-
gency interact. This is an example of an EP1t equilibrium-to-periodic heteroclinic tangency,
which is case (e) of Figure 4.

It is also instructive to look for Belyakov transitions. It is straightforward to check numer-
ically that, for the parameter values used above, the saddle-quantity of the homoclinic orbits
on the C-curve is always positive and the stable leading eigenvalues are always complex. Thus
homoclinic bifurcations of the equilibrium in this system always display Shil’nikov-type be-
havior, and no Belyakov transitions occur. However, for different values of the parameter ε the
behavior changes. As is depicted in Figure 8, for smaller values of ε there exist two Belyakov
transitions on the C-shaped homoclinic bifurcation curve. In between these two Belyakov
points, the eigenvalues of the equilibrium are real and there exists just a single homoclinic
bifurcation curve. On the right-hand side of each Belyakov point the C-curve is in fact a
pair of homoclinic bifurcation curves just as for the homoclinic banana above; a single-pulse
homoclinic orbit deforms into a double-pulse homoclinic orbit, with the double-pulse orbit
then terminating at the Belyakov point. Thus the homoclinic banana is now split. Similar
behavior was found in [33] and [30]. Using HomCont we were able to find the critical value
of ε where the behavior changes and the two Belyakov points appear. This codimension-
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three point, denoting the transition between the banana and the banana-split case, occurs at
ε = 0.006018385 for p = −0.05314325 and s = 0.07101599.

In summary, we have gained some insight into the termination of the homoclinic bifurca-
tion curve in the traveling-wave FitzHugh–Nagumo equations; namely, the C curve does not
terminate at each end but instead folds back on itself, with the single-pulse homoclinic orbit
deforming into a double-pulse orbit in the process. One way of explaining the sharp turning
points of the homoclinic curve is through the numerical evidence we have presented for the
existence of equilibrium-to-periodic heteroclinic tangencies (EP1t points). The intricate dy-
namics near the EP1t point, particularly the interaction between fold curves and homoclinic
tangencies, will be discussed further in [9]. Note though that things are made even more
subtle by the slow-fast nature of the FitzHugh–Nagumo model and the consequent occurrence
of canard-like behavior.

3.2. Model 2: Sneyd, LeBeau, and Yule three variable model. In [41] a model of
intracellular calcium wave propagation in pancreatic acinar cells was constructed and studied.
Two versions of this model were considered; after passage to traveling wave coordinates one
model has three phase space variables and the other four. In this section we look at the former
(SLY-3), and in the next section at the latter (SLY-4). For more details on the construction
of these models, the interested reader is referred to the original paper.

The SLY-3 model equations are given by

ċ = d,

Dcḋ = sd− kf

(
phϕ1

ϕ1p + ϕ−1

)4

+
Vpc

2

K2
p + c2

− Jleak,(3.2)

sḣ = ϕ3(1 − h) −
(

ϕ1ϕ2p

ϕ1p + ϕ−1

)
h.

Here c denotes the calcium concentration, s is the wave speed introduced when moving to
traveling wave coordinates, and p represents the concentration of inositol trisphosphate (IP3),
a second messenger that can be experimentally controlled, at least to a certain extent. All
other quantities in the equations are either constant or functions of c; see Appendix A for
details. We are interested in the bifurcation set in the (p, s) parameter plane. Much of the
bifurcation set for this model was described already in [41], with some further details in [37, 8].
This example is presented here as an illustration of two of the five mechanisms (i.e., T-point
and fold-Hopf) by which homoclinic loci terminate near Hopf bifurcations in CU systems.
Several new relevant bifurcation results are also included.

There are four main homoclinic branches in this system. One of these, named branch A
following the notation of [41], is shown in Figure 9 together with the locus of Hopf bifurcations.
We regard this system as a CU system even though the two arms of the Hopf U cross each
other, forming a loop as shown in Figure 9. The Hopf bifurcation is degenerate at s ≈ 4.858
and at s ≈ 6.7502, and the direction in which the bifurcating periodic orbit appears on each
section of the Hopf bifurcation curve is indicated in the figure.

At the upper end of the C-shaped curve, branch A terminates at a T-point, as described
in [41]. An interesting result about the dynamics near the T-point was proved in [35], where
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Figure 9. Partial bifurcation set for the SLY-3 model, equations (3.2), showing the CU nature of the
bifurcation curves. The two arms of the Hopf U cross one another, forming a loop, with the arrows denoting
the directions in which periodic orbits appear in the Hopf bifurcation. The open dots on the Hopf locus denote
saddle-node Hopf bifurcations, and the squares mark degenerate Hopf bifurcations. The C-shaped homoclinic
bifurcation curve (labeled A following the notation of [41]) terminates at the top at a T-point (labeled T) and
turns around sharply at the lower end in the same way as the lower end of the C curve in the FitzHugh–Nagumo
equations.

it was shown that stable pulses in the underlying PDEs arise from the gluing together of two
unstable fronts. At the lower end of the C-shaped curve, the branch of homoclinic bifurcations
makes a tight turn, and the homoclinic orbit deforms continuously from a single-pulse orbit
to a double-pulse orbit, in a similar way to that seen near the lower end of the C curve in the
FitzHugh–Nagumo model. The branch of double-pulse orbits then doubles back all the way to
the T-point, terminating at or very near the T-point. Thus, once again we find the C-shaped
curve is a homoclinic banana, although in this case one end of the banana is attached to
the T-point. We note that the banana-nature of branch A is a new result. In [41] it was
conjectured that branch A terminates near the Hopf bifurcation when the amplitude of the
homoclinic orbit goes to zero. On the other hand, [37] showed that branch A had a sharp
turning point at the lower end of the C curve but was able to trace the doubled-back curve
only as far as the large bend in the C at (p, s) ≈ (0.2, 8.5). This is an example of the way in
which the extreme stiffness of the CU models considered in this paper can result in misleading
numerical results, even when great care is taken with the computations.

Three further curves of homoclinic bifurcations (branches B to D) are shown along with
branch A in Figure 10. Branch B starts at the T-point; in Figure 10 it leaves the diagram in
the direction of increasing s and will not concern us further. Branch C starts at a saddle-node
Hopf point and does not terminate; it also leaves the bifurcation set in the direction of large
s. Branch D starts at the same saddle-node Hopf point as branch C (it wiggles around branch
C; see [8]) and then follows branch A, finally terminating at the T-point.

There are other curves of homoclinic bifurcations besides the four branches, A to D,
identified above. For instance, if we follow one of the double-pulse orbits that lies close to
branch A, we find that it, too, originates from the T-point. In the other direction these
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Figure 10. A more detailed bifurcation set for the SLY-3 model. This figure is an enlargement of part
of Figure 9. Depicted are the homoclinic bifurcations A, B, C, and D, the two saddle-node bifurcations of
equilibria SN, the two saddle-node Hopf bifurcations SNH, the T point, and the two saddle-node bifurcations of
limit cycles SL which terminate at the degenerate Hopf bifurcations marked with squares.

branches follow branch A toward the SNH point but turn around sharply just before this
point and return to the T-point again.

3.3. Model 3: Sneyd, LeBeau, and Yule four variable model. The SLY-4 model, studied
in [41], is given by the following system of equations:

ċ = d,

Dcḋ = sd− kfy
4 +

Vpc
2

K2
p + c2

− Jleak,

sẋ = pϕ1x− ϕ−1y − ϕ2y,(3.3)

sẏ = −(pϕ1x− ϕ−1y) + ϕ3(1 − x− y).

The variable h in SLY-3 is related to x and y in SLY-4 by h = x+ y, with all other variables,
parameters, and expressions in SLY-4 the same as for SLY-3, as detailed in Appendix A.

A partial bifurcation set for this system is shown in Figure 11. The bifurcations seen
are similar to those in the FitzHugh–Nagumo system. In particular, the C-shaped curve is
a homoclinic banana as for the FitzHugh–Nagumo equations. There is also a saddle-node
bifurcation of periodic orbits emanating from a degenerate Hopf bifurcation, and homoclinic
bifurcations of periodic orbits. Figure 11(b) shows bifurcations of one branch of periodic orbits
associated with SLY-4; compare with Figure 6.

This example does not exhibit any new mechanisms for termination of the homoclinic
branches, but does show that two closely related models (SLY-3 and SLY-4) can have com-
pletely different termination mechanisms for the branch of homoclinic bifurcations. Why this
should be so is not clear. Nevertheless, it is apparent that minor changes in model structure,
ones that have little to no significant effect on model behavior over the vast majority of pa-
rameter space, can cause significant qualitative changes in certain sensitive areas of parameter
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Figure 11. (a) A partial bifurcation set for the SLY-4 model, equations (3.3). The curve labeled Hom (2x )
represents a homoclinic banana. The square on the Hopf curve marks a degenerate Hopf bifurcation. All other
curves are saddle-node bifurcations of limit cycles. The arrows through the Hopf locus indicate the direction
in which periodic orbits appear on the various sections of the Hopf bifurcation curve. (b) Bifurcation diagram
for the SLY-4 model, for s = 4.17, showing the period T of the periodic orbits that emanate from the Hopf
bifurcation in panel (a).

space. Although it is unlikely that such changes in the bifurcation structure would be reflected
in experimental results, or lead to testable predictions, it is still necessary to understand the
complete range of possibilities in order to develop a proper mathematical understanding of
the CU structure.

3.4. Model 4: A nine-dimensional calcium model. The equations we consider in this
section come from a model for calcium wave propagation in pancreatic acinar cells developed
in [40] and [43] and further studied in [38]. After passage to a moving frame of reference, we
obtain the traveling wave equations for the model:

ċ = d,

Dcḋ = sd− J,

sċe = γ(Jserca − (kfPIPR + ν1Pryr + Jer)(ce − c)),

sṘ = ϕ−2O − ϕ2pR + (k−1 + l−2)I1 − ϕ1R,

sȮ = ϕ2pR− (ϕ−2 + ϕ4 + ϕ3)O + ϕ−4A + k−3S,(3.4)

sȦ = ϕ4O − (ϕ−4 + ϕ5)A + (k−1 + l−2)I2,

sİ1 = ϕ1R− (k−1 + l−2)I1,

sİ2 = ϕ5A− (k−1 + l−2)I2,

sẇ = kcm(w∞ − w)/w∞,

where J ≡ (kfPIPR + ν1Pryr + Jer)(ce − c)− Jserca − Jmito + δ(Jin − Jpm). Here ce denotes the
concentration of calcium ions in the ER, R denotes the fraction of receptors in various states,
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Figure 12. Partial bifurcation set for the nine-dimensional calcium model, equations (3.4). The C curve
of homoclinic bifurcations appears to cross the Hopf bifurcation curve at one end, but this is believed to be a
numerical artifact as explained in the text. At the other end, the C curve turns around sharply at the first in a
sequence of sharp turns which are not visible in this figure. There are no degenerate points on the Hopf locus;
the saddle-node bifurcation of limit cycles (curve marked SL) does not terminate in this figure.

and δ = 0.1 controls the magnitude of transmembrane fluxes relative to the trans-ER fluxes
without resting [Ca2+]. The other parameters and constants are given in Appendix A.

Figure 12 shows a partial bifurcation set for this system of equations. At the lower end
of the C-shaped homoclinic locus, the homoclinic branch has a sharp turning point, with
the branch doubling back on itself. Unlike the case in the earlier example systems in which
the turning point caused a homoclinic banana, here we have something topologically very
different; see Figure 13. Here the homoclinic branch follows an (infinite) sequence of turning
points that accumulate on two extreme values of (p, c). The turning points actually separate
into six sets of points with four intermediate sets of folds between the extrema (which are the
only sets that are easily visible in Figure 13(a)).

As we move through one complete cycle of six folds, the homoclinic orbit gains an extra
large loop. As this process continues the orbit transforms from a primary Shil’nikov homoclinic
orbit (Figure 13(b)) to something that increasingly resembles a heteroclinic cycle between the
equilibrium point and a periodic orbit (Figure 13(c)). Note that Figure 13(a) shows the L2-
norm computed by AUTO as a function of p; in a plot of c versus p all the separate folds
of the branch fall on top of one another to within numerical accuracy. The AUTO L2-norm
is defined as (1/T )

∫ T
0 ‖u‖2dt, where T is a fixed large time over which the homoclinic orbit

is computed. Since the equilibrium has a higher L2 value than the periodic orbit, the L2-
norm for fixed T decreases in Figure 13(a) as more turns are added around the periodic orbit.
Behavior of this type is explained in [9]. Each of the accumulation points of the folds of the
homoclinic locus corresponds to an EP1t point, and the global connectedness of the locus is
due to the topology of the intersection between the stable manifold of the equilibrium and the
unstable manifold of the periodic orbit.

In Figure 12 the top end of the homoclinic locus seems to pass straight through the Hopf
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Figure 13. (a) Detail along the lower part of the homoclinic branch in Figure 12, showing the L2-norm of
the homoclinic orbit as a function of p. The turning points on the homoclinic branch initially approximately
alternate between two locations, with p values given approximately by 2.63466, 1.88681, 2.63383, 1.88681,
2.63383, and 1.88681, and then follow a repeated sequence of six values of p: 2.63383, 1.93415, 1.93954,
1.88681, 1.95014, 1.94495. Not all turning points can be distinguished in the figure. Below: Homoclinic orbits
near the lower end of the homoclinic branch. (b) The homoclinic orbit before going through any turning points,
at (p, s) = (2.4, 6.68342); (c) the homoclinic orbit at approximately the same place in parameter space, at
(p, s) = (2.4, 6.68342) after going through 17 outer turning points.

bifurcation curve and terminate at p ≈ 2.3! However, we believe this to be a numerical artifact
and that the homoclinic curve actually terminates at a Shil’nikov/Hopf bifurcation when the
homoclinic locus reaches the Hopf locus. This numerical anomaly is due to the slow-fast
nature of the system; a detailed discussion is deferred to section 3.6.

3.5. Model 5: A four-dimensional simplification. Assuming fast equilibration between
all the receptor states except R and A, we can reduce (3.4) to a model with only a single
gating variable, but one whose steady-state behavior is equivalent to (3.4):
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Figure 14. Partial bifurcation set for the four-dimensional calcium model, equations (3.5). The homoclinic
bifurcation curve appears to cross the Hopf locus at the top end, but this is believed to be a numerical artifact,
as discussed in the text. At the lower end the homoclinic locus goes through a sequence of sharp turning points,
eventually converging at a codimension-two point at p = 0.7682935. The two curves of saddle-node bifurcations
of periodic orbits (marked SL) terminate on the homoclinic bifurcation curve at the large dots where the leading
eigenvalues of the corresponding equilibrium resonate; the saddle quantity of the saddle vanishes at these points.
The lower SL bifurcation terminates at its right end at a degenerate Hopf bifurcation, indicated by a square.
A second degenerate Hopf bifurcation lies to the left, just above the lower end of the C curve; the SL curve
emanating from this degenerate Hopf bifurcation is not shown. The arrows indicate the direction of the Hopf
bifurcation as in Figure 7.

ċ = d,

Dcḋ = sd− ((JIPR + Jer)(ce − c) − Jserca + δ(Jin − Jpm)),

ċt = δ(Jin − Jpm),(3.5)

sṘ = −ϕ5A + (k−1 + l−2)(1 −R).

Here the variable ct is related to the variables in (3.4) via the equation ct = sce/γ−Dcd+ sc.
All other variables, parameters, and constants in these equations have the same meaning as
in (3.4).

Figure 14 shows a partial bifurcation set for (3.5). The top end of the homoclinic branch
has similar behavior to that seen in the nine-dimensional model, with the numerical approxi-
mation to the homoclinic locus crossing the Hopf bifurcation curve. Again, we believe this to
be a numerical artifact but return to a fuller discussion of the phenomenon in section 3.6.

Behavior near the lower end of the homoclinic curve is different in this system than in
the nine-dimensional model. As before, the branch initially turns around sharply, and there
follows a series of further sharp turns, but the turning points converge to a single point rather
than to two (see Figure 15). Again, as in the nine-dimensional model, the homoclinic orbit
looks increasingly like a heteroclinic cycle between the equilibrium and a periodic orbit as we
move along the folded homoclinic branch (see Figures 15(b) and 15(c)). We conjecture that
the turning points in the homoclinic bifurcation curve are organized here by a codimension-
two heteroclinic bifurcation involving the equilibrium and the periodic orbit. The oscillatory
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Figure 15. (a) The lower part of the homoclinic bifurcation curve in the four-dimensional calcium model,
equations (3.5), showing the maximum value of c on the homoclinic orbit, cmax, as a function of p. After
many turns cmax stabilizes at 0.134922. (b) The homoclinic orbit at p = 0.7682935 after 15 turns of the
homoclinic bifurcation curve. (c) The homoclinic orbit at p = 0.7682935 after many turns of the homoclinic
bifurcation curve. Also plotted (red curve) is a periodic orbit that bifurcates from the right arm of the U-
shaped Hopf locus. This orbit was obtained by continuing in p for s fixed from the Hopf bifurcation point at
(p, s) = (22.04131, 6.878683).

approach to this codimension-two point is reminiscent of an EP2 point (case (d) in Figure 4).
However, at the time of writing it is not clear whether this is the case, or whether we have
another example of the phenomenon in Figure 13, explained by the presence of several EP1t
points, with remarkably thin wiggles at large periods.

The chief difference between the EP1t and EP2 heteroclinic cycles is the dimension of the
stable manifold of the periodic orbit. Indeed, the rate of convergence of the turning points
near either an EP2 or an EP1t point was found in [34] to depend on the Floquet multipliers
of the periodic orbit. However, due to the stiffness of the equations we have been unable to
calculate these multipliers accurately enough to compare numerics with the theory. (AUTO
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Figure 16. (a) Partial bifurcation set for the five-dimensional model, equations (3.6). (b) An enlargement
of part of (a). Homoclinic and Hopf bifurcations are labeled. The points labeled (i) and (ii) in (b) correspond
to the parameters used for the phase portraits in Figure 17. In (b) two different algorithms are used to compute
the homoclinic curve—projection boundary conditions (solid line) and fixed period-5000 periodic orbit (dashed
line). To the left of the Hopf line these two curves are overlaid to the accuracy depicted.

calculations give the Floquet multipliers of the periodic orbit as 1, 0.28, 8 × 10−7,−1 × 106,
but these multipliers cannot be trusted since the signs are clearly wrong. However, from these
calculations it appears that the periodic orbit, as followed from the Hopf bifurcation, does not
undergo any bifurcations and has consistently two multipliers strictly inside the unit circle,
suggesting an EP1t point.)

A significant difference between this case and the nine-dimensional model is that in these
equations the Hopf bifurcation is subcritical near the lower end of the homoclinic branch,
producing a periodic orbit to the left of the Hopf locus, although it is not clear whether this
has any bearing on the question of how the homoclinic branch terminates.

3.6. Model 6: A five-dimensional variant. The model studied in this section is another
simplification of the nine-dimensional model described in section 3.4; instead of using a six-
state model of the IPR as in (3.4), all but three of the states are assumed to be in instantaneous
equilibrium, and a fast time-scale reduction is applied to simplify the model. The reduced,
five-dimensional model is given by the following set of equations:

ċ = d,

Dcḋ = sd− [(kfPIPR − Jer)(ce − c) − Jserca + δ(Jin − Jpm)],

sċe = −γ [(kfPIPR − Jer)(ce − c) − Jserca] ,(3.6)

sȮ = φ2pR− θ1O + (k−1 + l−2)I2 − θ2O,

sṘ = θ1O − φ2pR.

All parameters and constants in these equations are given in Appendix A. This system of
equations was studied in [22, 23], where a partial bifurcation diagram was obtained (Figure 16).
In this figure, the homoclinic bifurcation curve appears to overshoot the Hopf bifurcation curve
at both ends by a significant amount, in a similar way to that seen near the upper ends of
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the C-shaped curves in Figures 12 and 14. (Note that the Hopf bifurcation is supercritical
for all values of p and s in this figure.) Since there is only one equilibrium solution to (3.6),
there must be a homoclinic-Hopf bifurcation of the equilibrium solution at the point where
the homoclinic and Hopf bifurcation curves coincide. Just to the left of the Hopf bifurcation
locus, we generically expect that the homoclinic orbit will enter the equilibrium solution along
a direction tangent to the center manifold. The dynamics associated with such a homoclinic-
Hopf bifurcation in a three-dimensional system is described in [26], while [13] discusses the
case in three or higher dimensions. In both papers it is shown that the homoclinic bifurcation
curve terminates at the Hopf locus. To understand why the numerically computed homoclinic
bifurcation curve shown in Figure 16 overshoots the Shil’nikov–Hopf point it is necessary
to look a little closer at the algorithms used to obtain the numerical approximation to the
homoclinic locus. We do so below but note that much of this discussion was also contained
in [23].

Homoclinic bifurcation curves like those shown in Figure 16 can be obtained using any
algorithm that sets up well-posed boundary conditions after truncation to a (large) finite time
interval t ∈ (0, T ). For example, HomCont poses projection boundary conditions based on
eigenvectors of the adjoint linearized problem about the equilibrium point. The dimensions
of the stable and unstable subspaces are fixed at the beginning of the computation. In a case
such as ours, where these dimensions change midcomputation (as the Hopf locus is crossed),
HomCont will continue to compute an orbit that satisfies the specified boundary conditions
even though the boundary conditions are no longer appropriate. Thus, if using HomCont to
compute the approximate homoclinic locus for (3.6), we must ignore any part of the computed
curve located inside the U-shaped Hopf locus; the computed curve in this region apparently
approximates a heteroclinic connection from the equilibrium to the Hopf periodic orbit rather
than a homoclinic bifurcation of the equilibrium. More details on the HomCont algorithm
can be found in [12].

An alternative approximation to the homoclinic locus may be obtained using periodic
boundary conditions, and following a periodic orbit of fixed high period (say, period 5000 or
higher). This method is known to be less accurate than using projection boundary conditions,
but nevertheless converges as T → ∞ to the correct result. The approximate homoclinic locus
for (3.6) obtained with this method is indicated by the dashed curve in Figure 16(b); like the
case with projection boundary conditions, this curve also crosses the Hopf locus at each end.
However, examination of the phase portraits at various points on the curve suggests that
the locus of homoclinic bifurcations of the equilibrium terminates at the Hopf locus, just as
expected from a Shil’nikov–Hopf bifurcation. Panels (a) and (b) in Figure 17 show the period
5000 orbit approximating the homoclinic orbit at a point to the left of the Hopf bifurcation
(point (i) in Figure 16(b)), while panels (c) and (d) show the orbit at point (ii) in Figure 16(b).
It is clear from the figure that after the Hopf bifurcation, instead of simply spiraling in toward
the equilibrium point, the computed orbit spirals out toward the periodic orbit (shown as a
red curve in Figure 16). Thus we are actually computing an approximation to a heteroclinic
connection from the equilibrium to the periodic orbit created in the Hopf bifurcation, rather
than a true homoclinic orbit to the equilibrium. In this case, it appears that high-period
orbits persist beyond the Hopf bifurcation even though the homoclinic bifurcation terminates
at the Hopf locus.
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Figure 17. Phase portraits at the points labeled (i) and (ii) in Figure 16, computed with AUTO by following
an orbit of fixed period (period 5000) with AUTO constant NTST = 1000. (a) At point (i); (b) enlargement
of (a) near the equilibrium. (c) At point (ii). The red curve is the periodic orbit created in the Hopf bifurcation;
(d) enlargement of (c) near the equilibrium.

From detailed examination of the phase portraits for this model it is evident that the true
homoclinic locus terminates at the Hopf bifurcation at both the upper and lower ends. These
are just regular Shil’nikov–Hopf bifurcation points (case (a) of Figure 4). We conjecture
that exactly the same process occurs in the nine-dimensional and four-dimensional models
(3.4) and (3.5), at the upper end of the C-branch, where the homoclinic locus appears to
cross the Hopf bifurcation curve. These equations are even more stiff than the present five-
dimensional model, and even detailed examination of the phase portraits fails to reveal that
the computation of the homoclinic branch has become spurious upon crossing the Hopf U. The
difficulty in these cases appears to be the presence of a slow manifold in the associated phase
space. Most models of calcium dynamics, including all the CU-systems studied here, have
slow manifolds that are important in determining the dynamics. (A comprehensive review
of models of calcium waves is given in [16], while a detailed discussion of slow manifolds in
this context, as well as in the context of more generic excitable system theory, can be found
in [28].)

In the three models (3.4), (3.5), and (3.6) the slow manifold is one-dimensional and passes
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through the single equilibrium, with the motion on the slow manifold being toward the equilib-
rium. A homoclinic orbit in these systems typically leaves the equilibrium along the unstable
manifold and makes a global excursion, before being drawn into a tiny tube around the slow
manifold. It then follows the slow manifold toward the equilibrium until it gets close enough
that the dynamics on the center manifold takes over. If the equilibrium solution is attracting
within the center manifold, the orbit will then approach the equilibrium solution in a direc-
tion tangent to the center manifold, thereby closing the homoclinic connection. If, however,
the equilibrium has undergone a supercritical Hopf bifurcation and is unstable, it can take a
remarkably long time before the trajectory along the slow manifold reaches sufficiently close
to the equilibrium to experience this instability. As a result, if one uses a high-period periodic
orbit approximation to the homoclinic orbit, with insufficiently high period, the computed
orbit may not reach the center manifold at all before leaving the equilibrium. In such a case,
the dominant feature of the center manifold dynamics, namely, outward spiraling from the
equilibrium, will not be observed.

Based on the above discussion, we conjecture that the mechanism for the termination of
the upper end of the C-shaped curves in (3.4) and (3.5) and both ends of the C-curve in (3.6)
is simply the Shil’nikov–Hopf bifurcation.

4. Discussion. We have studied a hierarchy of detailed models of excitable systems, focus-
ing in particular on those that model calcium dynamics. The main aim of the work has been to
understand the connection between two different dynamical regimes for which traveling-wave–
type behavior is observed in these systems, and in particular to look at the interaction between
small-amplitude waves born in a Hopf bifurcation in the traveling wave equations, and solitary
pulses represented by homoclinic orbits in the traveling wave equations. We have found that
this interaction can occur in a variety of different ways, despite broad similarities in behav-
ior in the models we have analyzed. It seems that there are many different ways in which
Shil’nikov chooses to meet Hopf!

Specifically, we have sought codimension-two mechanisms for the termination of homo-
clinic bifurcation curves as they approach a Hopf bifurcation. In our examples we have iden-
tified cases of T-points, saddle-node/Hopf local bifurcations, and equilibrium-to-periodic het-
eroclinic bifurcations. We also found Shil’nikov–Hopf bifurcations in a number of cases; these
bifurcations were unusually numerically delicate because of the degree of stiffness in the model
equations, with the consequence that in each case the homoclinic bifurcation curve appeared
at first analysis to pass through the Hopf locus instead of terminating there, as theory would
predict. We argued that this behavior is a numerical artifact and gave a plausibility argument
as to why even very careful numerics near Shil’nikov–Hopf bifurcations can be misleading
whenever slow manifolds are present. Proper multiple time-scale analysis of this behavior is
left for future work.

The stiffness of the models we studied most likely plays an important role in other ter-
minating mechanisms besides the Shil’nikov–Hopf bifurcation. For instance, we found that
rapid, canard-like growth of oscillations occurs near the blunt end of the homoclinic banana in
the FitzHugh–Nagumo equations. An investigation of the role of canards in calcium models
is the subject of ongoing work.

A number of our models contained an apparent codimension-two termination mechanism,
where a codimension-one homoclinic bifurcation curve appeared to terminate “in mid air.” In
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each case, it turned out that the bifurcation curve was not actually terminating but rather
going through a sharp turn and doubling back on itself, but with the doubled-back curve
indistinguishable from the original curve on the scale of the bifurcation set; typically the
homoclinic orbit gained an extra loop in the process so that a single-pulse orbit became a
double-pulse orbit. Such sharp turns require no special explanation in terms of bifurcation
theory but are important within our taxonomy of termination mechanisms since they arise
naturally as a consequence of some of the other mechanisms, as described earlier.

We do not, at present, fully understand the significance of the sub- or supercriticality of
the Hopf bifurcation in these systems. A better understanding may follow from forthcoming
theoretical work on homoclinic orbits to degenerate Hopf points [10].

We have not considered here the PDE stability of the traveling wave structures we have
identified. Generally in these types of models it is the upper branch of the C-curve of ho-
moclinic bifurcations that is of physiological interest as this corresponds (in the PDE) to
stable pulses while the other branches correspond to unstable pulses. The significance of the
details of our codimension-two termination mechanisms for the PDE dynamics is unclear.
For instance, given the strong contractions due to the slow-fast nature of the dynamics, the
precise details of the spurious passage through the Shil’nikov–Hopf bifurcations may not be
important; something that is exponentially close to a homoclinic orbit on the “wrong side”
of the Hopf bifurcation may in fact imply the existence of an almost steady traveling pulse
for exponentially long times. It would be of interest, therefore, to see if the Hopf bifurcation
in these cases might not be “felt” at all in PDE computations of stable traveling pulses over
finite time scales, in the same way that its presence was almost undetectable when tracing
paths of homoclinic bifurcations to the traveling wave ODEs.

The detailed numerics we have presented are for two distinct types of excitable systems,
the FitzHugh–Nagumo equations, which might be regarded as the canonical excitable system,
and a class of models of the dynamics of intracellular calcium. We expect that many of the
features we have found will also be relevant to other classes of excitable systems—for example,
models of heart tissue and neural oscillators.

Appendix A. Parameters and formulae for model definitions. The following constants
and quantities were used in numerical simulations of models 2 and 3 (SLY-3 and SLY-4):

kf Jleak k1 k2 k3 k−1 Vp Kp r2 r4 r6 r−2 R1 R3 R5 Dc

28 0.2 0 0.53 1 0.88 1.2 0.18 100 20 0 0 6 50 1.6 25

ϕ−1 = (k−1 + r−2)R3/(c + R3),

ϕ1 = (k1R1 + r2c)/(R1 + c),

ϕ2 = (k2R3 + r4c)/(R3 + c),

ϕ3 = (k3R5 + r6c)/(R5 + c).

The following constants and quantities were used in numerical simulations of models 4, 5,
and 6 (nine-, four-, and five-dimensional models):

Jinbase kf Jer γ Vserca Kserca Vpm Kpm δ Dc ν1 Vmito

0.2 0.32 0.002 5.405 120.0 0.18 28.0 0.425 0.1 20 0.04 0
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In the four-dimensional model 5 we used the values Dc = 25 and kf = 0.4 instead of the above
values.

kap kam kbp kbm kcp kcm

1500 28.8 1500 385.9 1.75 0.1

k1 k−1 k2 k−2 k3 k−3 k4 k−4 l2 l6 L1 L5 l4 L3

0.64 0.04 37.4 1.4 0.11 29.8 4 0.54 1.7 4707 0.12 54.7 1.7 0.025

Ka = (kam/kap)
1
4 , Kb = (kbm/kbp)

1
3 ,

Kc = kcm/kcp, w∞ =
1 + (Ka/c)

4 + (c/Kb)
3

1 + 1/Kc + (Ka/c)4 + (c/Kb)3
,

Jmito = Vmito
c3

1 + c2
, Pryr = w

1 + (c/Kb)
3

1 + (Ka/c)4 + (c/Kb)3
,

PIPR(O,A) = (O/10 + 9A/10)4 (model 4), PIPR(O) = O4θ3 (model 6),

S = 1 −R−O −A− I1 − I2, Jin = Jinbase + 0.05p,

l−2 = l2k−1/(k1L1) (models 4 and 5), l−2 = 0.8 (model 6),

l−6 = k−4l6/(k4L5) (models 4 and 5), l−6 = 11.4 (model 6),

l−4 = k−2l4/(k2L3) (models 4 and 5), l−4 = 2.5 (model 6),

ϕ1(c) =
(k1L1 + l2)c

L1 + c(1 + L1/L3)
, ϕ2(c) =

k2L3 + l4c

L3 + c(1 + L3/L1)
,

ϕ−2(c) =
k−2 + l−4c

1 + c/L5
, ϕ3(c) =

k3L5

L5 + c
,

ϕ4(c) =
(k4L5 + l6)c

L5 + c
, ϕ−4(c) =

L1(k−4 + l−6)

L1 + c
,

ϕ5(c) =
(k1L1 + l2)c

L1 + c
,

Φ2 = ϕ−2/ϕ2, Φ4 = ϕ−4/ϕ4,

A = pR/(p + Φ2Φ4 + pΦ4), JIPR = kfA
4,

Jpm(c) =
Vpmc2

K2
pm + c2

, Jserca(c, ce) =
Vsercac

ce(Kserca + c)
,

θ1(c) =
0.5 + 0.5c2

0.36 + 20c2
, θ2(c) =

8.1c2

0.2 + 5c2
,

θ3(c) =
0.00074 + 8.6c2

0.74 + 13c2
, I2 = 1 −R−O (model 6 only).
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[13] B. Deng and K. Sakamoto, Šil’nikov-Hopf bifurcations, J. Differential Equations, 119 (1995), pp. 1–23.
[14] E. J. Doedel, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov, B. Sandstede, and

X. Wang, AUTO 97: Continuation and Bifurcation Software for Ordinary Differential Equations,
http://indy.cs.concordia.ca/auto/.

[15] E. J. Doedel, R. C. Paffenroth, A. R. Champneys, T. F. Fairgrieve, Yu. A. Kuznetsov, B. E.

Oldeman, B. Sandstede, and X. Wang, AUTO 2000: Continuation and Bifurcation Software for
Ordinary Differential Equations (with HomCont), http://cmvl.cs.concordia.ca/auto/.

[16] M. Falcke, Reading the patterns in living cells—the physics of Ca2+ signaling, Adv. Phys., 53 (2004),
pp. 255–440.

[17] C. Fall, E. S. Marsland, J. M. Wagner, and J. J. Tyson, eds., Computational Cell Biology,
Springer-Verlag, New York, 2002.

[18] R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1
(1961), pp. 445–446.

[19] P. Gaspard, Local birth of homoclinic chaos, Phys. D, 62 (1993), pp. 94–122.
[20] P. Gaspard and X.-J. Wang, Homoclinic orbits and mixed-mode oscillations in far-from-equilibrium

systems, J. Statist. Phys., 48 (1987), pp. 151–199.
[21] N. K. Gavrilov and L. P. Shilnikov, On three-dimensional systems close to systems with a structurally

unstable homoclinic curve II, Math. USSR-Sb., 19 (1973), pp. 139–156.
[22] E. Gin, A Bifurcation Analysis of Calcium Buffering, M.Sc. thesis, The University of Auckland, Auckland,

New Zealand, 2005.
[23] E. Gin, V. Kirk, and J. Sneyd, A bifurcation analysis of calcium buffering, J. Theoret. Biol., 242

(2006), pp. 1–15.
[24] D. R. Giovannucci, J. I. Bruce, S. V. Straub, J. Arreola, J. Sneyd, T. J. Shuttleworth, and

D. I. Yule, Cytosolic Ca2+ and Ca2+-activated Cl− current dynamics: Insights from two functionally
distinct mouse exocrine cells, J. Physiol., 540 (2002), pp. 469–484.

[25] P. A. Glendinning and C. Sparrow, T -points: A codimension two heteroclinic bifurcation, J. Statist.
Phys., 43 (1986), pp. 479–488.
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Abstract. We explore the stability of equilibrium solution(s) of a simple model of microvascular blood flow
in a two-node network. The model takes the form of convection equations for red blood cell con-
centration, and contains two important rheological effects—the F̊ahræus–Lindqvist effect, which
governs viscosity of blood flow in a single vessel, and the plasma skimming effect, which describes
the separation of red blood cells at diverging nodes. We show that stability is governed by a linear
system of integral equations, and we study the roots of the associated characteristic equation in
detail. We demonstrate using a combination of analytical and numerical techniques that it is the
relative strength of the F̊ahræus–Lindqvist effect and the plasma skimming effect which determines
the existence of a set of network parameter values which lead to a Hopf bifurcation of the equilibrium
solution. We confirm these predictions with direct numerical simulation and suggest several areas
for future research and application.
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1. Introduction. Periodic or oscillatory dynamics in biological systems are common. Ex-
amples include the pacemaker in the heart, breathing patterns, and periodic fluctuations in
leukocyte production in leukemia [15]. These types of phenomena require models consisting of
nonlinear equations, most often in the form of nonlinear differential equations [14]. In fact, the
modeling and analysis of complex physiological signals is a very active area for the application
and development of dynamical systems theory [16].

Another example of fluctuating dynamics in biology is microvascular blood flow. Nobel
prize winner August Krogh noted the heterogeneity of blood flow in the webbed feet of frogs
in the early 1920’s [24]. In The Anatomy and Physiology of Capillaries he wrote [23]

In single capillaries the flow may become retarded or accelerated from no visible
cause; in capillary anastomoses the direction of flow may change from time to
time.

As more techniques were developed for measuring events in microcirculation, more fluctua-
tions were reported. The servo-null pressure measurement system of Wiederhielm et al. [35]
and Johnson and Wayland’s [20] dual slit red cell velocity measurement device showed that
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fluctuations practically always occur in microvessels. These fluctuations are usually inter-
preted as evidence of “biological control” of the flow (precapillary sphincters, vasomotion,
etc.). In fact the sine qua non cause for observed oscillations is often vasomotion [32].

However, oscillations may not be due solely to “biological control.” In 1973 Y. C. Fung
suggested that the observed dynamics might be due to statistical variations in the properties
of cells and vessels [13]. Fung hypothesized that small stochastic variations in cell size or
membrane stiffness could lead to apparently random fluctuations in flow and pressure in
simple networks. He outlined a program of study of blood cell properties, vessel mechanics,
blood rheology, and network geometry to be completed before his hypothesis could be tested;
in many ways this research program is still active today [28].

The 1990’s saw several attempts to apply the ideas of nonlinear dynamics to the micro-
circulation. Time series analysis of fluctuations suggested that the oscillations may be due
to deterministic chaos. Yip, Nolstein-Rathlou, and Marsh [36] proposed that pressure os-
cillations in the kidney were due to nonlinearities in the tubuloglomerular feedback control
mechanism including multiple time delays. Cavalcanti and Ursino [6] developed computer
simulations of vasomotion in microvessels. They included both passive and active response to
pressure which resulted in oscillations in vessel diameter or blood flow. Griffith [17] measured
fluctuations in pressure and flow in the rabbit ear, again attributing vasomotion as the cause
of the fluctuations. He also estimated the correlation dimension from the time series data to
be between two and three and suggested that the dynamics were due to vasomotion control.
More recently, Mollica, Jain, and Netti [26] interpreted the heterogeneity in tumor blood flow
in terms of collapsible conduits for blood flow and Parthimos et al. [27] analyzed fluctuations
in arteriol diameter and red cell velocity in the microcirculation of rats and measured small,
positive Lyapunov exponents.

While the importance of vasomotion cannot be denied, there is growing evidence that
fluctuations in microvascular blood flow can be due to inherent instabilities in the capillary
network. Kiani et al. [21] found spontaneous oscillations in blood velocity in hamsters, even
under experimental conditions which rule out myogenic or vasomotive effects. They also
formulated a mathematical model of network blood flow and found good qualitative agreement
with their experimental results. Their blood flow model is based on following slugs of red
blood cells through the capillary network; the red blood cells move with a velocity which is
determined by the hydraulic resistance of the network. In a network consisting of almost
four hundred vessels (the topology and geometry were based on direct in vivo observations),
spontaneous oscillations were found in 30% of them; the other vessels had steady flow and
hematocrit.

Carr and LeCoin [4] reformulated the model as a system of partial differential equations
for blood hematocrit. They found that blood velocity, hematocrit, and nodal pressures can
oscillate spontaneously in the absence of biological control in small networks with about
fifteen vessels. They found evidence of Hopf bifurcations and limit cycles but were unable
to determine which parameters controlled the dynamics. In 2005, Carr, Geddes, and Wu [5]
demonstrated that oscillations were possible in a network consisting of only two nodes and
four vessels—the so-called two-node network. While the dimensionless parameters governing
the onset of instability were discovered, finding unstable parameter values was an exercise in
educated guessing. In addition, the influence of the various rheological properties of blood
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was poorly understood.

In this paper, we focus our attention on the two-node network and analyze in detail
the onset of instability via Hopf bifurcation. In section 2 we review the major rheological
properties of blood, including the F̊ahræus–Lindqvist effect and the plasma skimming effect.
We also introduce two simple, parametric models for these effects which make the analysis
tractable. In section 3 we introduce the model of the two-node network and discuss the
equilibrium solutions. In section 4 we derive the linearized equations close to steady state and
the resulting characteristic equation that governs stability. In section 5 we show that Hopf
bifurcations are possible, and we describe their dependence on three dimensionless parameters.
In section 6 we develop a method for mapping the Hopf bifurcation points back to parameter
space, thus allowing us to predict the network geometries that lead to instability, which
we confirm via direct numerical simulation. We also investigate the relative importance of
the F̊ahræus–Lindqvist effect and the plasma skimming effect using two lumped parameters.
Finally, in section 7 we offer some closing thoughts and remarks.

2. Blood rheology in microvessels. Blood is a concentrated suspension containing red
blood cells, white blood cells, and platelets. These components are suspended in plasma, an
aqueous solution containing a variety of ions and macromolecules. We focus our attention
on the red blood cells, which are biconcave discs with a typical diameter of about 8μm and
thickness of 2μm. Normal blood has a volume concentration of red blood cells (hematocrit)
of about 45%.

The microcirculation consists of vessels with diameters ranging from 10μm to 100μm,
and is responsible for heat and mass exchange with the surrounding tissues; every cell in
the body is within 100μm of a capillary. In this section we review two important rheological
effects which we include in our model. The F̊ahræus–Lindqvist effect captures the hematocrit-
and diameter-dependent viscosity of blood when flowing through a single vessel. The plasma
skimming effect describes the way red blood cells are distributed at a diverging node. We also
propose two simple parametric versions of these which we use in this study in order to make
the analysis tractable.

2.1. The F̊ahræus–Lindqvist effect. In the mid-nineteenth century, Jean Leonard Marie
Poiseuille turned from his studies on the microcirculation of the frog to a series of detailed
experiments on the flow of liquids in small glass capillaries [33]. Poiseuille demonstrated
experimentally that the resistance to flow, defined as the ratio of the pressure drop to the
volumetric flow rate, in a glass tube of circular cross-section is proportional to the length of
the tube and inversely proportional to the fourth power of the diameter. In modern notation,
Poiseuille’s law reads

R =
128Lμ

πD4
,

where R is the resistance to flow, D is the diameter of the tube, L is the length of the vessel,
and the constant of proportionality μ is a measure of the viscosity of the fluid. The first theo-
retical derivation of Poiseuille’s law seems to have been published in 1860 by Hagenbach, but
numerous authors appear to have made similar derivations during the same time period [33].

In 1931 F̊ahræus and Lindqvist [11] conducted a set of experiments on blood flow through
narrow capillary tubes with diameters ranging from 30μm to 300μm. They demonstrated
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Figure 1. Relative viscosity as a function of hematocrit and diameter from (2.1)–(2.3). (a) Viscosity
dependence on hematocrit for diameters of 10μm, 50μm, and 100μm. (b) Viscosity dependence on diameter
for hematocrit values of H = 0.2, H = 0.5, and H = 0.8.

that the viscosity of blood, computed according to Poiseuille’s law, decreases with decreasing
tube diameter, and they hypothesized that this was due to the red blood cells acting as a
suspension. While not explicitly remarked upon in their paper, the viscosity of blood also
depends upon hematocrit.

The dependence of blood viscosity on tube diameter (and hematocrit) has been confirmed
by numerous investigators. In an empirical tour de force, Pries, Neuhaus, and Gaehtgens [30]
compiled a database of viscosity measurements in tubes with diameters ranging from 3μm
to 2000μm and with a range of hematocrits from 0 to 0.93. They also conducted a new set
of experiments using a capillary viscometer and combined all of the data into an empirical
relationship for the relative viscosity of blood μ(H,D),

(2.1) μ(H,D) = 1 + (μ0.45 − 1)
(1 −H)C − 1

(1 − 0.45)C − 1
,

where H is the hematocrit and μ0.45 is the relative viscosity of blood at H = 0.45 which
depends on diameter,

(2.2) μ0.45 = 220e−1.3D + 3.2 − 2.44e−0.06D0.645
.

The parameter C also depends on diameter according to

(2.3) C =
1

1 + 1011D12
+ (0.8 + e−0.075D)

(
−1 +

1

1 + 1011D12

)
,

and in both cases D is measured in microns. An example of the relative viscosity dependence
on hematocrit is shown in Figure 1a for diameter values of 10μm, 50μm, and 100μm. Notice
that in each case the relative viscosity is unity at zero hematocrit and increases monotonically
with increasing hematocrit and that increasing the diameter leads to an increase in relative
viscosity. An example of the relative viscosity dependence on diameter is shown in Figure 1b
for diameters in the range of 10μm to 100μm and hematocrit values of H = 0.2, H = 0.5,
and H = 0.8.
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Figure 2. Diverging node. The feed vessel has diameter DF , flow QF , and hematocrit HF . Daughter
vessels A and B have diameters DA and DB, flows QA and QB, and hematocrits HA and HB, respectively.

2.2. The plasma skimming effect. August Krogh introduced the term plasma skimming
in 1921 in order to explain the disproportionate distribution of red blood cells observed at
microvascular bifurcations in vivo [24]. In the absence of plasma skimming, the hematocrit
entering a side branch would equal that of the feed vessel, or, alternatively, the flow ratio
of red blood cells entering a side branch would equal the volumetric flow ratio. Numerous
authors, however, have demonstrated both in vitro and in vivo that the red blood cell flow
ratio is a nonlinear function of the volumetric flow ratio which implies that the hematocrit
ratio is not unity but depends on the volumetric flow ratio. In order to be clear, consider the
diverging bifurcation shown in Figure 2, which consists of a feed vessel F and two daughter
vessels A and B. Denote the hematocrit and flow in the feed and daughter vessels as HF , QF ,
HA, QA, HB, and QB, respectively. In general, the hematocrit ratio HA/HF is a function of
the flow ratio Q = QA/QF and is parameterized by the feed hematocrit HF and the diameters
of the vessels DF , DA, and DB [12].

Many attempts to derive or measure the so-called plasma skimming function have been
made. In vitro studies using plastic particles were conducted by Bugliarello and Hsiao [3] and
Chien et al. [7], while Dellimore, Dunlop, and Canham [8] and Fenton, Carr, and Cokelet [12]
conducted in vitro experiments using human blood. Klitzman and Johnson [22] performed in
vivo experiments using hamsters, while Pries, Ley, and Gaehtgens [29] examined the distribu-
tion of red cells at sixty-five arteriol bifurcations in the rat mesentry. Some general conclusions
can be drawn from these studies: red cells are not distributed in proportion to the volume
flow; there is a critical fractional flow, Q0, to a side branch below which the latter receives no
blood cells; and side branch hematocrit is not always equal to feed hematocrit for Q = 0.5.
Pries, Ley, and Gaehtgens [29] fitted experimental data to the piecewise plasma skimming
function

(2.4)
HAQA

HFQF
=

⎧
⎪⎨

⎪⎩

0, Q < Q0,
er(Q−Q0)p

er(Q−Q0)p+(1−Q−Q0)p , Q0 ≤ Q ≤ 1 −Q0,

1, Q > 1 −Q0,

and determined the dependence of the dimensionless fitting parameters on the network pa-
rameters as

r = −6.96

DF
ln

(
DA

DB

)
,
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Figure 3. Plasma skimming function from (2.4). (a) HF = 0.4, DF = DA = DB = 20μm. (b) HF = 0.4,
DF = 20μm, DA = 80μm, DB = 60μm.

p = 1 + 6.98
(1 −HF )

DF
,

Q0 =
0.4

DF
,

where all of the diameters are measured in microns. More recently, Enden and Popel [10] con-
ducted three-dimensional simulations of flow in a T-type bifurcation and found good agreement
with the various experimental studies mentioned above.

In Figure 3 we plot Pries, Ley, and Gaehtgens’s plasma skimming function for a couple
of different parameter values in order to highlight the key features. We choose to plot the
hematocrit ratio as a function of flow ratio for reasons that will become clear in future sections.
Figure 3a shows both the hematocrit ratio in branch A and the hematocrit ratio in branch
B as functions of the flow ratio Q = QA/QF for the following parameter values: HF = 0.4,
DF = 20μm, and DA = DB = 20μm. As a result of the equal diameters in the daughter
branches, the parameter r = 0, which implies that the hematocrit ratio in both branches is
unity for Q = 0.5. In addition, there is a critical flow rate of Q0 = 0.02 below which there
is no hematocrit entering branch A and a similar value for branch B. For this symmetric
set of parameters, the hematocrit ratio in branch B is simply obtained by reflection about
the Q = 0.5 axis. Note that there is a discontinuity in the derivative of either function at
Q0 and 1 − Q0. In Figure 3b we show the plasma skimming function in each branch for a
nonsymmetric bifurcation. The parameter values are HF = 0.4, DF = 20μm, DA = 80μm,
and DB = 60μm. The nonequal daughter branches mean that the parameter r �= 0, which
breaks the symmetry of the plasma skimming functions about Q = 0.5. Although the plasma
skimming functions are no longer mirror images, red blood cell flow is still conserved; i.e.,

(2.5) QFHF = QAHA + QBHB.

2.3. Parametric models. The empirical models of Pries et al. [29, 30] provide a detailed
description of the dependence of viscosity and plasma skimming on the various vessel and flow
parameters. In order to gain insight, however, we propose using simple parametric models for
the F̊ahræus–Lindqvist effect and plasma skimming effect as follows. We assume the viscosity
has an exponential dependence on hematocrit,

(2.6) μ(H) = eδH ,
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Figure 4. Simple parametric models. (a) Exponential viscosity model. (b) Logit plasma skimming model.

where δ is an adjustable parameter. In what follows we will assume that the same δ applies
in any branch. In Figure 4a we plot the exponential function for three different values of
δ. This parametric model captures the relevant feature of the Pries et al. viscosity model,
namely, that viscosity is a monotonically increasing function of hematocrit with μ(0) = 1. The
choice of an exponential model is not unreasonable: the viscosity model of Pries, Neuhaus,
and Gaehtgens [30] demonstrates a strong dependence on hematocrit; we have used other
monotonically increasing models and find no substantial differences in the results that follow;
and, perhaps most importantly, the exponential model makes the analysis tractable.

It is also impossible to capture all of the features of the plasma skimming function with
only a single parameter. However, Carr, Geddes, and Wu [5] showed that the key ingredient
is the existence of a maximum. We will use a semiempirical model proposed by Klitzman and
Johnson [22],

(2.7)
HAQA

HFQF
=

Qp

Qp + (1 −Q)p
,

where p > 1 is an adjustable parameter and Q ∈ [0, 1]. This model does not have a critical
flow rate, nor does it give rise to nonsymmetric plasma skimming functions. It does, however,
have a single maximum. Increasing the value of p leads to very low values of hematocrit for
low values of Q while also leading to an increase in the maximum hematocrit. In Figure 4b
we plot the hematocrit ratio as a function of flow ratio for several different values of p. Note
that increasing p leads to a greater maximum value which slowly shifts toward Q = 0.5. In
the limit as p → ∞, the plasma skimming function is piecewise continuous and behaves as
1/Q for Q ≥ 0.5.

3. The two-node network model. The model which we use was first proposed by Kiani
et al. [21] and later reformulated by Carr and LeCoin [4]. It is a continuous model and
assumes that the essence of microvascular blood flow can be captured with a position- and
time-dependent hematocrit function. It is therefore a one-dimensional model and ignores
the three-dimensional aspect of the problem and the discrete nature of red blood cells. In
sections 3.1 and 3.2 we describe the partial differential equation model and relevant boundary
conditions, while in section 3.3 we prove that there exists at least one equilibrium solution of
the model, and we also find conditions under which there are multiple equilibria.
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Figure 5. The two-node network consists of a single inlet and a single outlet.

3.1. The PDE model. Consider the simple two-node network shown in Figure 5. We
assume that the hematocrit in each branch is governed by a first-order wave equation of the
form

∂HA

∂t
+ vA

∂HA

∂xA
= 0, 0 ≤ xA ≤ lA, t ≥ 0,

∂HB

∂t
+ vB

∂HB

∂xB
= 0, 0 ≤ xB ≤ lB, t ≥ 0,

where HA(xA, t) and HB(xB, t) are the hematocrits in branches A and B, respectively. This is
an appropriate description for the one-dimensional transport of red cells with small dispersion.
The propagation velocity in each branch is proportional to the flow in each branch

vA(t) =
4QA(t)

πd2
A

,

vB(t) =
4QB(t)

πd2
B

,

where QA and QB are the flows in branches A and B, respectively, and dA and dB are the
diameters of branches A and B, respectively. It is possible to express both velocities in terms
of the fractional flow in branch A, Q(t) = QA(t)/QF , where QF is the steady volumetric
flow rate in the feed branch. Conservation of volumetric flow at the branch implies that
QA(t) + QB(t) = QF . It also implies that 0 ≤ Q(t) ≤ 1.

A dimensionless form of the governing equations may be derived by scaling space and time
according to

x̂A =
xA
lA

,

x̂B =
xB
lB

,

t̂ = t
4QF

πd2
AlA

,

which results in the following dimensionless propagation equations:

∂HA

∂t
+ Q

∂HA

∂xA
= 0, 0 ≤ xA ≤ 1, t ≥ 0,(3.1)

∂HB

∂t
+ α(1 −Q)

∂HB

∂xB
= 0, 0 ≤ xB ≤ 1, t ≥ 0.(3.2)
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The hats have been dropped for convenience and the parameter α has been introduced. It is
the ratio of the volume of branch A to that of branch B,

α =
lAd

2
A

lBd2
B

.

The propagation velocity in branch A is now Q, while in branch B the velocity is α(1 −Q).

3.2. Constitutive relations and boundary conditions. The governing equations, (3.1)–
(3.2), are accompanied by constitutive relations and boundary conditions. Conservation of
flow and the two-node network topology determine the fractional flow rate in branch A in
terms of the hydraulic resistance of each branch,

(3.3) Q(t) =
RB(t)

RA(t) + RB(t)
,

with a similar expression for branch B. In turn, the hydraulic resistance in each branch is
determined by the F̊ahræus–Lindqvist effect,

RA(t) =
128lA
πd4

A

μA(H̄A(t), dA),(3.4)

RB(t) =
128lB
πd4

B

μB(H̄B(t), dB),(3.5)

where μA and μB are the relative viscosities in branches A and B, respectively. The viscosity in
each branch is a function of the axially averaged hematocrit in the branch and the diameter
of the branch. Finally, the entrance hematocrit to each branch is governed by the plasma
skimming effect,

HA(0, t) = HF f(Q(t)),(3.6)

HB(0, t) = HF g(Q(t)),(3.7)

where HF is the hematocrit of the feed branch, and the functions f and g specify the plasma
skimming effect for branches A and B, respectively. The governing equations (3.1)–(3.2), along
with the constitutive relations (3.3)–(3.5) and boundary conditions (3.6)–(3.7), completely
determine the problem.

3.3. Equilibrium solutions. In steady state, ∂HA/∂t = 0, the hematocrit along each
branch is constant and equal to the entrance hematocrit. The entrance hematocrit depends
on the steady state flow Q∗, which in turn implies that the steady state viscosity μ∗

A is a
function of Q∗. The hydraulic resistance in each branch is therefore a function of Q∗ in steady
state, and (3.3) becomes

(3.8) Q∗ = ψ(Q∗),

where the nonlinear function on the right-hand side may be written as

(3.9) ψ(Q∗) =
1

1 +
d4
B lAμ∗

A

d4
AlBμ∗

B

.
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Figure 6. Steady state solutions are given where the function ψ, defined in (3.9), crosses the line of unit
slope. The parameter values are δHF = 8, lA/lB = 10, and dB/dA = 10. For p = 4 there is one steady state
solution, while for p = 8 there are three steady state solutions.

The steady state viscosity is determined via the relations

μ∗
A = μA(H̄∗

A, dA),(3.10)

μ∗
B = μB(H̄∗

B, dB),(3.11)

H̄∗
A = HF f(Q∗),(3.12)

H̄∗
B = HF g(Q

∗).(3.13)

We are now ready to state our first result concerning the existence of equilibrium solutions.
Theorem 3.1. Assume that μA and μB are positive, continuous functions of H̄A and H̄B.

Also assume that f and g are continuous functions of Q∗. Then at least one steady state
solution to (3.8)–(3.10) exists.

Proof. We appeal to the Brouwer fixed-point theorem. If the viscosity functions are con-
tinuous functions of H̄A and H̄B and the plasma skimming functions are continuous functions
of Q∗, then ψ(Q∗) is continuous. In addition, the positivity of the viscosity functions implies
that ψ ∈ [0, 1] for all Q∗ ∈ [0, 1]. By the fixed-point theorem this implies that at least one
root exists with Q∗ ∈ [0, 1].

A closed form solution for Q∗ cannot be obtained except in the case of simple viscosity
models. Solutions can be visualized, however, by plotting ψ(Q∗) versus Q∗ as demonstrated in
Figure 6 for different parameter values. Equilibrium solutions are given where the function ψ
crosses the line of unit slope. Here we use the parametric models with the following parameter
values: δHF = 8, lA/lB = 10, and dB/dA = 10. Notice that while Theorem 3.1 guarantees
that a root exists, it does not guarantee that it is unique. Indeed, Figure 6 demonstrates
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that, as we hold the value of δHF fixed and change from p = 4 to p = 8, we transition from
a system with a single steady state to one with multiple steady states. We state and prove
below a condition which guarantees that the steady state is unique.

Theorem 3.2. Define two dimensionless parameters, b and c, according to

b = −HFQ
∗(1 −Q∗)f ′(Q∗)

μ′∗
A

μ∗
A

,

c = HFQ
∗(1 −Q∗)g′(Q∗)

μ′∗
B

μ∗
B

.

The steady state solution is unique if and only if

b + c < 1

for all Q∗ ∈ (0, 1). The derivative of μA with respect to the average hematocrit is

μ′∗
A =

∂μA

∂H̄A

∣∣∣∣
Q∗

,

while the derivative of f with respect to the flow rate is

f ′(Q∗) =
df

dQ

∣∣∣∣
Q∗

.

Similar expressions apply to branch B.
Proof. Since Q∗ is constrained to the closed interval [0, 1], we can rearrange (3.8) for the

ratio of the lengths,

(3.14)
lA
lB

=

(
dA
dB

)4 (1 −Q∗

Q∗

)
μ∗
B

μ∗
A

,

and use this formulation to determine whether the equilibrium solution is unique. The positive,
continuous viscosity functions imply that lA/lB ≥ 0 for all Q∗ ∈ [0, 1] and that

lim
Q∗→0

lA
lB

= +∞,

lim
Q∗→1

lA
lB

= 0.

The length ratio therefore cannot be a monotonically increasing function of Q∗. If d(lA/lB)
dQ∗ < 0

for all Q∗ ∈ (0, 1), then the length ratio is a monotonically decreasing function of Q∗, which
implies that the steady state solution Q∗ is unique for any set of network parameters. The
derivative is

d

dQ∗

(
lA
lB

)
=

1

Q∗2
μ∗
B

μ∗
A

(
dA
dB

)4

(b + c− 1) ,

thus proving that the equilibrium solution is unique if b+ c−1 < 0 for all Q∗. If, on the other
hand, there exists a Q∗ ∈ (0, 1) for which d(lA/lB)

dQ∗ > 0, then, by continuity of lA/lB, there
exists multiple equilibrium solutions for some set of network parameters.
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4. Linearized equations. While the governing partial differential equations and accompa-
nying constitutive relations are convenient for numerical simulation, they are not very useful
from an analytical point of view. They can, however, be linearized and then transformed into
a corresponding system of delay equations which can in turn be manipulated into a single
linear integral equation. This proves to be most convenient in analyzing the linear stability
of the steady state solution(s).

We begin by rewriting the governing partial differential equations (3.1)–(3.2) about the
steady state solution. We assume that Q(t) = Q∗ for t < 0, H̄A(t) = H̄∗

A, and H̄B(t) = H̄∗
B

for t ≤ 0. A perturbation will be introduced into the flow rate by specifying Q(0) �= Q∗ and
defining

Q(t) = Q∗ + Q̃(t),

HA(xA, t) = H̄∗
A + H̃A(xA, t),

HB(xB, t) = H̄∗
B + H̃B(xB, t).

Replacing into (3.1)–(3.2) and grouping terms lead to the system of partial differential equa-
tions

∂H̃A

∂t
+ Q∗∂H̃A

∂xA
= −Q̃

∂H̃A

∂xA
,(4.1)

∂H̃B

∂t
+ α(1 −Q∗)

∂H̃B

∂xB
= αQ̃

∂H̃B

∂xB
.(4.2)

If we drop the nonlinear terms on the right-hand side, then the linearized equations consist
of two coupled, constant velocity propagation equations for perturbations to the equilibrium
hematocrit. We can define the steady state propagation (or delay) times in branches A and
B, respectively, as

τ∗ =
1

Q∗ ,

θ∗ =
1

α(1 −Q∗)
.

A more convenient form for analysis can be found by integrating (4.1)–(4.2) over the spatial
variable in each branch,

τ∗
dĤA

dt
= H̃A(0, t) − H̃A(1, t),

θ∗
dĤB

dt
= H̃B(0, t) − H̃B(1, t),

where ĤA is defined by

ĤA(t) =

∫ 1

0
H̃A(xA, t) dxA,

and similarly for ĤB. This implies that

H̄A(t) = H̄∗
A + ĤA(t),
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with a similar expression for the other branch.

We now make use of the fact that our governing linearized equations are a pair of first-order
wave equations with constant velocity. This implies that the hematocrit in each branch simply
propagates along the appropriate characteristic with velocity Q∗ in branch A and α(1−Q∗) in
branch B. The hematocrit at the exit of vessel A is therefore the hematocrit at the entrance
at an earlier time, namely, τ∗. With this in mind, the governing equations reduce to

τ∗
dĤA

dt
= H̃A(0, t) − H̃A(0, t− τ∗),

θ∗
dĤB

dt
= H̃B(0, t) − H̃B(0, t− θ∗).

Recall that the entrance hematocrit in branch A is specified by the plasma skimming rule
(3.6) which linearizes to give

HA(0, t) = HF f(Q),

⇒ HA(0, t) = HF (f(Q∗) + f ′(Q∗)Q̃),

⇒ H̃A(0, t) = HF f
′(Q∗)Q̃,

with a similar expression for branch B. Our linearized governing equations become

τ∗
dĤA

dt
= HF f

′(Q∗)
(
Q̃(t) − Q̃(t− τ∗)

)
,

θ∗
dĤB

dt
= HF g

′(Q∗)
(
Q̃(t) − Q̃(t− θ∗)

)
,

which is a pair of delay differential equations with constant delay. If we integrate each of these
from t = 0 to t = T we find

τ∗ĤA(T ) = HF f
′(Q∗)

∫ T

0

(
Q̃(s) − Q̃(s− τ∗)

)
ds,(4.3)

θ∗ĤB(T ) = HF g
′(Q∗)

∫ T

0

(
Q̃(s) − Q̃(s− θ∗)

)
ds,(4.4)

where we have used the initial conditions ĤA(0) = 0 and ĤB(0) = 0. In addition, we can
decompose the remaining integrals into two pieces,

∫ T

0
Q̃(s− τ∗) ds =

∫ τ∗

0
Q̃(s− τ∗) ds +

∫ T

τ∗
Q̃(s− τ∗) ds,

and use the initial condition on the flow perturbation to conclude that the first term is zero.
A change of variables results in

∫ T

0
Q̃(s− τ∗) ds =

∫ T−τ∗

0
Q̃(u) du.
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Replacing and combining with the other integral give the following set of integral equations:

τ∗ĤA(T ) = HF f
′(Q∗)

∫ T

T−τ∗
Q̃(u) du,(4.5)

θ∗ĤB(T ) = HF g
′(Q∗)

∫ T

T−θ∗
Q̃(u) du.(4.6)

Equations (4.5)–(4.6) allow us to compute the axially averaged hematocrit perturbation.
To do so we require the flow perturbation and its history. The problem is closed when we
linearize the constitutive relation (3.3). Using the notation developed in section 3.3 we see
that

Q(t) = Q∗ +
∂ψ

∂H̄A

∣
∣
∣∣
Q∗

(
H̄A(t) − H̄∗

A

)
+

∂ψ

∂H̄B

∣
∣
∣∣
Q∗

(
H̄B(t) − H̄∗

B

)
,

⇒ Q̃(t) =
∂ψ

∂H̄A

∣∣∣∣
Q∗

ĤA(t) +
∂ψ

∂H̄B

∣∣∣∣
Q∗

ĤB(t).

The partial derivatives are straightforward to compute and are given by

∂ψ

∂H̄A

∣∣∣∣
Q∗

= −Q∗(1 −Q∗)
μ′∗
A

μ∗
A

,

∂ψ

∂H̄B

∣∣∣∣
Q∗

= Q∗(1 −Q∗)
μ′∗
B

μ∗
B

.

Combining (4.5)–(4.6) and the expression for Q̃(t) results in the linear integral equation

(4.7) Q̃(T ) =
b

τ∗

∫ T

T−τ∗
Q̃(u) du +

c

θ∗

∫ T

T−θ∗
Q̃(u) du,

where the dimensionless parameters b and c are the same as those defined in Theorem 3.2,

b = −HFQ
∗(1 −Q∗)f ′(Q∗)

μ′∗
A

μ∗
A

,(4.8)

c = +HFQ
∗(1 −Q∗)g′(Q∗)

μ′∗
B

μ∗
B

.(4.9)

Equations (4.7)–(4.8) completely determine the linear stability of the steady state flow rate
Q∗ to a perturbation Q̃(T ) such that Q̃(T ) = 0 for all T < 0 and Q̃(0) �= 0.

The characteristic equation can be obtained by seeking a solution of the linear integral
equation in the form

(4.10) Q̃(T ) = Q̃(0)eλT ,

where λ is complex. A nontrivial solution of (4.7) subject to the solution (4.10) exists if and
only if λ satisfies the characteristic equation

1 = b
(1 − e−λτ )

λτ
+ c

(1 − e−λθ)

λθ
,
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where we have dropped the ∗ for convenience. It will prove more fruitful if we make a change
of variables and eliminate one of the delay times in favor of the ratio of the delay times. If we
redefine λ̂ = λτ , then we obtain

(4.11) 1 = b
(1 − e−λ)

λ
+ c

(1 − e−λγ)

λγ
,

where again we have dropped the hats for convenience. We have introduced a new dimension-
less parameter, γ, which is the ratio of the steady state delay times, i.e.,

(4.12) γ =
θ

τ
=

Q∗

α(1 −Q∗)
.

It is clear from l’Hôpital’s rule that λ = 0 is not a root of (4.11) unless b + c = 1. This is
a degenerate case and coincides with the creation of multiple equilibria, as demonstrated in
section 3.3. We will not analyze this case here but focus instead on the modified characteristic
equation,

(4.13) λ = b(1 − e−λ) +
c

γ
(1 − e−λγ),

where we ignore the zero root of (4.13). This characteristic equation depends on the three
dimensionless parameters, b, c, and γ. The delay time ratio γ generally takes values on (0,∞)
depending on the network parameters. However, we will consider only networks with values
of γ ∈ (0, 1) since interchanging the vessel lengths and diameters results in α → 1/α and
Q∗ → 1 −Q∗. This implies that γ → 1/γ, which recovers the original domain.

5. The characteristic equation. The characteristic equation (4.13) governs the stability
of the two-node network. It is similar to a characteristic equation that has received some
attention in the delay differential equation literature,

(5.1) λ + a + be−τ1λ + ce−τ2λ = 0,

where τ1 and τ2 are the delays and a, b, and c are free parameters. Clearly our characteristic
equation is related, but it is not simply a special case of (5.1)—it is important that the delay
γ appear explicitly both inside and outside the exponential function in (4.13).

Several authors have considered the solutions of (5.1) using a variety of techniques [19, 9,
18, 2, 25]. The central question is whether there are any roots with Re(λ) > 0. Hayes [19]
studied the single delay problem (c = 0) and found conditions on the parameters for which all
the roots lie to the left of the imaginary axis. The single delay equation is also discussed by
El’sgol’ts and Norkin using the method of D-partitions [9]. In this method, the ab-parameter
plane is divided into regions, each of which contains an integer number of roots with Re(λ) > 0.
The regions are separated by partition curves on which roots cross the imaginary axis. The
general two delay problem was studied by Hale and Huang [18], who partitioned the τ1τ2-
parameter plane into regions containing an integer number of roots with Re(λ) > 0. Bélair
and Campbell [2] considered the case with a = 0 and found the stability region in the cτ2-
parameter plane after normalizing b = 1. Mahaffy, Zak, and Joiner [25] returned to the general
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case, after normalizing τ1 = 1, and determined instability surfaces in the abc-parameter space
as a function of delay τ2. Our characteristic equation is easy to analyze using a similar
approach; we divide the cb-plane into regions which contain a given number of roots, and we
do this for different values of γ.

In section 5.1 we show that the roots of the characteristic equation with Re(λ) > 0 (if
they exist) are located within a bounded domain in the complex plane. In section 5.2 we show
that if b+ c > 1, there is exactly one positive real root, and that if b+ c < 1, there are either
two positive real roots or zero positive real roots. We also derive a parametric expression for
the curve that separates the region of zero positive real roots from that of two positive real
roots. In section 5.3 we derive parametric expressions for the Hopf bifurcation curves in the
cb-plane on which the roots are purely imaginary, and we prove that bc < 0 is a necessary
condition for the existence of purely imaginary roots. By combining the real root case and
the imaginary root case we are therefore able to build a complete picture of the distribution
of roots in the cb-plane as we vary the value of γ ∈ (0, 1).

5.1. Complex roots. The most general solution of the characteristic equation (4.13) is
complex and takes the form

(5.2) λ = σ + iω,

where σ is the real part and ω is the imaginary part. Substituting into the characteristic
equation and separating real and imaginary terms lead to the set of equations

σ − b
(
1 − e−σ cos(ω)

)− c

γ

(
1 − e−σγ cos(ωγ)

)
= 0,(5.3)

ω − be−σ sin(ω) − c

γ
e−σγ sin(ωγ) = 0,(5.4)

which must be satisfied simultaneously. The following theorem is proved below.
Theorem 5.1.
1. Assume that b < 0 and c < 0. Then there are no roots with σ > 0.
2. Assume that b > 0 and c < 0. If a root with σ > 0 exists, then it is located within a

bounded region, namely, (σ, ω) ∈ (0, 2b) × [−(b + |c|/γ), b + |c|/γ].
3. Assume that b < 0 and c > 0. If a root with σ > 0 exists, then it is located within a

bounded region, namely, (σ, ω) ∈ (0, 2c/γ) × [−(|b| + c/γ), |b| + c/γ].
4. Assume that b > 0 and c > 0. If a root with σ > 0 exists, then it is located within a

bounded region, namely, (σ, ω) ∈ (0, 2b + 2c/γ) × [−(b + c/γ), b + c/γ].
Proof. Assume that there is a root with σ > 0. Then the following inequalities are true:

0 < 1 − e−σ cos(ω) < 2,(5.5)

0 < 1 − e−σγ cos(ωγ) < 2,(5.6)

−1 < e−σ sin(ω) < 1,(5.7)

−1 < e−σγ sin(ωγ) < 1.(5.8)

First consider the case of b < 0 and c < 0. The inequalities and equation (5.3) imply that
σ < 0, which is a contradiction. Thus there are no roots with σ > 0 when b < 0 and c < 0.
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Figure 7. The zero contours of R(σ, ω) and I(σ, ω) are shown in red and blue, respectively. The intersection
points are solutions of (5.3)–(5.4). For b = −8, c = 2, and γ = 0.2 there are two complex conjugate roots with
σ > 0.

Consider now the case of b > 0 and c < 0. The inequalities and equations (5.3) and (5.4)
imply that

σ < 2b,(5.9)

|ω| ≤ b +
|c|
γ
,(5.10)

which shows that if a root with σ > 0 exists, then it is located within a bounded region in the
complex plane. A similar argument can be made for the case of b < 0 and c > 0 and for the
case of b > 0 and c > 0.

The solutions to the characteristic equation (4.13) may be visualized as follows. For a
given set of parameters b, c, and γ, the left-hand sides of (5.3) and (5.4) are functions of σ
and ω, and we will denote these functions as R(σ, ω) and I(σ, ω). The intersection of the zero
contours of both functions will be the roots of the characteristic equation. An example is
shown in Figure 7 for the values of b = −8, c = 2, and γ = 0.2. The roots of the characteristic
equation are clearly marked, and in this case there are two pairs of complex conjugate roots
with σ > 0. The root at (0, 0) is not a solution of (4.11) since b + c �= 1.

5.2. Real roots. We will search for real roots by looking for a solution of the form λ =
σ + i0, which leads to the simplified characteristic equation

(5.11) σ − b(1 − e−σ) − c

γ

(
1 − e−σγ

)
= 0.

The following theorem is proved below.
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Theorem 5.2.
1. If b + c > 1 there is exactly one positive real root.
2. If b + c < 1 there are either two positive real roots or none at all.

(a) The boundary that separates the regions of zero positive real roots from two positive
real roots is defined parametrically by

det = −1

γ
e−σ + e−σγ +

(1 − γ)

γ
e−σ(1+γ),(5.12)

b(σ) =
1

det

(
σe−σγ +

e−σγ − 1

γ

)
,(5.13)

c(σ) =
1

det

(−σe−σ + (1 − e−σ)
)
,(5.14)

where σ ∈ [0,∞). This parametric curve requires bc < 0 and lies in the fourth
quadrant (for 0 < γ < 1).

(b) The boundary that separates the regions of two positive real roots from one positive
real root is defined by the line segment b + c = 1, with b < −γ/(1 − γ) and
c > 1/(1 − γ).

Proof. The proof of these results is straightforward and is accomplished mostly by curve
sketching. Roots of the characteristic equation (5.11) are given by roots of the function F (σ),

(5.15) F (σ) = σ − b(1 − e−σ) − c

γ

(
1 − e−σγ

)
.

The function F (σ) is continuous and has the following properties:

F (0) = 0,

lim
σ→+∞F (σ) = +∞,

lim
σ→−∞F (σ) = sign(b)∞,

F ′(0) = 1 − (b + c).

In each region of the cb-plane we can sketch the function F (σ) and determine the number of
roots. This is simple in the first, second, and third quadrants and confirms the theorem in
these regions. It is also unambiguous in the fourth quadrant with b + c > 1. However, in the
fourth quadrant with b + c < 1 the curves are ambiguous and it is helpful to reconsider the
original characteristic equation and write it in the form

(5.16) −σ + b +
c

γ
= be−σ +

c

γ
e−σγ .

The function on the left, which we denote as L(σ), represents a straight line of slope −1 and
intersects b + c/γ. The function on the right, which we denote as R(σ), represents a linear
combination of two different exponentials. We see that it has the same intersection at σ = 0,
and that R′(0) = −(b+ c). As σ → ∞ we see that R → 0 from above if c > 0 and from below
if c < 0 (remember that γ < 1). In addition, there exists one value of σ where R = 0 if and
only if −γb

c > 1. Finally, there exists one value of σ where R′ = 0 if and only if − b
c > 1.



712 J. B. GEDDES, R. T. CARR, N. J. KARST, AND F. WU

(a)
−5 0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

σ

L(σ)
R(σ)

(b)
−5 0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

σ

L(σ)
R(σ)

Figure 8. The functions L and R are shown in blue and red, respectively, at two points in the fourth
quadrant with b + c ≤ 1 and γ = 0.2. (a) There are no nonzero intersections of L and R for c = 3.5 and
b = −8. (b) There are two nonzero intersections of L and R for c = 5 and b = −8.

In the fourth quadrant with b+ c < 1 the function R(σ) may never intersect the line L(σ)
or it may intersect it twice. Typical curves are shown in Figure 8. In Figure 8a we plot L and
R as functions of σ in blue and red, respectively, for b = −8, c = 3.5, and γ = 0.2. Notice
that there are no nonzero intersections in this case (the intersection at σ = 0 is not a root of
(4.11) since b + c �= 1). Increasing the value of c to c = 5 leads to two nonzero intersections,
as shown in Figure 8b. The transition from zero to two roots takes place when the two curves
are tangent; this occurs when both the functions and their derivatives are equal:

b(1 − e−σ) + c
(1 − e−σγ)

γ
= σ,(5.17)

be−σ + ce−σγ = 1.(5.18)

This represents two linear equations in b and c which can be solved to give

det = −1

γ
e−σ + e−σγ +

(1 − γ)

γ
e−σ(1+γ),(5.19)

b(σ) =
1

det

(
σe−σγ +

e−σγ − 1

γ

)
,(5.20)

c(σ) =
1

det

(−σe−σ + (1 − e−σ)
)
.(5.21)

Since we are searching for nonnegative roots we can assume that σ ∈ [0,∞) and these equations
therefore define a parametric curve in the cb-plane. In addition, applying l’Hôpital’s rule
demonstrates that

lim
σ→0+

b(σ) =
−γ

1 − γ
,(5.22)

lim
σ→0+

c(σ) =
1

1 − γ
,(5.23)

which is the point of intersection of the lines b + c = 1 and b = −γc and is in the fourth
quadrant for 0 < γ < 1. Moreover, it is true that limσ→∞ b(σ) = −∞ and limσ→∞ c(σ) = ∞



THE ONSET OF OSCILLATIONS 713

Figure 9. The cb-plane is partitioned into three regions. In the blue region there are no real positive roots.
In the red region there is one real positive root. In the green region there are two real positive roots.

and that neither b nor c can ever become zero. The parametric curve is therefore located in
the fourth quadrant.

In Figure 9 we plot the cb-plane for γ = 0.2 as an example. The regions containing zero,
one, or two positive real roots are clearly marked. Let us define the b+ c = 1 line to be γ1 and
the parametric curve that separates the region of zero positive real roots from two positive
real roots to be γ2. For this value of γ, the point of intersection of γ1 and γ2 is (5/4,−1/4).

5.3. Imaginary roots. We search for imaginary roots by looking for solutions of the char-
actertistic equation of the form λ = 2iω. This particular choice leads to convenient algebra,
and the characteristic equation decomposes into

ω = b cos(ω) sin(ω) +
c

γ
cos(ωγ) sin(ωγ),(5.24)

0 = −b sin2(ω) − c

γ
sin2(ωγ).(5.25)

We prove the following theorem below.
Theorem 5.3. For any given value of γ ∈ (0, 1) there are an infinite number of Hopf bifur-

cation curves in the cb-plane on which there exists a purely imaginary root. These bifurcation
curves are denumerable and we will label them as Γj for j = 0, 1, 2, . . . . Each bifurcation
curve is defined on a finite, closed interval of the form [ωj , ωj+1]. The curve Γj is defined
parametrically by

b(ω) =
−ω sin(ωγ)

sin(ω) sin(ω(1 − γ))
,(5.26)

c(ω) =
ωγ sin(ω)

sin(ωγ) sin(ω(1 − γ))
(5.27)
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for ω ∈ [ωj , ωj+1] and is located in either the second or fourth quadrant. The endpoints ωj

and ωj+1 are found by sorting the roots of sin(ω), sin(ωγ), and sin(ω(1 − γ)) into ascending
order and choosing the jth and (j + 1)th roots, respectively. The Hopf bifurcation curve Γ0

is defined on [0, π], is semi-infinite, and originates from (−γ/(1 − γ), 1/(1 − γ)). All other
bifurcation curves are infinite.

Proof. Equations (5.24)–(5.25) define a linear system of equations in b and c which can
be solved to give (5.26)–(5.27). These are parametric equations in ω with bc < 0. There is a
new branch whenever one or more of the terms sin(ω), sin(ωγ), or sin(ω(1 − γ)) is zero. The
roots of these functions are kπ, lπ/γ, and mπ/(1 − γ), respectively, for integers k, l, and m.
Since we are considering γ < 1 the first two roots are ω0 = 0 and ω1 = π. The bifurcation
curve Γ0 is therefore defined for ω ∈ [0, π]. It is semi-infinite since

lim
ω→0+

b(ω) =
−γ

1 − γ
,(5.28)

lim
ω→0+

c(ω) =
1

1 − γ
,(5.29)

lim
ω→π−

b(ω) = −∞,(5.30)

lim
ω→π−

c(ω) = 0+(5.31)

and can be viewed as a continuation of the real root curve γ2. All other bifurcation curves
are infinite because of the linear dependence on ω in (5.26)–(5.27), even if there exist ω values
where all three functions are simultaneously zero. Since bc < 0 every bifurcation curve is
located in either the second or fourth quadrant.

In Figure 10 we plot the first few Hopf bifurcation curves in the cb-plane for γ = 0.2 as
an example. As expected from section 5.1, all of the Hopf bifurcation curves Γj lie in the
second and fourth quadrants where bc < 0. The first Hopf bifurcation curve, Γ0, always lies
in the fourth quadrant since γ < 1. The Hopf bifurcation curves Γj and the real root curves
γ1 and γ2 separate the cb-plane into distinct regions with different numbers of roots with
positive real part. Changing the value of γ changes the location of the curves Γj and γ2. For
small γ the curves start relatively close to the origin, while as γ → 1 the curves move off to
infinity. It is clear graphically that on every curve there exists a unique point which is closest
to the origin. In addition, it is also clear that the point closest to the origin lies on the first
bifurcation curve Γ0, but we have been unable to prove either of these results analytically. The
next section will demonstrate that this conjecture has important implications for the onset of
instability.

6. The onset of instability. The linear stability of the equilibrium solution to microvas-
cular blood flow in a two-node network is governed by the characteristic equation (4.13). In
the previous section we built a complete picture of the distribution of roots in the cb-plane
for different values of γ. In particular, we found parametric equations for curves in the cb-
plane that separated regions with different numbers of roots with positive real part—equations
(5.26)–(5.27). The question of stability of a given equilibrium state of the microvascular blood
flow model can now be answered as follows. Choose a set of network parameters. We can use
(3.8) to compute the equilibrium flow ratio Q∗. If we recall from section 4 the definitions of
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Figure 10. The cb-plane is partitioned into distinct regions with different numbers of real and complex
roots. In the blue region there are no real positive or complex roots with positive real part. In the red region
there is one real positive root. In the green region there are two real positive roots. In the yellow region there is
one pair of complex conjugate roots. In the magenta region there are two pairs of complex conjugate roots. In
the cyan region there is one real positive root and a pair of complex conjugate roots. In the white region there
are two real positive roots and a pair of complex conjugate roots.

b, c, and γ,

b = −HFQ
∗(1 −Q∗)f ′(Q∗)

μ′∗
A

μ∗
A

,

c = +HFQ
∗(1 −Q∗)g′(Q∗)

μ′∗
B

μ∗
B

,

γ =
Q∗

α(1 −Q∗)
,

then each set of network parameters will map to a point in the cb-plane defined by γ. The
system is stable or unstable depending on the location of the point.

The shortcomings of this approach are obvious; every point in network parameter space
potentially maps to a different point in a different cb-plane defined by a different value of γ.
While it is possible to use this approach to test the stability of a given network, this is all but
useless as a tool for finding unstable parameter values. If, however, we focus our attention on
the parametric models of (2.6) and (2.7), then b and c simplify to

b = −δHFQ
∗(1 −Q∗)f ′(Q∗),(6.1)

c = +δHFQ
∗(1 −Q∗)g′(Q∗).(6.2)

As in the section on equilibrium solutions, only four network parameters are required in order
to determine Q∗. These parameters are the length ratio lA/lB, the diameter ratio dB/dA, the
combined F̊ahræus–Lindqvist parameter δHF , and the plasma skimming parameter p.
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Figure 11. The partitioned cb-plane in Figure 10 is shown with the colors removed and the scale changed
for clarity. In addition, the parametric curve defined by (6.1)–(6.2) is shown for three different values of δHF .
In each case the curve is parameterized by Q∗ ∈ [0, 1], launches from the origin, moves in a counter-clockwise
direction, and ends at the origin. For δHF = 1 (red curve) and δHF = 3 (blue curve) the curve always remains
in the stable region, while for δHF = 6 (green curve) the curve crosses the first bifurcation curve Γ1.

In section 6.1 we show that it is possible to map the bifurcation curves to the (Q∗, δHF )-
plane for a fixed value of γ and p. In section 6.2 we consider the impact of changing γ, while
in section 6.3 we show that the bifurcation curves can be mapped to a variety of network
parameter planes. Finally, in section 6.4 we investigate the dependence on p, and we confirm
our predictions by direct numerical simulation in section 6.5.

6.1. The (Q∗, δHF )-plane. As a good example, let us choose p = 3 and γ = 0.2 and hold
these values fixed. Then (6.1)–(6.2) define a parametric curve in the cb-plane parameterized
by Q∗. The shape and size of this curve is influenced by the plasma skimming parameter p
(via f ′ and g′) and the combined parameter δHF . For given values of δHF and p, this curve
is continuous and closed and has clockwise orientation for Q∗ ∈ [0, 1].

In Figure 11 we show parametric curves in the cb-plane with γ = 0.2 and p = 3 for
δHF = 1, 3, 6. In each case, the curve originates from the origin at Q∗ = 0, intersects the
c = 0 axis where g′ = 0, intersects the b = 0 axis where f ′ = 0, and returns to the origin as
Q∗ → 1. Increasing δHF results in larger parametric curves with the same basic shape since
δHF is simply a linear scale factor in (6.1)–(6.2). Notice, however, that for δHF = 1 and
δHF = 3, the curve remains in the stable region while for δHF = 6 the curve passes into the
unstable region. There must therefore be a minimum value of δHF below which the system is
stable. For δHF slightly larger than this minimum value, there are Hopf bifurcations at the
two locations where the parametric curve crosses the first Hopf bifurcation curve. Increasing
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Figure 12. The partitioned cb-plane in Figure 10 is shown with the colors removed and the scale changed
for clarity. In addition, the parametric ray defined by (6.1)–(6.2) is shown for three different values of Q∗. In
each case the ray is parameterized by δHF ∈ [0,∞) and launches from the origin. For Q∗ = 0.05 (red ray) the
ray crosses into the single real root region for large enough δHF but never enters a region with a complex root.
For Q∗ = 0.15 (blue ray) and Q∗ = 0.25 (green ray) the ray crosses the first bifurcation curve Γ1 for large
enough δHF .

δHF would result in the parametric curve crossing into the one real root and two real roots
regions, respectively. For very large δHF it is possible for the parametric curve to cross other
Hopf bifurcation curves.

It is possible to map the real root curves γ1 and γ2 and the Hopf bifurcation curves into
the (Q∗, δHF )-plane using an alternative interpretation of (6.1)–(6.2). If we choose a value of
Q∗ and let δHF vary from 0 to ∞, then the parametric curve is simply a parametric ray with
slope

b

c
= −f ′(Q∗)

g′(Q∗)
.

In Figure 12 we plot three different rays for p = 3 and γ = 0.2. For small Q∗ there is an
intersection with γ1, but there may be no intersection with either γ2 or Γ0. For Q∗ larger
than some critical value, however, the parametric ray first intersects Γ0, then intersects γ2,
and then intersects γ1. This pattern continues as we increase Q∗ until the parametric ray no
longer intersects γ1. For even larger Q∗ the ray no longer intersects γ2, but it continues to
intersect Γ0 as Q∗ → Qg. Any ray may also intersect a higher order Hopf bifurcation curve,
but this occurs for much larger values of δHF since these curves are located farther away from
the origin.

The value of δHF at which any parametric ray crosses γ1 may be computed as follows.
Recall from section 5.2 that γ1 is defined by b + c = 1. Using the definition of b and c in
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Figure 13. The bifurcation curves and associated regions in the cb-plane are mapped to the (Q∗, δHF )-
plane. The boundaries between the regions are computed by determining, for a given value of Q∗, the value of
δHF for which the ray crosses the boundary curves of Figure 10. In the blue region there are no complex roots
with positive real part. In the yellow region there is one pair of complex conjugate roots with positive real part.
In the red region there is one positive real root, and in the green region there are two positive real roots.

(6.1)–(6.2) we can solve for δHF :

δHF =
1

Q∗(1 −Q∗)(g′(Q∗) − f ′(Q∗))
.

In Figure 13 we plot γ1 in the (Q∗, δHF )-plane for p = 4 and γ = 0.2. For small Q∗ the value
of δHF is very large. As Q∗ increases, the value of δHF decreases and then increases, reaching
an asymptote at the value of Q∗ where g′(Q∗) − f ′(Q∗) = 0.

The value of δHF at which any parametric ray crosses Γ0 may be computed by using the
definition of the Hopf bifurcation curves, equations (5.26)–(5.27). A ray from the origin to a
point on any Hopf bifurcation curve has slope

b

c
= − sin2(ω∗γ)

γ sin2(ω∗)
.

Recall from section 5.3 that the first Hopf bifurcation curve, Γ0, is defined for ω ∈ [0, π]. For
a given value of Q∗ we can compute the value of ω∗ ∈ [0, π] which results in identical slopes.
The coordinates of a Hopf bifurcation point on Γ0 can then be computed by solving

−ω∗ sin(ω∗γ)

sin(ω∗) sin(ω∗(1 − γ))
= −δHF f

′(Q∗)Q∗(1 −Q∗)

for δHF . A similar calculation can be made in order to map γ2 onto the (Q∗, δHF )-plane.
In Figure 13 we also plot γ2 and Γ0 in the (Q∗, δHF )-plane for p = 4 and γ = 0.2. Notice



THE ONSET OF OSCILLATIONS 719

0 0.5 1 1.5 2
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

c

b

p = 4  δH
F
 = 3.4

γ = 0.01
γ = 0.1
γ = 0.4

Figure 14. The first Hopf bifurcation curve Γ0 is shown for different values of γ. The line b + c = 1 is
shown (in black) as well as the parametric curve for p = 4 and δHF = 3.4 (also in black). For very small γ
(red), the bifurcation curve Γ0 starts close to (1, 0) but never crosses the parametric curve. For an intermediate
value of γ (blue), Γ0 crosses the parametric curve twice. For a larger value of γ (green), Γ0 starts too far from
the origin to be able to cross the parametric curve.

that there is a critical value of Q∗ which results in a minimum value of δHF below which the
system is stable. As we increase δHF above this minimum value, there exists an interval of
Q∗ for which the system is unstable.

6.2. Changing γ. We have so far focused our attention on an arbitrary value of γ for
the sake of clarity. As indicated in section 5.3, changing γ results in the Hopf bifurcation
curves moving in the cb-plane. In Figure 14 we show a fixed parametric curve with p = 4 and
δHF = 3.4 in the presence of Hopf bifurcation curves for several different values of γ. We plot
only the first Hopf bifurcation curve Γ0 for clarity. For γ = 0.01 the Hopf bifurcation curve
begins close to (1, 0), and b decreases so rapidly that it does not intersect the parametric curve.
As γ increases, the Hopf bifurcation curve begins further from the origin, but b decreases less
rapidly. Intersections are therefore possible, which is precisely the case when γ = 0.1. For
larger γ, b decreases less rapidly still, but the Hopf bifurcation curve begins so far from the
origin that intersections are impossible as shown for γ = 0.4. There are no further intersections
for increasing γ.

As indicated earlier, there is a minimum value of δHF at which we cross the first Hopf
bifurcation curve Γ0. This minimum value δHmin

F depends on the value of γ. By repeating
our previous calculation, we can extract δHmin

F for each value of γ. In Figure 15 we show the
results of this computation for p = 4. For very small γ the minimum value of δHF is very
large. As γ increases, the minimum value decreases to a global minimum and then increases



720 J. B. GEDDES, R. T. CARR, N. J. KARST, AND F. WU

Figure 15. The minimum value of δHF is shown versus γ for p = 4. In the gray region the parametric
curve defined by (6.1)–(6.2) is guaranteed to cross the first Hopf bifurcation curve Γ0. In the white region there
are no such crossings and the system is stable.

again. We will denote this minimum value as δHc
F , the critical value of δHF below which

the system is stable for any value of γ. For p = 4 the value of δHc
F = 3.2709. The system

is guaranteed to be stable if δHF is less than this value. On the contrary, there exists an
unstable set of parameters if δHF is larger than this critical value.

6.3. Network parameter planes. Let us now choose a value of δHF greater than the
critical value, say, δHF = 3.4. In Figure 16 we plot the region of instability in the (γ,Q∗)-
plane by drawing a Hopf bifurcation contour at δHF = 3.4 for p = 4. This contour is a simple
closed curve for the following reason. Figure 15 shows that there is an interval of γ for which
the system is unstable. In addition, Figure 13 shows that for a given value of γ there is an
interval of Q∗ for which the system is unstable. Combining both of these findings implies that
the Hopf bifurcation curve Γ0 is a simple closed curve in the (γ,Q∗)-plane. As we increase
δHF , the simple closed curve grows and evolves.

Every point on the Hopf bifurcation curve in Figure 16 has coordinates (γ,Q∗). Since
p = 4 and δHF = 3.4, there are only two network parameters undetermined—the length ratio
lA/lB and the diameter ratio dB/dA. However, we have two equations—the definition of the
steady state Q∗, (3.8), and the definition of γ, (4.12). Using these equations we can solve for
unique values of the length and diameter ratios for every point on the Hopf bifurcation curve
Γ0. The result is a simple closed curve in the (lA/lB, dB/dA)-plane as shown in Figure 17.
The Hopf bifurcation curve emerges at approximately (16.5, 1.8) as δHF exceeds the critical
value of 3.2709. Notice that the instability region is quite narrow for δHF close to the critical
value; as δHF increases, the size of the unstable region also increases.
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Figure 16. The first Hopf bifurcation curve maps to a closed curve in the (γ,Q∗)-plane for p = 4, δHF =
3.4. In the gray region the system is unstable to a Hopf bifurcation. In the white region it is stable. For larger
values of δHF the gray region moves and expands.

Figure 17. The first Hopf bifurcation curve also maps to a closed curve in the (lA/lB , db/dA)-plane for
p = 4, δHF = 3.4. The system is unstable to a Hopf bifurcation in the gray region and is stable otherwise. As
δHF increases the unstable region moves and expands.

6.4. Changing p. The discussion so far has focused on determining unstable network
parameters for a single value of p. If we change the value of p we change the shape of the
parametric curves. In Figure 18 we show the parametric curves in the cb-plane (γ = 0.2) with
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Figure 18. The cb-plane with the bifurcation curves and three different parametric curves is shown for
γ = 0.2, δHF = 3. The parametric curve grows as p is increased until for a sufficiently large value it crosses
into the unstable region (green).

δHF = 3 for p = 2, 4, 6. Notice again that as p increases the curve grows in size. For p = 2 and
p = 4 it remains in the stable region, while for p = 6 the curve crosses the Hopf bifurcation
curve Γ0.

All of the previous computations can be repeated for any value of p. In particular, for
every value of p there is a critical value of δHF below which the system is stable. In Figure 19
we plot the critical value of δHF as a function of p. This curve separates a region of stability
from a region of instability. It is important to note that a point in the unstable region will
have associated with it a region of instability in the (γ,Q∗)-plane and a corresponding region
of instability in the (lA/lB, dB/dA)-plane. Close to the instability boundary the regions of
instability are quite small, as shown previously in Figures 16 and 17. As we move further into
the unstable domain, the instability regions grow and the other Hopf bifurcation curves and
the real root curves γ1 and γ2 can come into play. We have not explored the regions far from
the instability boundary for reasons that will become clear in section 7.

6.5. Numerical confirmation. We have confirmed these predictions by direct numeri-
cal simulation of the governing equations (3.1)–(3.2), along with the constitutive relations
(3.3)–(3.5) and boundary conditions (3.6)–(3.7). We have used a variety of algorithms, in-
cluding the upwinding convection scheme and the second-order Lax–Wendroff method [1].
While the accuracy of the schemes depends on the choice of space- and time-step, all of the
schemes used have agreed with the theoretical predictions on instability. This, along with
previous studies [21, 4, 5], makes it clear that the fluctuations are not a result of numerical
instability.
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Figure 19. For every value of p there exists a critical value of δHF below which the system is stable. For
values of δHF greater than this critical value (gray region), there exists a domain in parameter space (similar to
Figures 16 and 17) for which the system is unstable. This unstable domain grows in size as you move further
into the gray region.
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Figure 20. Direct numerical simulation of (3.1)–(3.2). The system is initiated close to steady state and
parameter values are chosen in the unstable domain. (a) The flow Q(t) as a function of time demonstrating
instability to a Hopf bifurcation with a growth rate close to that predicted by analysis. (b) A close-up of the
oscillation showing that the period matches that predicted by analysis.

In Figure 20a we plot the flow as a function of time. We used the following parameter
values: lA/lB = 20, dB/dA = 1.8, p = 4, and δHF = 3.4. At these parameter values the
equilibrium solution is Q ≈ 0.2672, which implies that γ ≈ 0.0591. These parameter values
place us in the unstable regions of Figures 16, 17, and 19. For these parameter values, there
is a pair of complex conjugate roots of the characteristic equation with real and imaginary
components σ ≈ 0.1728 and ω ≈ 4.883. Recall that we scaled λ by 1/τ in section 4. Undoing
these scalings predicts a growth rate of approximately 0.046 and an oscillation period of
approximately 4.82. Initially, we filled the vessels with hematocrit very close to the appropriate
steady state values. We see from Figure 20b that the oscillation period is very close to that
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Figure 21. A preliminary bifurcation diagram for changing diameter with p = 4, δHF = 3.4, and lA/lB =
20. A periodic solution is initially obtained with dB/dA = 1.8, and the maximum and minimum values are
shown in blue and red, respectively. The diameter ratio is then increased in increments of 0.005, the simulation
is continued until the transients die off, and the minimum and maximum values are again recorded. This is
repeated by decreasing the diameter ratio in increments of 0.005. The equilibrium solution is shown for reference
in black.

predicted by linear stability analysis.
We have also confirmed the existence of a finite region of instability in the (lA/lB, dB/dA)-

plane by continuing the simulation for various values of dB/dA. In Figure 21 we plot the
maximum and minimum values of the periodic solution as dB/dA is varied. The branch of
periodic solutions is created by starting at dB/dA = 1.8 and then continuing the resulting
periodic solution by increasing and decreasing dB/dA. The periodic solution emerges and
vanishes at values of dB/dA which agree well with those predicted in section 6.2, and Figure 21
also suggests that the Hopf bifurcations are supercritical. We have not explored the nonlinear
dynamics in detail but plan to in the future.

7. Conclusions. Numerous experimental studies have demonstrated that oscillations in
microvascular blood flow are ubiquitous. While fluctuations in blood hematocrit and velocity
are usually identified with biological control mechanisms such as vasomotion, there is evidence
that oscillations may be possible in the absence of biological control. In a previous paper [5] we
identified the simplest possible network, the two-node network, that could exhibit oscillatory
dynamics, and we found and interpreted the three dimensionless parameters b, c, and γ which
govern the stability of equilibrium.

In this paper we develop a complete description of the roots of the characteristic equation
and their dependence on the three dimensionless parameters. We show that there exists an
infinite number of Hopf bifurcation curves in the cb-plane for a given value of γ. Using simple
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Figure 22. The three-node network consists of two inlets and one outlet. One of the inlet nodes is converg-
ing, while the other is diverging. The flow in the middle branch could be in either direction.

parametric models for the F̊ahræus–Lindqvist effect and the plasma skimming effect, we map
the bifurcation curves to the network parameter plane, (lA/lB, dB/dA). For a given value
of the plasma skimming parameter p we demonstrate that there is a critical value of the
F̊ahræus–Lindqvist parameter δ for instability. We also show that above this threshold value
there exists a finite region of instability in the (lA/lB, dB/dA)-plane, and we confirm these
predictions with direct numerical simulation.

It is worth noting that we do not pretend that the simple parametric models provide a
realistic model for microvascular blood flow. Rather, we have used these models to provide
insight by making the analysis tractable. There is still some question as to the possibility of
instability if we use the more realistic models of Pries et al. The major difficulty is that there is
no easy way to map from the five-dimensional network parameter space, HF , dF , dA, dB, lA/lB,
to the three-dimensional dimensionless parameter space, b, c, γ. For a given set of network
parameters it is simple to compute b, c, and γ and therefore determine whether the network
is stable or unstable. This, however, is a rather unwieldy and unsatisfying method given the
size of the five-dimensional parameter space. Our results to date indicate that instability is
unlikely using the models of Pries et al., but we have no proof of this conjecture.

Even if oscillations are possible in the two-node network, the regions of instability in the
network parameter space are likely to be very small. This makes the likelihood of confirming
these predictions experimentally very remote. However, this parametric study does suggest
several alternatives. As demonstrated by Kiani et al. [21] and Carr and LeCoin [4], oscillations
are possible in larger networks. With a detailed understanding of the instability in hand, we
can pursue the validation of this work in slightly larger networks. For example, we have
preliminary evidence that the three-node network shown in Figure 22 has a much larger
region of instability. A careful analysis of this network might pave the way for an in vitro
experimental verification of these predictions.

Alternatively, we could explore other networks that are described by similar governing
equations. While it is potentially difficult to find an analogy with both flow and hematocrit
equivalents, we can reformulate our model into a single integral equation for the flow alone as
follows. The resistance in any vessel depends on the average hematocrit H̄i in vessel i. Since
the hematocrit at any point in the vessel is determined by the inlet hematocrit at an earlier
time, we can write the average hematocrit as

(7.1) H̄i(t) =
1

li

∫ t

t−τi(t)
Hi(0, s)vi(s) ds,
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where li is the length of the vessel and vi(t) is the speed of flow in the vessel at time t. The
time delay τi(t) is determined implicitly by the threshold condition,

(7.2)

∫ t

t−τi(t)
vi(s) ds = li.

In the two-node network the flow Q(t) is governed by (3.3),

(7.3) Q(t) =
RB(H̄B(t))

RA(H̄A(t)) + RB(H̄B(t))
,

which can now be viewed as an integral equation with two state-dependent delays since the
entrance hematocrit, Hi(0, t), is a function of the flow Q(t) via the plasma skimming effect.
Electric circuits provide an obvious analogy and may be worth investigating. In particular,
the steady state IV -characteristic of a transistor can display snapback [34], which beautifully
mimics the flow-pressure characteristic of blood flow in the two-node network. We hope to
pursue both avenues of research in the near future.
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Dynamics on Networks of Cluster States for Globally Coupled Phase Oscillators∗
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Abstract. Systems of globally coupled phase oscillators can have robust attractors that are heteroclinic net-
works. We investigate such a heteroclinic network between partially synchronized states where the
phases cluster into three groups. For the coupling considered there exist 30 different three-cluster
states in the case of five oscillators. We study the structure of the heteroclinic network and demon-
strate that it is possible to navigate around the network by applying small impulsive inputs to the
oscillator phases. This paper shows that such navigation may be done reliably even in the presence
of noise and frequency detuning, as long as the input amplitude dominates the noise strength and
the detuning magnitude, and the time between the applied pulses is in a suitable range. Further-
more, we show that, by exploiting the heteroclinic dynamics, frequency detuning can be encoded as
a spatiotemporal code. By changing a coupling parameter we can stabilize the three-cluster states
and replace the heteroclinic network by a network of excitable three-cluster states. The resulting
“excitable network” has the same structure as the heteroclinic network and navigation around the
excitable network is also possible by applying large impulsive inputs. We also discuss features that
have implications for related models of neural activity.

Key words. globally coupled oscillators, three-cluster state, heteroclinic connection/network, winnerless com-
petition, excitable dynamics, neural computation
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1. Introduction. Coupled phase oscillators are a simple class of dynamical systems that
can model phenomena such as synchronization between individual neurons [7, 16]. If neurons
are assumed to produce periodic output (e.g., periodic spiking) when uncoupled, then they
may be represented by a scalar phase variable. (In case of spiking a phase can be defined such
that it crosses zero when the neuron spikes.) Coupled oscillators that are subject to external
perturbations can be modeled in many cases by using only the phase variables [8].

Recent work [1] proposes that certain types of neural system are well modeled by what
they call winnerless competition. Such dynamics consists of a number of saddle states in the
phase space that are connected by their unstable manifolds to form a heteroclinic network.
This type of dynamics can robustly produce a number of behaviors in the phase oscillator
system that are of interest for modeling neural systems:

(i) it can generate a sequence of states in response to a sequence of inputs,
(ii) it can act as a very sensitive classifier for inputs, and
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Figure 1. Raster plot showing the spiking of five oscillators in time. The vertical lines indicate when the
phases of oscillators 1, . . . , 5 pass through zero. The figure is obtained using the coupled phase oscillator model
(2.1), (2.2) with parameters (3.1) in the case of low noise (of strength η = 10−5), no input (ε = 0), and no
detuning (δ = 0). Observe that the oscillators form into three-cluster states of two synchronized pairs and one
singleton, and that the cluster formations spontaneously change as time progresses. The dynamics in this figure
is shown also in Figure 9(a2), where clusters are distinguished by color.

(iii) it can convert inputs into spatiotemporal coding;
see [6, 23]. The last behavior may have importance for encoding odor information in antennal
lobes of insects [11].

Attracting robust heteroclinic networks have been recognized in a variety of systems. For
instance, they are found in the Lotka–Volterra dynamics of three or more interacting popula-
tions [18], in many symmetric systems [12], and in systems of four or more globally coupled
phase oscillators [5] where they cause the phenomena of slow oscillations/switching among
cluster states [13, 17, 21]. In case of slow oscillations/switching, the presence of noise causes
a near-periodic switching motion such that the asymptotic period of switching becomes un-
bounded as the noise level reduces to zero.

To motivate our work we present here an example of slow switching. Figure 1 shows a time
series of “spikes” for five oscillators which is a widely accepted representation of the dynamics
in neural systems [23]. This figure is produced using the phase oscillator model studied in this
article with added low noise. Vertical lines show where the phases of oscillators pass through
zero. From this “raster plot” the underlying dynamics is not immediately obvious. However,
one can recognize that three-cluster states are formed consisting of two synchronized pairs
of oscillators and one singleton, and that there are regular switches between these cluster
states as time progresses. This figure corresponds to Figure 9(a2), where the clusters are
colored yellow and blue (and different time scales are used). Our aim is to show the existence
of a heteroclinic network of cluster states which underlies and explains this dynamics. By
exploiting the features of this network we can predict possible transitions between cluster
states and estimate the period of switching.

Even for quite simple coupling between fairly small numbers of globally coupled phase
oscillators one can find attracting robust (structurally stable) heteroclinic networks of high
complexity. For example, a system of five oscillators may possess an attractor with 20 different
two-cluster states linked together as a heteroclinic network [2]. This network can be used to
perform simple computations by applying small inputs to the individual oscillators [3], but
these computations are very sensitive to noise. For this reason, we introduce a modified model
in section 2 which presents a new type of heteroclinic network between three-cluster states
and where the performed computations are considerably less sensitive to noise. The goal of
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this paper is to describe the structure and dynamics of this network and also to investigate
its computational properties.

In section 3 we examine the structure of the proposed heteroclinic network in detail. For
five oscillators we find an open set of parameters such that the system has a robust heteroclinic
attractor comprising 30 symmetrically related three-cluster states of saddle type connected by
their unstable manifolds. We also investigate the behavior of the network under perturbations.
Namely, we consider the effect of noise, the effect of detuning the natural frequencies of the
oscillators, and the effect of (periodic) impulsive inputs.

In section 4 we demonstrate that the heteroclinic network can robustly perform finite-
state computation in the presence of background noise and frequency detuning. By applying
periodic impulsive inputs to the phase oscillators it is possible to induce switches between
cluster states and so predictably navigate around the network. We characterize the bit error
rate of these switches as a function of the input period, the input amplitude, and the noise
strength. It is shown that as long as the input amplitude is large enough (compared to the
noise strength) there exists a range of periods for which the computations are reliable. The
left boundary of this range is proportional to the logarithm of the input amplitude, while its
right boundary is proportional to the logarithm of the noise strength. (Frequency detuning
also brings errors into the finite-state computation similarly to noise.) At the end of section 4
we also discuss that frequency detuning can be encoded as spatiotemporal codes.

Section 5 shows that on varying a single parameter in the coupling function one can achieve
that the above attracting heteroclinic network becomes an attracting network of linearly stable
three-cluster states. These states are excitable: there is a minimum threshold for the input
amplitude to switch from one state to the other. This “excitable network” can perform finite-
state computation similarly to the heteroclinic network, except that the input amplitudes
must be sufficiently large.

We conclude our results in section 6 and discuss future research in section 7.

2. The phase oscillator model. In this section we introduce the globally coupled phase
oscillator model we study in this paper. The first model of this kind was developed by
Kuramoto [19], but models with several different coupling functions have been investigated
in the last three decades; see, e.g., [2, 7, 13]. We consider N oscillators complying with the
equations

(2.1) θ̇n = ωn +
1

N

N∑

m=1

g(θn − θm) + εIn(t) + η wn, n = 1, . . . , N,

where θn(t) = θn(t + 2π) is the phase of the nth oscillator, ωn is the natural frequency of the
nth oscillator, In(t) is an impulsive input with unit magnitude, and wn(t) is uncorrelated white
noise such that the associated random walk has unit growth of variance per unit time. The
quantity ε represents the input amplitude, while η is the noise strength. The globally coupled
system (2.1), (2.2) is represented by the graphs in Figure 2 for N = 3, 5, 7 oscillators (black
dots) with N(N − 1)/2 = 3, 10, 21 bidirectional connections (two-headed arrows). We remark
that we are interested only in the case when N is finite. In particular, N = 5 is studied in
detail, and implications for larger N are discussed in section 7. In some cases we will use the
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Figure 2. Global coupling between N = 3, 5, 7 oscillators with N(N − 1)/2 = 3, 10, 21 bidirectional connec-
tions, respectively. Black dots represent the oscillators, and two-headed arrows represent the mutual coupling
between them.

vector notation θ(t) = col[θ1(t), . . . , θN (t)]. Furthermore, we consider a coupling function

(2.2) g(ϕ) = − sin(ϕ + α) + r sin(2ϕ + β),

where α, β, and r are constants. This function is 2π-periodic containing Fourier modes with
frequencies 1 and 2. Note that in order to find nontrivial clustering behavior in the sys-
tem (2.1), (2.2) it is necessary to include Fourier modes with frequencies higher than 1 [13].
Furthermore, the phase reductions of well-known neural models naturally lead to periodic
functions where several harmonics are included [14]. Function (2.2) is the simplest general-
ization of the functions used in [2, 13, 17].

One may define the average natural frequency by

(2.3) ω =
1

N

N∑

n=1

ωn,

and a uniform detuning of natural frequencies is when

(2.4) ωn+1 − ωn = δ, n = 1, . . . , N − 1.

Here δ � 1 represents the detuning magnitude. Observe that for uniform detuning given ω
and δ we have

(2.5) ωn = ω +
(
n− N+1

2

)
δ, n = 1, . . . , N.

Permuting the oscillators in (2.4), and consequently in (2.5), gives detunings which we also
call uniform. In the case of nonuniform detunings the frequencies ωn are not uniformly spaced
and the detuning magnitude may be defined by

(2.6) δ = max
n

{
min
m�=n

{|ωn − ωm|}}.

In this article we investigate only the effects of uniform detunings. Note that δ = 0 if and
only if ωn = ω for n = 1, . . . , N .
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One may consider the detuning as a steady external input applied to the “ideal” system
of identical oscillators (ωn = ω for all n) in addition to impulsive inputs and noise in (2.1).
The effects of the external perturbations in the form of impulsive inputs (when ε �= 0), noise
(when η �= 0), and detuning (when δ �= 0) will be discussed in section 3.3.

In the “unperturbed” case

(2.7) ε = η = δ = 0,

the systems of coupled oscillators (2.1), (2.2) can be thought of as ODEs on the N -torus
T
N with symmetry SN of all permutations of the oscillators. The codimension one invariant

subspaces

(2.8) θn(t) ≡ θm(t) for n �= m

form barriers to the flow. These divide the torus up into (N − 1)! invariant regions that are
symmetric images of the canonical invariant region

(2.9) {θ1 ≤ θ2 ≤ · · · ≤ θN ≤ θ1 + 2π};

see [5] for more details. Subspaces (2.8) are essential for the formation of the robust hetero-
clinic network, as will be explained in section 3.1.

We refer to an �-cluster state of type (N1, . . . , N�) as a state where each oscillator has one
of only � different phases φ1, . . . , φ�: for each r there are Nr oscillators that have the same
phase φr such that

∑�
r=1 Nr = N . In this way we can think of full synchrony as a one-cluster

state of type (N) and full asynchrony as an N -cluster state of type (1, . . . , 1) with N entries.
Note that choosing a clustered distribution of frequencies ωn can give rise to cluster states of
similar type. However, this is not necessary as cluster states may appear spontaneously as
stable behavior, even for identical oscillators (ωn = ω for all n), as will be discussed in detail
in section 5.

We wish to emphasize the importance of the parameter β in the coupling function (2.2). In
[2, 13, 17] β = 0 was considered; i.e., only the odd part of the second harmonic was included.
Due to this “degeneracy” of the coupling function it appears that any attracting heteroclinic
network contains only two-cluster states. In this paper we unfold the above “degeneracy” by
considering β �= 0 and find heteroclinic networks between three-cluster states.

Because the right-hand side of (2.1) depends only on phase differences, there is an extra
S1 continuous rotational symmetry given by performing an identical phase shift to all oscil-
lators. If there is a solution θ̃(t) = col[θ̃1(t), . . . , θ̃N (t)] of (2.1) then θ̃(t) + ϕ col[1, . . . , 1] =
col[θ̃1(t)+ϕ, . . . , θ̃N (t)+ϕ] is also a solution for any ϕ ∈ R. Consequently, it is sufficient to ex-
amine phase differences to determine the long-term behavior of the system. We will introduce
the phase differences γn = θn− θN for n = 1, . . . , N . Note that similar continuous symmetries
appear in many other applications, e.g., in car-following models of highway traffic [22].

3. Attracting network of three-cluster states. In the unperturbed case ε = η = δ = 0
system (2.1), (2.2) displays a wide range of robust dynamics. This includes synchrony (r, α
small regardless of β), antisynchrony (r small α near π regardless of β), and cluster states
(typically in the region where α is close to π/2). In the last case one can find robust heteroclinic
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Figure 3. Three of the 30 three-cluster states of Table 1 are represented by color. The pairs marked “y”
are shown as yellow, the pairs marked “b” are shown as blue, and the single oscillators are displayed as white.

connections. For β = 0 these connections are between two-cluster states [2, 17], but the system
with β �= 0 can have connections between three-cluster states.

Considering N = 5 the system (2.1), (2.2) has an attracting heteroclinic network for an
open set of parameters near

(3.1) r = 0.2, α = 1.8, β = −2.0, ω = 1.0,

as explained below. Considering the invariant subspace

(3.2)

⎡

⎢⎢⎢⎢
⎣

θ1(t)
θ2(t)
θ3(t)
θ4(t)
θ5(t)

⎤

⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢
⎣

θ1(t)
θ1(t)
θ3(t)
θ4(t)
θ4(t)

⎤

⎥⎥⎥⎥
⎦
,

where the first two oscillators form a cluster (θ1(t) ≡ θ2(t)) and the last two oscillators form
another cluster (θ4(t) ≡ θ5(t)), one can find a three-cluster state of type (2, 1, 2)

(3.3)

⎡

⎢⎢⎢⎢
⎣

θ1(t)
θ2(t)
θ3(t)
θ4(t)
θ5(t)

⎤

⎥⎥
⎥⎥
⎦

=

⎡

⎢⎢⎢⎢
⎣

Ωt + φy

Ωt + φy

Ωt + φw

Ωt + φb

Ωt + φb

⎤

⎥
⎥⎥
⎥
⎦

:= Syywbb

for some constants φy < φw < φb < φy + 2π. Note that the subscripts of Syywbb correspond
to the subscripts of the coordinates where “y,” “w,” and “b” stand for yellow, white, and
blue, respectively; see the coloring applied in the leftmost panel of Figure 3. In this article
we refer to this coloring by using terms such as yellow oscillator/cluster, white oscillator, and
blue oscillator/cluster.

In addition there are a number of states given by permutation of the subscripts of Syywbb,
that is, by permutation of the coordinates in (3.3). This symmetry gives a total of 5!/(2!1!2!) =
30 possible states listed in Table 1. Some of these states are also represented by the graphs
in Figure 3 with corresponding coloring.
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Table 1
List of three-cluster states. Each column may be generated from another by cyclic permutation of the

subscripts of Si1,...,i5 .

s1 = Syywbb s7 = Sbyywb s13 = Sbbyyw s19 = Swbbyy s25 = Sywbby

s2 = Sbbwyy s8 = Sybbwy s14 = Syybbw s20 = Swyybb s26 = Sbwyyb

s3 = Sybwyb s9 = Sbybwy s15 = Sybybw s21 = Swybyb s27 = Sbwyby

s4 = Sbywby s10 = Sybywb s16 = Sbybyw s22 = Swbyby s28 = Sywbyb

s5 = Sybwby s11 = Syybwb s17 = Sbyybw s23 = Swbyyb s29 = Sbwbyy

s6 = Sbywyb s12 = Sbbywy s18 = Sybbyw s24 = Swybby s30 = Sywybb

Notice that the three-cluster state (3.3) (and each symmetric copy in Table 1) has full
frequency synchrony with frequency Ω and clustering into three-cluster states with phases φy,
φw, and φb. One of these phases can be chosen arbitrarily corresponding to the S1 continuous
rotational symmetry of the system. This means that the three-cluster state (3.3) (and each
symmetric copy in Table 1) is determined by the phase differences

(3.4)
χ := φy − φw, where −π < χ < 0,

ψ := φb − φw, where 0 < ψ < π,

up to application of the continuous rotational symmetry. Substituting the solution (3.3) into
(2.1), (2.2) when ε = η = δ = 0 and using (3.4), one obtains

Ω = ω + 1
5

(
g(0) + 2g(−χ) + 2g(−ψ)

)
,

Ω = ω + 1
5

(
2g(0) + g(χ) + 2g(χ− ψ)

)
,

Ω = ω + 1
5

(
2g(0) + g(ψ) + 2g(ψ − χ)

)
,

(3.5)

which determine χ, ψ, and Ω. Note that when solving (3.5) the frequency ω does not appear
in the phase differences χ and ψ. For parameters (3.1) there is a unique solution:

(3.6) χ = −1.8212, ψ = 1.1041, Ω = 0.8468.

Linearizing system (2.1), (2.2) about the three-cluster state s1 = Syywbb in (3.3) (or about
any symmetric copy in Table 1) and using (3.4), one can investigate the linear stability of
three-cluster states, that is, determine the eigenvalues

λ1 = 0,

λ2 = 1
5

(
2g′(0) + g′(χ) + 2g′(χ− ψ)

)
,

λ3 = 1
5

(
2g′(0) + g′(ψ) + 2g′(ψ − χ)

)
,

λ4 = λ∗
5 = μ + i

√
ν

(3.7)

of the linearized system. The rather complicated expressions of μ, ν ∈ R
+ in terms of g′(χ),

g′(−χ), g′(ψ), g′(−ψ), g′(χ−ψ), and g′(ψ−χ) are given by (A.1), (A.2) in Appendix A. For
parameters (3.1) (that is, for the phase differences (3.6)) we have the eigenvalues

(3.8) λ2 = −0.2834, λ3 = 0.1703, λ4,5 = −0.1012 ± i 0.2848,
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Figure 4. Dynamics around a saddle three-cluster state for parameters (3.1) in the unperturbed case
ε = η = δ = 0. In panel (a) the eigenvalues (3.7), (3.8) are displayed in the complex plane. Panel (b) shows
the local dynamics in phase space in the vicinity of the three-cluster state s16 = Sbybyw (red dot): The unstable
eigendirection v3 and the stable eigendirections Re(v4) = Re(v5), Im(v4) = −Im(v5) given in (3.9) can be
visualized by the outgoing and spiralling-in trajectories, respectively.

shown in Figure 4(a). For the three-cluster state s1 = Syywbb the corresponding eigenvectors
are

(3.9) v1 =

⎡

⎢⎢⎢⎢
⎣

1
1
1
1
1

⎤

⎥⎥⎥⎥
⎦
, v2 =

⎡

⎢⎢⎢⎢
⎣

1
−1
0
0
0

⎤

⎥⎥⎥⎥
⎦
, v3 =

⎡

⎢⎢⎢⎢
⎣

0
0
0
1
−1

⎤

⎥⎥⎥⎥
⎦
, v4 = v∗5 =

⎡

⎢⎢⎢⎢
⎣

ry + i py

ry + i py

1
rb + i pb

rb + i pb

⎤

⎥⎥⎥⎥
⎦
,

where the expressions of ry, py, rb, pb ∈ R contain g′(χ), g′(−χ), g′(ψ), g′(−ψ), g′(χ−ψ), and
g′(ψ − χ) as given by (A.3)–(A.6) in Appendix A. For the other 29 states in Table 1, the
eigenvectors can be obtained by permuting the components in (3.9) (in the same manner as
the subscripts of s1 = Syywbb to obtain these symmetric copies).

In order to eliminate the S1 continuous rotational symmetry we use the phase differences

(3.10)

⎡

⎢⎢⎢⎢
⎣

γ1

γ2

γ3

γ4

γ5

⎤

⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢
⎣

θ1 − θ5

θ2 − θ5

θ3 − θ5

θ4 − θ5

0

⎤

⎥⎥⎥⎥
⎦

to plot the dynamics of the system. In the phase space of these coordinates the three-cluster
state s1 = Syywbb in (3.3) and its symmetrical copies in Table 1 are equilibria. Furthermore,
in many of the subsequent figures we project the phase space T

4 of the phase differences γn
into [−1, 1]4 by taking sin γn.
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The eigenvector v1 with zero eigenvalue corresponds to translation along the S1 group
orbit of the system. The eigenvectors v2 and v3 correspond to splitting the yellow and the
blue clusters, respectively. (These clusters are marked by subscripts “y” and “b” in (3.3)
and Table 1, and are colored yellow and blue in Figures 3 and 4.) The eigenvectors v4 and
v5 correspond to motion in the subspace (3.2). In Figure 4(b) the eigendirection v3 and the
eigendirections Re(v4) = Re(v5), Im(v4) = −Im(v5) can be visualized by the outgoing and
spiralling-in trajectories, respectively, for the three-cluster state s16 = Sbybyw (red dot).

For parameters (3.1) we have λ1 = 0, λ2 < 0, λ3 > 0, and Re(λ4) = Re(λ5) < 0 as
given by (3.8) and plotted in Figure 4(a). Consequently, the eigendirection v2 is attracting;
that is, perturbations that involve splitting the yellow cluster will decay in time. Hence we
say that the yellow cluster is stable. On the other hand, the eigendirection v3 is repelling
as the outgoing trajectories demonstrate in Figure 4(b). That is, perturbations that involve
splitting the blue cluster grow in time. Hence we say that the blue cluster is unstable. The
eigendirections Re(v4) = Re(v5) and Im(v4) = −Im(v5) are attracting, as demonstrated by
the inward spiralling trajectories in Figure 4(b). That is, the three-cluster state is attracting
in the subspace (3.2). In summary, the only perturbations giving rise to motion away from the
saddle three-cluster state are those in the direction v3 that involve splitting the blue cluster.

3.1. Heteroclinic connections between three-cluster states. One can verify numerically
that the branches of the one-dimensional unstable manifold of the three-cluster state s1 =
Syywbb are contained wholly within the stable manifolds of the three-cluster states s12 =
Sbbywy and s13 = Sbbyyw. The former branch corresponds to the direction where the 4th
oscillator is advanced relative to the 5th one, i.e., “starts in direction v3,” while the latter
branch corresponds to the opposite direction, i.e., “starts in direction −v3”; see (3.9). These
connections occur within the invariant subspace

(3.11)

⎡

⎢⎢⎢⎢
⎣

θ1(t)
θ2(t)
θ3(t)
θ4(t)
θ5(t)

⎤

⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢
⎣

θ1(t)
θ1(t)
θ3(t)
θ4(t)
θ5(t)

⎤

⎥⎥⎥⎥
⎦
,

and the connections are source-to-sink and hence robust (persistent) to sufficiently small
symmetry-preserving perturbations. Note that on the connecting orbit the first two oscillators
remain synchronized (θ1(t) ≡ θ2(t)), but this cluster becomes unstable (changes from yellow
to blue).

Similarly, one branch of the one-dimensional unstable manifold of each of the three-cluster
states s19 = Swbbyy and s29 = Sbwbyy connects to s1 = Syywbb. These branches “arrive from
directions ∓v2,” and they are embedded in the invariant subspace

(3.12)

⎡

⎢⎢⎢⎢
⎣

θ1(t)
θ2(t)
θ3(t)
θ4(t)
θ5(t)

⎤

⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢
⎣

θ1(t)
θ2(t)
θ3(t)
θ4(t)
θ4(t)

⎤

⎥⎥⎥⎥
⎦
,
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Figure 5. In panel (a) the heteroclinic connections originated in and terminated at the three-cluster state
s16 = Sbybyw are shown in phase space for parameters (3.1) in the unperturbed case ε = η = δ = 0. The
three-cluster states are represented by red dots. In panel (b) a simple graph representation is displayed such
that the nodes and directed edges correspond to three-cluster states and heteroclinic connections, respectively.

where the last two oscillators are synchronized (θ4(t) ≡ θ5(t)).
Indeed, the above argument can be interpreted for any three-cluster state in Table 1. For

example, considering the three-cluster state s16 = Sbybyw, one may verify that the branches of
its unstable manifold connect to the three-cluster states s5 = Sybwby and s22 = Swbyby, while
the unstable manifolds of the three-cluster states s10 = Sybywb and s30 = Sywybb connect to
it, as shown in Figure 5(a). The connected three-cluster states can be represented as nodes,
while the connections can be represented as directed edges between them, as shown by the
graph in Figure 5(b).

3.2. Graph structure of the heteroclinic network. Let us now examine all connections
between three-cluster states in Table 1. We find that there is a heteroclinic network consisting
of the 30 three-cluster states si = Si1...i5 and their 60 connecting heteroclinic orbits; see
Figure 6(a), where all states and connections are shown in phase space. The network can be
represented as the directed graph shown in Figure 6(b). The nodes si of the graph correspond
to the three-cluster states si = Si1...i5 , and there is a directed edge from node si to sj if
and only if there is connecting orbit from the three-cluster state si = Si1...i5 to sj = Sj1...j5 .
Notice the five-fold cyclic symmetry of the graph that reflects a five-fold cyclic permutation
symmetry of the oscillators; see the middle panel in Figure 2.

Starting at a certain three-cluster state of the heteroclinic network in Figure 6(a) (or
equivalently at the corresponding node of the graph in Figure 6(b)), we can choose which
connection (or corresponding edge) we wish to follow. More precisely, an arbitrarily small
perturbation with a component in the direction v3 or −v3 initiates a transition along one or
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Figure 6. Panel (a) shows the entire heteroclinic network in phase space for parameters (3.1) in the
unperturbed case ε = η = δ = 0. Some of the three-cluster states (red dots) are labeled according to Table 1. In
panel (b) the graph representation is depicted where each node represents a three-cluster state and each directed
edge represents a heteroclinic connection from one state to the other.

the other heteroclinic connection. Indeed, these perturbations correspond to advancing one
oscillator of the unstable blue cluster (marked by “b” in the subscript of si = Si1...i5 in (3.3)
and Table 1 and shown as blue in Figures 3–5). This means that a small advance of phase of
the pth oscillator gives rise to a transition from si to sj if ip = b (we perturb the unstable blue
cluster) and there exists a heteroclinic connection between the three-cluster states si = Si1,...,i5

and sj = Sj1,...,j5 . To formalize this we define operator Op such that

(3.13) Op(si) = sj ⇔ Op(Si1...i5) = Sj1...j5

if and only if there is a transition from si to sj obtained by a small advance of the phase of
the pth oscillator. The action of Op is characterized by the subscript changes:

(3.14)
if ip = b, then

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

in = y → jn = b,

in = w → jn = y,

in = b → jn = y for n �= p,

in = b → jn = w for n = p,

if ip ∈ {y,w}, then jn = in for all n.

According to (3.14) there are two “qualitatively” different choices of p ∈ {1, . . . , 5}. Choos-
ing an oscillator from the unstable blue cluster (ip = b) gives Op(si) = sj with j �= i, while
choosing an oscillator from the stable yellow cluster (ip = y) or choosing the single white
oscillator (ip = w) gives Op(si) = si. Formula (3.14) evaluated for all si is presented as Ta-
ble 2 in Appendix B. According to this, one can follow arbitrary paths on the directed graph
in Figure 6(b) by making a sequence of arbitrarily small perturbations to the appropriate
oscillators. We will exploit this feature of the network in sections 3.3 and 4.

We can define an adjacency matrix A with elements Aij ∈ {0, 1}, where Aij = 1 if and
only if there is a directed edge from node si to sj in the graph Figure 6(b). The number
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Figure 7. The logarithm of the number of distinct cyclic paths log2

(
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)
as a function of the path length

k (red crosses) for the graph shown in Figure 6(b). Note that the shortest cycle length is 5 and there are no
cycles of length 7. The blue line corresponds to the growth 2k.

of cyclic paths of any given length can be calculated from the adjacency matrix as follows.
The elements of the matrix Ak give the number of distinct paths of length k from node si
to node sj ; see [15]. Thus, the diagonal elements of Ak give the number of distinct cyclic
paths of length k from a node back to itself, and the trace tr(Ak) represents the total number
of cyclic paths of length k in the network. In Figure 7 the logarithm of tr(Ak) is plotted as
a function of k (red crosses). One can observe that there are no cycles of length 1, 2, 3, 4, 7
and that tr(Ak) ≈ 2k for large k (the blue line represents the exact relation tr(Ak) = 2k).
We remark that cycles with path length k = 6 become relevant when the natural frequencies
of the oscillators are detuned in (2.1) according to (2.5) with δ �= 0, as will be discussed in
sections 3.3 and 4.2.

3.3. Dynamics of the attracting heteroclinic network. For parameters (3.1) in the un-
perturbed case ε = η = δ = 0 the heteroclinic network described above is asymptotically
stable/attracting (even though each three-cluster state is saddle). (Recall that the contract-
ing eigenvalue is stronger than the expanding one, i.e., |λ2| > λ3 as given by (3.8) and plotted
in Figure 4(a); so by [18] the network is asymptotically stable.) This attractivity is essen-
tial if one wishes to perform reliable computations by using the heteroclinic network: small
perturbations do not drive the system away from the network as time progresses, allowing
navigation along a chosen path on the network.

In Figure 8 the attractivity is demonstrated for an arbitrary initial condition. Figure 8(a)
shows the dynamics in phase space. The trajectory approaches the network such that it
approaches a sequence of three-cluster states (labeled red dots) and “travels close” to the
heteroclinic connections from one state to the other while spending longer and longer periods
of time close to the three-cluster states. This well-known slowing down of cycling [18] is seen
in time profiles in Figure 8(b), where the plateaux correspond to “being close to” the three-
cluster states and the quick transitions between them correspond to “traveling close to” the
heteroclinic connections. In this panel a color code is also applied: yellow oscillators form
the stable cluster, blue oscillators form the unstable cluster, and labels on the top identify
the three-cluster states according to Table 1. Regions of quick transitions are colored light
green. The length of time intervals spent close to the three-cluster states, i.e., the length of
the plateaux, increases as

(3.15) lim
k→∞

Tk

Tk−1
=

|λ2|
λ3

,
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Figure 8. Approaching the heteroclinic network from an arbitrary initial condition in the unperturbed
case (as labeled on the top left) for parameters (3.1). Panel (a) shows the dynamics in phase space: The
labeled red dots show the three-cluster states approached by the trajectory that “travels close to” the heteroclinic
connections. In panel (b) the time profiles are displayed: Plateaux of sin γn correspond to three-cluster states
and transitions between them correspond to heteroclinic connections. Lining up the colored regions vertically
reveals which oscillators form the stable yellow and unstable blue clusters, and the labels on the top identify the
three-cluster states according to Table 1. Transition regions are colored light green. Panel (c) shows the path
followed on the graph in Figure 6(b). See also the accompanying animation (68396 01.avi [3.9MB]).

which corresponds to the strength of attraction of the heteroclinic connections [18]. Notice in
Figure 8(b) that the limit (3.15) is almost achieved even for small values k = 3, 4, 5. Figure 8(c)
shows the path followed on the graph in Figure 6(b) by the above dynamics.

The heteroclinic behavior changes when external perturbations such as noise (η �= 0),
detuning (δ �= 0), or impulsive inputs (ε �= 0) are applied; see (2.1)–(2.5). Figure 9 shows
the response of the system to such perturbations; i.e., the effects of noise, detuning, and
periodic impulsive inputs are shown in panels (a), (b), and (c), respectively, where exactly
the same notation is used as in Figure 8. The precise dynamics followed depends on the
initial condition, although after an initial transient the dynamics enters a neighborhood of
the heteroclinic attractor. To avoid transient effects the initial condition is set close to the
three-cluster state s1 = Syywbb. We assume that ε, η, and δ are small enough so that the
only attractors of the system are in a neighborhood of the heteroclinic attractor for the
unperturbed case ε = η = δ = 0. When the system is close to a three-cluster state it is sensitive
to perturbations; that is, the perturbations determine which oscillator in the unstable blue
cluster is advanced with respect to the other and, consequently, which of the two outgoing
heteroclinic connections should be followed. The asymptotic stability of the network ensures
that, after a transient, trajectories remain close to the heteroclinic network. This means
that we can describe the dynamics by the itinerary of the heteroclinic network in Figure 6(a)
(or the corresponding graph in Figure 6(b)). According to this we use the expressions “at
a three-cluster state” and “at a node” to mean that the system is close to a three-cluster
state. Furthermore, for the perturbed system the formula (3.15) does not hold. Instead, a
characteristic time of transition between states can be assigned as shown by the length of
plateaux in Figure 9(a2), (b2), (c2). This time is inversely proportional to the logarithm of

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/68396_01.avi
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Figure 9. Dynamics of the system in the presence of noise (a), detuning (b), and periodic impulsive
inputs (c) for parameters (3.1). Panels (a1), (b1), and (c1) show the dynamics in phase space; panels (a2),
(b2), and (c2) depict the time profiles; and panels (a3), (b3), and (c3) show the paths followed in Figure 6(b).
The same notation is used as in Figure 8. Panel (a2) corresponds to the raster plot in Figure 1. In panel (c2) red
stars in every t = k T = k 52.0 indicate which oscillator receives the impulsive input. See also the accompanying
animations (68396 02.avi [6.4MB]), (68396 03.avi [6.4MB]), and (68396 04.avi [6.7MB]).
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the magnitude of perturbations; see section 4.

In Figure 9(a) noise of strength η = 10−5 forces the system to follow a randomly chosen
path on the heteroclinic network. At each three-cluster state/node the noise randomly chooses
which of the two oscillators in the unstable blue cluster is advanced with respect to the
other and, consequently, which of the two outgoing heteroclinic connections/directed edges is
followed. Note that the whole network is explored with probability 1 if the simulation is run
for long enough. The time domain t ∈ [0, 350] in Figure 9(a2) corresponds to the raster plot
in Figure 1, where vertical lines indicate when the individual phases θn(t) go through zero.

Figure 9(b) shows the dynamics when oscillators are detuned according to the uniform
detuning (2.5), which for N = 5 means

(3.16) ω1 = ω − 2δ, ω2 = ω − δ, ω3 = ω, ω4 = ω + δ, ω5 = ω + 2δ.

Here the detuning magnitude δ = 10−6 is considered. Since the heteroclinic attractor is only
robust to perturbations that preserve the symmetries of the system, it is generically destroyed
by this detuning. More precisely, at a three-cluster state/node the detuning (3.16) always
advances the blue oscillator with larger index (the one which changes its color to white in
Figure 9(b2)). Consequently, one particular outgoing heteroclinic connection/directed edge is
followed. This results (after a transient path) in the system reaching a cyclic path of length 6
(which is followed as t → ∞). This path corresponds to limit cycle oscillations of the phase
differences in the detuned system. Note that this limit cycle is not unique; i.e., for different
initial states we can see different attractors, as discussed in section 4.2.

In Figure 9(c) the system is forced by periodic impulsive inputs of the form

(3.17) Ii(t) =

∞∑

k=0

δ(t− k T ) δipk ,

where δ(t − k T ) is a Dirac delta function while δipk is a Kronecker delta. The kth term of
this sum represents a unit impulse applied to the pkth oscillator at time k T , where pk ∈
{0, 1, . . . , 5} (pk = 0 corresponds to no input). That is, the phase of the oscillator receiving
the input is simply advanced by the input amplitude ε. Here the input amplitude ε = 10−3

and period T = 52.0 are considered, and a red star is plotted in Figure 9(c2) when an
oscillator receives an input. At a three-cluster state/node si = Si1,...,i5 at time t = k T we
can choose which of the two oscillators in the unstable blue cluster should receive the input
(that is, ipk = b can be chosen) and, consequently, which of the two outgoing heteroclinic
connections/directed edges should be followed. In Figure 9(c2) we always choose the blue
oscillator with the smaller index to have its phase advanced (the blue oscillator with the red
star changes its color to white). This results (after following the transient path) in a cyclic
path of length 6 (which is followed as t → ∞). Note that different input configurations lead
to different paths and that repeated input sequences correspond to cyclic paths. This shows
that by exploiting the natural dynamics of the system we can drive it along a chosen path
on the heteroclinic network: we can think of the dynamics as an input-output system which
is capable of performing finite-state computation [3]. The reliability of such computations is
investigated in detail in the next section.
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Figure 10. Dynamics of the system in the presence of periodic impulsive inputs, noise, and detuning (as
labeled on the top left) for parameters (3.1). The same notation is used as in Figure 8. In panel (b) red stars
in every t = k T = k 52.0 indicate which oscillator receives the impulsive input. In panels (a) and (c) the light
green sections of the trajectory and the graph show the dynamics after an incorrect switch at the three-cluster
state s5 = Sybwby.

4. Reliability of switching along the heteroclinic network. In this section we illustrate
that it is possible to reliably drive the system around the heteroclinic network of three-cluster
states using small impulsive inputs. This can be managed even when noise and detuning
are present if the input amplitude is large enough relative to the noise strength and detuning
magnitude. From now on we will use the term switch to mean a transition along a heteroclinic
orbit between three-cluster states.

For example, one may check that by applying the same noise as in Figure 9(a) (with
strength η = 10−5), the same detuning as in Figure 9(b) (with magnitude δ = 10−6), and the
same input as in Figure 9(c) (with amplitude ε = 10−3 and period T = 52.0), the obtained
trajectory, time profiles, and, consequently, the path followed are indistinguishable from those
in Figure 9(c), where neither noise nor detuning are present. This means that the dynamics
is still determined by the sequence of inputs.

Figure 10 shows the response of the system to perturbations with noise increased to the
extent that the switches are not all determined by the inputs. (The same notation is used as
in Figure 8 and the initial condition is at the three-cluster state s1 = Syywbb.) Again the same
detuning is applied as in Figure 9(b) (with magnitude δ = 10−6), the same input is applied
as in Figure 9(c) (with amplitude ε = 10−3 and period T = 52.0), but the noise (of strength
η = 6 · 10−5) is larger than in Figure 9(a). The trajectory and the time profiles are initially
close to those in Figure 9(a) and (b).

Figure 10(b) shows that the first “incorrect” switch happens at time t = 6T = 312.0,
where the first blue oscillator receives an impulsive input but the system stays at the three-
cluster state s3 = Sybwyb instead of switching to s27 = Sbwyby. Another impulsive input has
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to be applied to the same oscillator at time t = 7T = 364.0 in order to force the system to
switch. The next “incorrect” switch takes place at time t = 10T = 520.0, where an impulsive
input is applied to the first blue oscillator of the three-cluster state s5 = Sybwby; that is,
a switch to s26 = Sybwby is initiated. Instead, a switch to s7 = Sbyywb is observed (the
blue oscillator without a red star changes its color to white; i.e., the “wrong” heteroclinic
connection/directed edge is followed). This “incorrect” switch leads the system away from
the cyclic path of length 6, as shown by the green part of the trajectory in Figure 10(a) and
by the green part of the graph in Figure 10(c).

In order to measure the accuracy of switching, at each three-cluster state we randomly
choose which blue oscillator receives the impulsive input (i.e., choose which heteroclinic con-
nection/directed edge should be followed), and then detect whether the expected switch
happens. To be more precise, we classify the system as being at a three-cluster state si
if θ(t) ∈ Bξ(si), where Bξ(si) denotes the ξ-neighborhood of si. The detection tolerance ξ > 0
is chosen such that the ξ-neighborhoods of different three-cluster states do not intersect each
other, that is, Bξ(si) ∩ Bξ(sj) = ∅ if i �= j. In this article we fix ξ = 0.5, but no qualitative
change is observed when using different ξ.

Suppose that we are at the three-cluster state si = Si1,...,i5 at time t = k T and randomly
choose an oscillator pk in the unstable blue cluster for input (that is, ipk = b). Then we
predict sj = Opk(si) to be the state we expect after a time T ; see definitions (3.13), (3.14)
and Table 2. We declare a switch to be correct if θ(t + T ) is at the expected three-cluster
state sj and otherwise incorrect. An incorrect switch can occur for one of the three reasons:

(i) we cannot classify the state of θ(t) (i.e., there is no i such that θ(t) ∈ Bξ(si)),
(ii) we cannot classify the state of θ(t + T ), or
(iii) we can classify both states but the switch is not as expected (i.e., Opk(si) �= sj), as

can be observed in Figure 10(b).
Figure 11 shows 14 randomly chosen switches for perturbations ε = 10−3, η = 10−7,

and δ = 0 with T = 85.0. (Again the same notation is used as in Figure 8 and the initial
condition is the three-cluster state s1 = Syywbb.) The system follows the randomly chosen path
expected from the provided sequence of impulsive inputs; that is, all switches are correct (the
blue oscillators with red stars change their color to white in Figure 11(a), and the sequence
of three-cluster states can be predicted by sj = Opk(si)). In the next section we compute the
rate of incorrect switches as a function of input period T , input amplitude ε, noise strength
η, and detuning magnitude δ.

4.1. Error rates for switching. In order to check how reliable the switches are when
driving the system with impulsive inputs in the presence of noise and detuning, we perform
long simulations and count the proportion of correct and incorrect switches. The error rate
0 ≤ E ≤ 1 is calculated as the proportion of incorrect switches for a large number of attempts
(2000 switches) for a random choice of the possible switches at each state. The random choice
is uniformly chosen between the two possible inputs that initiate switching at each step. More
precisely, if we are at the three-cluster state si = Si1,...,i5 , we choose with equal probability one
of the two pk such that ipk = b; that is, an oscillator in the unstable blue cluster is perturbed.
If no three cluster-state si is identified we choose pk = 0; i.e., no input is provided. The error
rate clearly depends on the exact values of the parameters in (2.2), which here are fixed as
in (3.1). It also depends on the input period T , the input amplitude ε, the noise strength η,
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Figure 11. Driving the system along a randomly chosen path in the heteroclinic network for parameters (3.1)
with perturbations labeled on the top. The same notation is used as in Figure 8. In panels (a) and (b) the time
profiles and the followed path are shown for the 14 switches. In panel (a) red stars in every t = k T = k 85.0
indicate which oscillator receives the impulsive input. See also the accompanying animation (68396 05.avi
[10.2MB]).

and the detuning magnitude δ; that is, E = E(T, ε, η, δ). We will assume that the error rate
converges for our assumptions on random choice of {pk}.

One can maintain a periodic orbit near the heteroclinic network with period T > Tε

between successive states by application of impulsive inputs of amplitude ε, where

(4.1) Tε = − 1

λe
ln ε + O(1) = − ln(10)

λe
log10 ε + O(1),

as ε → 0. Here λe is the expanding eigenvalue of the three-cluster states (for parameters (3.1)
we have λe = λ3 = 0.1703, as given by (3.8) and shown in Figure 4(a)). Scaling (4.1) can be
seen by the following argument. Consider a transition from the three-cluster state si to the
three-cluster state sj with symmetrically related surfaces of section Σi and Σj , intersecting
the stable manifolds of si and sj , respectively. If we provide an impulse of amplitude ε in the
unstable direction at Σi, this will grow proportionally to ε eλet, meaning that it saturates and
causes a switch when ε eλeT = O(1). This in turn implies (4.1). If we perturb a three-cluster
state si in its unstable direction, then the unstable direction for sj is not affected, meaning
that by choosing to perturb on a section Σi closer to si, we can provide impulses of amplitude
ε to obtain periodic orbits with any period T > Tε.

Similarly, it can be shown [24] that the addition of noise of strength η will transform the
heteroclinic attractor into an approximately periodic attractor with period T ≈ Tη, where

(4.2) Tη = − 1

λe
ln η + O(1) = − ln(10)

λe
log10 η + O(1),

as η → 0. In consequence, we conclude that one can navigate around the network with error

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/68396_05.avi
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Figure 12. In panels (a) and (b) the error rate E is shown as a function of the input period T for
parameters (3.1). In panel (a) several different values of the input amplitude ε are considered for fixed noise
strength η, while in panel (b) several different values of η are taken for fixed ε. No detuning is added (δ = 0).
The leftmost curves in panels (a) and (b) correspond to the largest values of ε and η, respectively. In panels
(c) and (d) the shaded domains show where the error rate is below the threshold 0.2 in the (T, log10 ε)-plane
and in the (T, log10 η)-plane, respectively. Notice that the fitted red lines have approximately the same gradient
in both panels (c) and (d).

rate E close to zero as long as T is in the range

(4.3) Tε < T < Tη.

If T < Tε, then errors take place because the time is not long enough to permit the connections
to be followed. If T > Tη, then the noise will be the dominant influence in determining when
transitions take place, and hence the error rate will be large. Note that a range of possible T
in (4.3) is available as long as

(4.4) ε � η.

If both noise η > 0 and detuning δ > 0 are present in the system, then the same argument
holds except one must write max(δ, η) in place of η in formulae (4.2)–(4.4).

In Figure 12(a) and (b) the error rates (obtained from 2000 switches) are shown as a
function of the input period T for several different values of input amplitude ε and noise
strength η, respectively (with no detuning, δ = 0). The leftmost curves in Figure 12(a)
and (b) correspond to the largest values of ε and η, respectively. These panels clearly show
that when (4.4) is satisfied there exists an interval of T (4.3) where E ≈ 0. Also notice that
left and right boundaries of this interval move proportionally to log10 ε in Figure 12(a) and
proportionally to log10 η in Figure 12(b). In order to measure these boundaries more precisely
we detect where the curves intersect the error rate E = 0.2 (denoted by horizontal dashed
lines in Figure 12(a) and (b)). We plot the corresponding data in Figure 12(c) and (d), where
the low error rate domains (E < 0.2) are shaded. The least square fitted red lines in Figure
12(c) and (d) with gradients

(4.5) gε = −0.0749 ± 0.0014 and gη = −0.0740 ± 0.0005,
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Figure 13. The network in Figure 6(b) collapses to this network with two connected components on applying
the uniform detuning (3.16). Observe that there are two eventually periodic paths of length 6, indicating that
detuning results (after a transient path) in one of two “periodic spatiotemporal codes” depending on initial state.

respectively, agree well with the predicted gradients in (4.1) and (4.2), namely,

(4.6) g = − ln(10)

λe
= − ln(10)

λ3
= −0.0740.

This shows that the accuracy of navigation around the heteroclinic network can be predicted
by the stability properties of the three-cluster states.

4.2. Detuning-driven spatiotemporal coding. In addition to giving a network that can
perform finite-state computations, the system (2.1), (2.2) can give spatiotemporal coding of
steady external inputs that are in the form of detuning. Assuming the uniform detuning (3.16)
and setting the initial condition at s1 = Syywbb the system reaches a cyclic path of length 6
(after some transient path) as shown in Figure 9(b). In fact, this path encodes information
about the form of the detuning, as discussed below.

Here we assume the uniform detuning (3.16) and consider the system starting at different
three-cluster states. Whenever the system is at a three-cluster state si = Si1,...,i5 there will be
a “preferred” direction along the graph in Figure 6(b). Namely, if ip = iq = b are the unstable
blue oscillators, then if ωip > ωiq the detuning will tend to initiate a switch to Oip(si), while if
ωip < ωiq the initiated transition will be to Oiq(si); see definitions (3.13), (3.14) and Table 2.
Hence, uniform detuning causes a bias to the switchings, meaning that one of the outgoing
edges is removed from each node and the network with the graph in Figure 13 remains for
the original network. This “detuned” graph consists of two connected components, each of
which has an absorbing cyclic path of length 6 and transient paths that are asymptotic to
these circuits after a finite number of switches. Which of the cyclic paths is reached depends
on the initial state. The sequences of three-cluster states along the circuits can therefore be
considered as spatiotemporal encodings of the applied detuning.

Notice that the magnitude of δ does not change the graph in Figure 13, but it does
affect the average period between switches Tδ in a similar way to (4.1). Different detuning
configurations obtained by permutation of the indices in (3.16) result in different cyclic paths
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Figure 14. Bifurcation diagrams showing the phase differences γ4 = θ5 − θ4 (a), γ1 − γ3 = θ1 − θ3 (b),
and γ4 − γ3 = θ4 − θ3 (c) as the parameter β is varied for r = 0.2, α = 1.8, ω = 1 with ε = η = δ = 0. The
three-cluster state s1 = Syywbb and the bifurcated cluster states Syywlb, Syywbl are labeled on the corresponding
red and light green branches. Solid curves denote stable states and dashed curves denote saddle states. The blue
star at β = −2.6840, blue cross at β = −2.5933, and blue circle at β = −1.7515 denote the Hopf, pitchfork,
and resonance bifurcations, respectively. The network shown in Figure 6 is attracting between the pitchfork and
the resonance bifurcations.

of length 6, that is, different spatiotemporal codes. One may check that 120 cyclic paths of
length 6 exist (using the adjacency matrix defined in section 3.2 we obtain tr(A6) = 120).
However, only 20 of these paths are possible absorbing cycles when one considers all possible
5! = 120 permutations of (3.16).

5. Excitable dynamics. The dynamics described in sections 3 and 4 is robust (structurally
stable); i.e., there is an open set of parameters around (3.1) where such an attracting hetero-
clinic network exists. We observe the network on varying β in the range (−2.5933,−1.7515)
and now analyze the bifurcations at the boundaries of this regime. At the lower boundary the
saddles within the network are stabilized at a pitchfork bifurcation to become stable three-
cluster states that remain arranged in a network as in Figure 6. At the upper boundary the
heteroclinic network persists but loses stability at a resonance bifurcation [9].

As verification of this, Figure 14 shows bifurcation diagrams for the three-cluster state
s1 = Syywbb. The parameters r, α, and ω are given by (3.1) except that β is varied, and
we set ε = η = δ = 0. The figure was generated by the continuation package AUTO [10].
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Figure 15. Dynamics around a stable three-cluster state for parameters (5.1) in the unperturbed case
ε = η = δ = 0. In panel (a) the eigenvalues (3.7), (5.3) are displayed in the complex plane. Panel (b) shows
the local dynamics in phase space in the vicinity of the three-cluster state s16 = Sbybyw (red dot). Light green
dots show the bifurcated saddle cluster states Slybyw and Sbylyw. One branch of the unstable manifold of each
of these states connects to s16 = Sbybyw.

In Figure 14 the phase differences are plotted as a function of the parameter β. Solid lines
correspond to stable states, and dashed lines correspond to saddle states. Blue star, blue
cross, and blue circle represent Hopf, pitchfork, and resonance bifurcations, respectively, from
the three-cluster state. Between the pitchfork and the resonance bifurcation the heteroclinic
network is attracting because |λ2| > λ3 (as in Figure 4(a)); that is, the contracting eigenvalue
is stronger than the expanding one for the robust connection. The pitchfork bifurcation occurs
when λ3 = 0 (β = −2.5933), while the resonance occurs when |λ2| = λ3 (β = −1.7515).

Figure 14(a) shows the phase difference γ4 = θ5 − θ4 as a function of β. For the sad-
dle three-cluster state s1 = Syywbb (horizontal red line) the phase difference γ4 = θ4 − θ5

is zero, indicating that the 4th and the 5th oscillators are synchronized. At the pitchfork
bifurcation (blue cross at β = −2.5933) the three-cluster state s1 = Syywbb becomes stable
with Re(λn) < 0 for n = 2, 3, 4, 5 (see Figure 15(a)). The bifurcation creates two branches of
saddle cluster states (light green curves) where γ4 �= 0, i.e., the 4th and the 5th oscillators are
not synchronized. If γ4 > 0, for this cluster state we write Syywlb (and Syywbl if γ4 < 0). The
subscript “l” stands for the light blue color used in Figures 15–16 and indicates the oscillator
in the unstable blue cluster whose phase has been advanced. These new cluster states are
located in the subspace (3.11), and their unstable manifolds are connected to the three-cluster
states s1 = Syywbb, s12 = Sbbywy, and s13 = Sbbyyw, as detailed further below.

Figure 14(b) and (c) show the phase differences γ1−γ3 = θ1−θ3 and γ4−γ3 = θ4−θ3 as a
function of β for the relevant cluster states. For s1 = Syywbb (red curve) we have γ1 − γ3 = χ
and γ4 − γ3 = ψ; see definitions (3.3), (3.4). Notice that in Figure 14(b) the branches of
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Figure 16. In panel (a) the heteroclinic connections originated in and terminated at the three-cluster state
s16 = Sbybyw are shown in phase space for parameters (5.1) in the unperturbed case ε = η = δ = 0. The cluster
states are represented by red and light green dots. In panel (b) a simple graph representation is displayed
such that the nodes and directed edges correspond to cluster states and heteroclinic connections, respectively.
Panel (c) shows a further simplified graph representation where only the three-cluster states are displayed and
the directed edges represent possible large-input-triggered switches between them.

cluster states Syywlb and Syywbl overlap (light green curve), which indeed shows that these
cluster states are embedded in the subspace (3.11). The symmetric copies of s1 = Syywbb, as
in Table 1, behave in a corresponding way at the pitchfork bifurcation.

On reducing β further, the complex conjugate pair of eigenvalues moves to the right-hand
side of the imaginary axis at the Hopf bifurcation (blue star at β = −2.6840), and the three-
cluster state s1 = Syywbb becomes a saddle again since λ2, λ3 < 0 and Reλ4 = Reλ5 > 0.
However, the resulting dynamics is different from that on the right side of the pitchfork
bifurcation (the oscillatory branches emerging at the Hopf bifurcation are not studied further
in this paper).

At the resonance bifurcation (blue circle at β = −1.7515) the contracting eigenvalue
becomes weaker than the expanding eigenvalue, i.e., |λ2| < λ3. Consequently, the heteroclinic
network becomes repelling; see [9]. Note that the three-cluster states persist as saddles and
the network still persists on the right side of the resonance bifurcation. However, since it is
not attracting, general initial conditions may approach long-period stable limit cycles or even
chaotic attractors (see section 7).

5.1. Network of excitable three-cluster states. We now investigate in detail the network
of stable excitable states that replaces the heteroclinic network to the left side of the pitchfork
bifurcation, by considering the parameters

(5.1) r = 0.2, α = 1.8, β = −2.6, ω = 1.0.
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Note that only β has been changed compared to parameters (3.1). Solving (3.5) for parameters
(5.1), one can find a three-cluster state (3.3), (3.4) with

(5.2) χ = −1.7638, ψ = 1.4594, Ω = 0.9343,

and symmetric copies as in Table 1. Substituting (5.1), (5.2) into (3.7), the eigenvalues are

(5.3) λ2 = −0.3746, λ3 = −0.0158, λ4,5 = −0.0493 ± i 0.0709,

as displayed in Figure 15(a). Notice that all eigenvalues are to the left of the imaginary axis
indicating that the three-cluster states are stable, but λ3 is close to zero as the system is close
to the bifurcation point.

In Figure 15(b) the stable three-cluster state s16 = Sbybyw (red dot) and the bifurcated
saddle cluster states Slybyw and Sbylyw (light green dots) are displayed (with the oscillators
corresponding to the subscript “l” colored light blue). The latter cluster states are located
in the symmetric copy of the subspace (3.11). Observe that now s16 = Sbybyw is attracting
from all directions. In particular, Re(v4) = Re(v5) and Im(v4) = −Im(v5) correspond to
the spiralling directions, while v3 and −v3 are the directions toward the three-cluster states
Slybyw and Sbylyw. (The latter two directions are indeed the opposite of each other, but the
curvature of the projection (sin γ1, sin γ2, sin γ3) is large in the vicinity of the three-cluster
state s16 = Sbybyw as it is close to (1,−1, 1).)

It can be verified numerically that one branch of the one-dimensional unstable manifold of
the cluster state Slybyw returns to s16 = Sbybyw while the other branch connects to the three-
cluster state s22 = Swbyby. Similarly, the unstable manifold of Sbylyw connects to s16 = Sbybyw

and s5 = Sybwby; this is illustrated in Figure 16(a). There are saddle cluster states Sybywl and
Sywybl near s10 = Sybywb and s30 = Sywybb, respectively. These are located in the symmetric
copy of the subspace (3.12) and their unstable manifolds connect to s16 = Sbybyw. This means
that there are connections as shown in the graph Figure 16(b), where again the dots represent
cluster states and directed edges represent heteroclinic connections between them.

Hence, by providing a large enough perturbation when the system is near s16 = Sbybyw

in the direction of Slybyw, it is possible to “jump over” the stable manifold of Slybyw and
then approach s22 = Swbyby. We say that the stable three-cluster states are excitable to large
perturbations that separate the blue cluster. Taking these large perturbations into account
we can obtain the simplified graph of connections in Figure 16(c). Notice that this graph is
close to the one in Figure 5(b) for the original heteroclinic network with the difference that
in Figure 5(b) infinitesimally small perturbations can trigger transitions while in Figure 16(c)
the perturbations have to be of finite size.

Considering all three-cluster states the graph in Figure 6(b) is obtained again as a rep-
resentation of the system when finite size perturbations are applied. We stress that in the
resulting network of excitable three-cluster states, the excitability is a property of the three-
cluster states and not a property of the individual oscillators. We will use the term excitable
network to describe this dynamics.

5.2. Reliable switching in the excitable network. We now demonstrate that it is possible
to reliably navigate around the graph of three-cluster states by applying finite size impulsive
inputs in precisely the same way as described in section 4. Figure 17(a) shows an example
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Figure 17. Driving the system along a randomly chosen path of the network of excitable three-cluster states
for parameters (5.1) with perturbations labeled on the top. The same notation is used as in Figure 8. In
panels (a) and (b) the time profiles and the followed path are shown for the first 14 switches. In panel (a)
red stars in every t = k T = k 85.0 indicate which oscillator receives the input. Notice that on providing the
same sequence of inputs as in Figure 11 the same path is followed. See also the accompanying animation
(68396 06.avi [11.0MB]).

where 14 correct switches are performed for parameters (5.1) and perturbations ε = 0.2,
η = 10−4, δ = 0 with T = 85.0. (Again the same notation is used as in Figure 8 and the initial
condition is at the three-cluster state s1 = Syywbb.) Comparing Figure 17 to Figure 11 the
same sequence of impulsive inputs are provided (red stars in panel (a)) and the system follows
the same randomly chosen path (panel (b)). Even though relatively high noise is applied in
Figure 17, the switching pattern is reliably followed.

We test the reliability of switching by following random paths of the network when impulses
of amplitude ε are provided with period T as in section 4.1. The error rate E is obtained
(from 2000 switches again) when varying the input period T for several different values of
noise strength η and fixed input amplitude ε. When the input amplitude ε is above some
threshold, i.e., ε > εc (εc ≈ 0.18 for parameters (5.1)), then there exist ranges of input period
where reliable switching is possible as shown in Figure 18 by regions where E ≈ 0. If the
input amplitude is below the threshold, i.e., ε < εc, then no switches can be triggered by the
input so the error rate E(T, ε, η, δ) ≡ 1.

Figure 18 shows that for noise strength η � ε the error rate E ≈ 0 is achievable when T
exceeds some critical period. That is, reliable switching is possible when a sufficiently long
time is provided to travel along the connections described above. However, there also exists a
window of input period in Figure 18 which corresponds to the case when the system gets close
to a symmetrical copy of the subspace (3.11) but it is not in close vicinity of the three-cluster
state embedded in the subspace. There exist regions in the subspace (e.g., the region around
(−0.95, 0.95,−0.9) in Figure 15(b)) where the provided inputs effectively place the system
“on the other side” of the stable manifold of the symmetric copy of the cluster state Syywlb or
Syywbl and thus lead to correct switches.

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/68396_06.avi
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Figure 18. The error rate E is shown as a function of the input period T for the excitable network with
parameters (5.1) when several different values of the noise strength η are considered for fixed input amplitude
ε and no detuning δ = 0. Observe that the boundaries where the error rate rapidly drops do not move as the
noise strength is varied (except for strong noise).

The boundaries of these low error rate regions do not move much when the noise strength
is varied except for very strong noise which increases the error rate for any T . This behavior
can be explained by the stability of the three-cluster states and by the fact that ε is close to
εc, that is, ε � εc. Small noise η � εc does not provide enough perturbation to excite a switch
between three-cluster states, while large enough noise η > εc violates the condition η � ε;
that is, reliable switching is not expected for any T .

6. Conclusions. We investigated a globally coupled phase oscillator system as a simple
model for a highly connected neural system. We generalized the coupling considered in [2, 13,
17] and found an attracting robust heteroclinic network between partially synchronized three-
cluster states of saddle type. A graph representation of the network was given that can be
used to explain much of its dynamical behavior, and we studied its response to perturbations
such as noise, frequency detuning, and impulsive inputs, each of which can drive the system
around the heteroclinic network. One may interpret this dynamics as a form of winnerless
competition [1, 6, 23] between three-cluster states since each of these states may be visited
when tracking around the heteroclinic network but no state is an attractor for the system.

We found that the characteristic switching time between the three-cluster states is inversely
proportional to the logarithm of the magnitude of perturbations. Broadly speaking, the
bigger the perturbation, the faster the system “reacts” to it. We demonstrated that it is
possible to reliably navigate the system along any chosen path on the heteroclinic network
by providing small impulsive inputs to the appropriate oscillators, i.e., to perform finite-state
computation as in [3]. Moreover, this can be done accurately in the presence of background
noise and frequency detuning if the input amplitude dominates the noise strength and the
detuning magnitude for a suitable range of input periods determined by these quantities. The
boundaries of this range may be computed by considering the eigenvalues of the three-cluster
states. In contrast, a steady input to the system (i.e., frequency detuning) resulted in a reduced
network with attracting cyclic paths corresponding to a spatiotemporal output of the system.

We illustrated that on changing parameters in the coupling one can stabilize the three-
cluster states at a pitchfork bifurcation. This results in a robust network of excitable states
with the same graph structure as the heteroclinic network. Hence, it is still possible to navigate
around this excitable network by applying finite size impulsive inputs to the appropriate
oscillators.
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Figure 19. Chaotic attractor through a Poincaré section taken at γ3 = θ3 − θ5 = 1.2 by projecting into the
plane of γ1 = θ1 − θ5 and γ2 = θ2 − θ5. The parameters (7.1) are considered and no external perturbation is
added ε = η = δ = 0.

The studied dynamics shows that complex phase clustering can occur by spontaneous
symmetry breaking in globally coupled systems, even in the absence of any inhomogeneity.
Both the heteroclinic network (which is sensitive to arbitrarily small inputs) and the excitable
network (which is only sensitive to finite amplitude inputs) can be used to represent the
dynamics of systems that are sensitive to inputs but robust against background noise and
imperfections. In these systems encoding via phase differences can be used for reliable finite-
state computation as well as for producing spatiotemporal codes from steady inputs [23].
These features mimic the information processing capabilities of relating neural systems, such
as the antennal lobes of insects [11]. In these neural systems the encoding is not in average
frequencies of the oscillators but in their phases; i.e., effectively it is a form of spike-time
coding.

7. Discussion of future directions. In this paper a region of parameter space was studied
for the model (2.1), (2.2) of N = 5 oscillators. The significance of N = 5 is that this is
the smallest number of oscillators that permits nontrivial cluster formations and switching
between them [4]. Although the dynamics discussed for N = 5 is robust, it does raise further
questions:

(i) What other robust dynamics are possible for this system?
(ii) How does the dynamics change when the number of oscillators N is increased?
Concerning (i), we illustrate that in the vicinity of the explored parameter regime there

is chaotic behavior. Recall that to the right of the resonance bifurcation in Figure 14 the
heteroclinic network is unstable. This unstable network may coexist with a chaotic attractor
at the same parameter values. Figure 19 depicts a chaotic attractor for

(7.1) r = 0.2, α = 1.6, β = −1.58, ω = 1.0

near to (3.1) in the unperturbed case ε = η = δ = 0. The chaotic attractor is shown in a
Poincaré section projected into the (γ1, γ2)-plane when γ3 = 1.2; many symmetrical copies of
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the same attractor coexist in phase space. We believe this is the first example of a chaotic
attractor in a system of globally coupled identical phase oscillators with no detuning (δ = 0).
(For example, the chaos observed in [20] for N ≥ 4 oscillators of the Kuramoto system requires
large detuning in relation to the coupling strength.)

Concerning (ii), preliminary investigations show that systems of N > 5 phase oscillators
also possess very rich dynamics including heteroclinic and excitable networks and chaotic at-
tractors. In particular, for parameters (3.1) and moderate odd numbers of oscillators N = 7, 9
the only apparent attractor is a robust heteroclinic network of three-cluster states of type
((N − 1)/2, 1, (N − 1)/2). These are connected analogously to section 3 for N = 5: one of
the clusters of (N − 1)/2 oscillators is unstable to perturbations while the other is stable.
These cluster states are well separated in phase space (the detection tolerance ξ may be kept
the same when N is increased). We expect that most of the considerations in this paper
will therefore follow through for these cases, except that the number of available three-cluster
states/nodes and heteroclinic connections/directed edges are much larger (e.g., 140 states and
420 connections are available for N = 7, while 630 states and 2520 connections are available
for N = 9). This combinatorial growth makes a thorough analysis much more difficult in the
cases of N > 5. Note that for other parameters we have found heteroclinic networks between
cluster states of other types. However, in order to find a certain �-cluster state, more Fourier
harmonics may need to be included in the coupling function. These preliminary results predict
that the number of available cluster states can be enormously large for real neural ensembles.

Appendix A. Constants for eigenvalues and eigenvectors. The real part of (3.7) can be
expressed as

(A.1) μ = 1
10

(
g′(χ) + 2g′(−χ) + g′(ψ) + 2g′(−ψ) + 2g′(χ− ψ) + 2g′(ψ − χ)

)
,

while its imaginary part contains

ν = −μ2 + 4
100

(
g′(χ)g′(ψ) + 2g′(χ)g′(−ψ) + 2g′(−χ)g′(ψ)

+ 2g′(χ− ψ)
(
g′(ψ) + 2g′(−χ) + 2g′(−ψ)

)

+ 2g′(ψ − χ)
(
g′(χ) + 2g′(−χ) + 2g′(−ψ)

))
.

(A.2)

The real parts of the components of (3.9) are

ry = − 1

4Q

(
N1

(
g′(χ) − g′(ψ) − 2g′(−χ) − 2g′(−ψ) + 2g′(χ− ψ) + 2g′(ψ − χ)

)

− 4g′(χ)g′(−ψ)g′(ψ − χ) + 4g′(−χ)g′(ψ)g′(χ− ψ)

)
,

rb =
1

4Q

(
N3

(
−g′(χ) + g′(ψ) − 2g′(−χ) − 2g′(−ψ) + 2g′(χ− ψ) + 2g′(ψ − χ)

)

+ 4g′(χ)g′(−ψ)g′(ψ − χ) − 4g′(−χ)g′(ψ)g′(χ− ψ)

)
,

(A.3)
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while the imaginary parts are

py = − 1

4Q
N1

√
P ,

pb =
1

4Q
N3

√
P ,

(A.4)

where

N1 = g′(χ)g′(−ψ) + 2g′(χ− ψ)
(
g′(−χ) + g′(−ψ)

)
,

N3 = g′(−χ)g′(ψ) + 2g′(ψ − χ)
(
g′(−χ) + g′(−ψ)

)
,

(A.5)

and

P = −
(
g′(χ) − g′(ψ)

)2 − 4
(
g′(−χ) + g′(−ψ)

)2 − 4
(
g′(χ− ψ) + g′(ψ − χ)

)2

− 4
(
g′(χ) − g′(ψ)

)(
g′(−χ) − g′(−ψ)

)
− 4

(
g′(χ) − g′(ψ)

)(
g′(χ− ψ) − g′(ψ − χ)

)

+ 8
(
g′(−χ) + g′(−ψ)

)(
g′(χ− ψ) + g′(ψ − χ)

)
,

Q = g′(−χ)g′(−ψ)
(
g′(χ) − g′(ψ)

)
+

(
g′(−χ) + g′(−ψ)

)(
2g′(−χ)g′(χ− ψ)

− 2g′(−ψ)g′(ψ − χ)
)
.

(A.6)
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Appendix B. The operator Op.

Table 2
The effects of operator Op, p = 1, . . . , 5, in (3.13) on the three-cluster states si, i = 1, . . . , 30. The resulting

states are shown only when i �= j for Op(si) = sj; in all other cases Op(si) = (si).

O1(si) O2(si) O3(si) O4(si) O5(si)

s1 s12 s13

s2 s20 s30

s3 s27 s17

s4 s23 s10

s5 s26 s7

s6 s22 s15

s7 s19 s18

s8 s26 s6

s9 s23 s3

s10 s29 s16

s11 s2 s13

s12 s21 s28

s13 s24 s25

s14 s2 s12

s15 s29 s9

s16 s22 s5

s17 s19 s8

s18 s27 s4

s19 s30 s1

s20 s8 s18

s21 s5 s15

s22 s28 s11

s23 s25 s14

s24 s3 s10

s25 s6 s7

s26 s24 s14

s27 s21 s11

s28 s4 s17

s29 s20 s1

s30 s9 s16
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